首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined how often children with persistent familial hematuria were from families where hematuria segregated with the known genetic locus for the condition known as benign familial hematuria or thin basement membrane nephropathy (TBMN) at COL4A3/COL4A4. Twenty-one unrelated children with persistent familial hematuria as well as their families were studied for segregation of hematuria with haplotypes at the COL4A3/COL4A4 locus for benign familial hematuria and at the COL4A5 locus for X-linked Alport syndrome. Eight families (38%) had hematuria that segregated with COL4A3/COL4A4, and four (19%) had hematuria that segregated with COL4A5. At most, eight of the other nine families could be explained by disease at the COL4A3/COL4A4 locus if de novo mutations, non-penetrant hematuria or coincidental hematuria in unaffected family members was present individually or in combination. This study confirms that persistent familial hematuria is not always linked to COL4A3/COL4A4 (or COL4A5) and suggests the possibility of a further genetic locus for benign familial hematuria. This study also highlights the risk of excluding X-linked Alport syndrome on the basis of the absence of a family history or of kidney failure.  相似文献   

2.
Background: Alport syndrome is a hereditary nephritis that may lead to end-stage renal disease (ERSD) in young adult life and is often associated with sensorineural deafness and/or ocular abnormalities. The majority of families are X-linked due to mutations in the COL4A5 gene at X122. Autosomal forms of the disease are also recognized with recessive disease, having been shown to be due to mutations in the COL4A3 and COL4A4 genes on chromosome 2. Familial benign haematuria has also been mapped to this region in some families.Subjects and methods: We describe a large family with autosomal dominant Alport syndrome in which males and females are equally severely affected and one member with a mild sensorineural deafness reached ESRD aged 35 years. Renal biopsy in four affected patients demonstrated characteristic thickened and split glomerular basement membranes on electron-microscopy. Results: Genetic linkage analysis using markers on chromosome 2q demonstrated co-segregation of the disease with the markers D2S351 and D2S401 with a maximum lod score of 3.4 at zero recombination. Linkage to the COL4A4 gene was confirmed using an intragenic COL4A4 polymorphism. Mutation analysis has revealed a missense Leu36Pro mutation in exon 5 of the adjacent COL4A3 gene in the unaffected mother, which may lead to a more severe phenotype in affected family members carrying this mutation. Conclusion: Mutations in the COL4A3 and COL4A4 cause a spectrum of glomerular basement membrane disease ranging from autosomal recessive Alport syndrome to autosomal dominant Alport syndrome and familial benign haematuria.  相似文献   

3.
Thin basement membrane nephropathy   总被引:17,自引:0,他引:17  
Thin basement membrane nephropathy. Thin basement membrane nephropathy (TBMN) is the most common cause of persistent glomerular bleeding in children and adults, and occurs in at least 1% of the population. Most affected individuals have, in addition to the hematuria, minimal proteinuria, normal renal function, a uniformly thinned glomerular basement membrane (GBM) and a family history of hematuria. Their clinical course is usually benign. However, some adults with TBMN have proteinuria >500 mg/day or renal impairment. This is more likely in hospital-based series of biopsied patients than in the uninvestigated, but affected, family members. The cause of renal impairment in TBMN is usually not known, but may be due to secondary focal segmental glomerulosclerosis (FSGS) or immunoglobulin A (IgA) glomerulonephritis, to misdiagnosed IgA disease or X-linked Alport syndrome, or because of coincidental disease. About 40% families with TBMN have hematuria that segregates with the COL4A3/COL4A4 locus, and many COL4A3 and COL4A4 mutations have now been described. These genes are also affected in autosomal-recessive Alport syndrome, and at least some cases of TBMN represent the carrier state for this condition. Families with TBMN in whom hematuria does not segregate with the COL4A3/COL4A4 locus can be explained by de novo mutations, incomplete penetrance of hematuria, coincidental hematuria in family members without COL4A3 or COL4A4 mutations, and by a novel gene locus for TBMN. A renal biopsy is warranted in TBMN only if there are atypical features, or if IgA disease or X-linked Alport syndrome cannot be excluded clinically. In IgA disease, there is usually no family history of hematuria. X-linked Alport syndrome is much less common than TBMN and can often be identified in family members by its typical clinical features (including retinopathy), a lamellated GBM without the collagen alpha3(IV), alpha4(IV), and alpha5(IV) chains, and by gene linkage studies or the demonstration of a COL4A5 mutation. Technical difficulties in the demonstration and interpretation of COL4A3 and COL4A4 mutations mean that mutation detection is not used routinely in the diagnosis of TBMN.  相似文献   

4.
COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. BACKGROUND: Mutations of the type IV collagen COL4A5 gene cause X-linked Alport syndrome (ATS). Mutations of COL4A3 and COL4A4 have been reported both in autosomal-recessive and autosomal-dominant ATS, as well as in benign familial hematuria (BFH). In the latter conditions, however, clinical features are less defined, few mutations have been reported, and other genes and non-genetic factors may be involved. METHODS: We analyzed 36 ATS patients for COL4A3 and COL4A4 mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and direct sequencing. Sporadic patients who had tested negative for COL4A5 mutations were included with typical cases of autosomal recessive ATS to secure a better definition of the phenotype spectrum. RESULTS: We identified seven previously undescribed COL4A3 mutations: in two genetic compounds and three heterozygotes, and one in COL4A4. In agreement with the literature, some of the mutations of compound heterozygotes were associated with microhematuria in healthy heterozygous relatives. The mutations of heterozygous patients are likely dominant, since no change was identified in the second allele even by sequencing, and they are predicted to result in shortened or abnormal chains with a possible dominant-negative effect. In addition, both genes showed rare variants of unclear pathogenicity, and common polymorphisms that are shared in part with other populations. CONCLUSIONS: This study extends the mutation spectrum of COL4A3 and COL4A4 genes, and suggests a possible relationship between production of abnormal COL IV chains and dominant expression of a continuous spectrum of phenotypes, from ATS to BFH.  相似文献   

5.
Alport syndrome is an inherited nephropathy associated with mutations in genes encoding type IV collagen chains present in the glomerular basement membrane. COL4A5 mutations are associated with the major X-linked form of the disease, and COL4A3 and COL4A4 mutations are associated with autosomal recessive and dominant forms (thought to be involved in 15% and 1%–5% of the families, respectively) and benign familial hematuria. Mutation screening of these three large genes is time-consuming and expensive. Here, we carried out a combination of multiplex PCR, amplicon quantification, and next generation sequencing (NGS) analysis of three genes in 101 unrelated patients. We identified 88 mutations and 6 variations of unknown significance on 116 alleles in 83 patients. Two additional indel mutations were found only by secondary Sanger sequencing, but they were easily identified retrospectively with the web-based sequence visualization tool Integrative Genomics Viewer. Altogether, 75 mutations were novel. Sequencing the three genes simultaneously was particularly advantageous as the mode of inheritance could not be determined with certainty in many instances. The proportion of mutations in COL4A3 and COL4A4 was notably high, and the autosomal dominant forms of Alport syndrome appear more frequently than reported previously. Finally, this approach allowed the identification of large COL4A3 and COL4A4 rearrangements not described previously. We conclude that NGS is efficient, reduces screening time and cost, and facilitates the provision of appropriate genetic counseling in Alport syndrome.  相似文献   

6.
BACKGROUND: Inherited hematuria is common and is usually attributed to thin basement membrane disease (TBMD). The aim of this study was to determine how often hematuria in families with TBMD segregated with haplotypes at the chromosomal loci for autosomal recessive and X-linked Alport syndrome (COL4A3/COL4A4 and COL4A5, respectively). METHODS: The families of 22 individuals with TBMD on renal biopsy and with urinary glomerular red blood cell (RBC) counts of more than 50,000/mL were studied using phase-contrast microscopy of the urine and DNA microsatellite markers. Eighteen families had at least two members with hematuria. RESULTS: Hematuria segregated with or was consistent with segregation at the COL4A3/COL4A4 locus in eight (36%) families (P < 0.05 in 5 of these) and at the COL4A5 locus in four (18%) families (P < 0.05 in 2). The lack of segregation in the other 10 (45%) families may have occurred because of incomplete penetrance of the hematuria, de novo mutations, coincidental hematuria in other family members, or the presence of a novel gene locus. In four different families, three of which had hematuria that segregated with the COL4A3/COL4A4 locus, four family members with the hematuria haplotype had spouses with coincidental hematuria (4 of 29, 14%). However, none of their four offspring who had also inherited the hematuria haplotype had the clinical features of autosomal recessive Alport syndrome. CONCLUSIONS: Hematuria in families with TBMD commonly segregates with the COL4A3/COL4A4 locus and thus results from mutations in the same genes as autosomal recessive Alport syndrome. Sometimes TBMD may be confused with the carrier state for X-linked Alport syndrome. However, nearly half of the families in this study had hematuria that did not segregate with the loci for either autosomal recessive or X-linked Alport syndrome.  相似文献   

7.
Wang F  Wang Y  Ding J  Yang J 《Kidney international》2005,67(4):1268-1274
  相似文献   

8.
Thin basement membrane nephropathy (TBMN) and Alport syndrome (ATS) are genetically heterogeneous conditions characterized by structural abnormalities in the glomerular basement membrane (GBM). TBMN presents with hematuria, minimal proteinuria, and normal renal function. Although TBMN is an autosomal dominant disease (COL4A3 and COL4A4), ATS can be inherited X-linked (COL4A5), autosomal recessive, or autosomal dominant (both COL4A3 and COL4A4). The clinical course of TBMN is usually benign, whereas ATS typically results in end-stage renal disease (ESRD). Nevertheless, there is a broad spectrum of clinical phenotypes caused by mutations in COL4A3 or COL4A4. We report an Italian family who presented with hematuria and mild proteinuria. Mutational analysis showed a novel heterozygous mutation p.G291E in exon 15 of the COL4A3 gene. Many different mutations in COL4A3 and COL4A4 that cause TBMN have already been identified, but most genetic variability in these genes has been found to cause autosomal ATS. A valid genotype–phenotype correlation for TBMN or ATS is not yet known. Therefore, it is important to identify new mutations by direct sequencing to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy.  相似文献   

9.
Alport syndrome (ATS) and benign familial hematuria (BFH) are type IV collagen inherited disorders. Mutations in COL4A5 are generally believed to cause X-linked ATS, whereas mutations in COL4A3 and COL4A4 genes can be associated with the autosomal-recessive and -dominant type of ATS or BFH. In view of the wide spectrum of phenotypes, an exact diagnosis is sometimes difficult to achieve. This study involved screening each exon with boundary intronic sequences of COL4A3, COL4A4, and COL4A5 genes by optimized polymerase chain reaction-single-stranded conformational polymorphism analysis in 17 families with ATS and in 40 families diagnosed as having BFH. Twelve different mutations were found in the COL4A5 gene in ATS patients, comprising nine missense mutations, a splice site mutation, a mutation causing frameshift, and a nonsense mutation. One of the missense mutations (p.G624D) was present not only in one family with ATS but also in five families with suspected BFH. Three heterozygous mutations in the COL4A3 gene (two missense and one frameshift) and four heterozygous mutations in COL4A4 (two splice site, one in-frame deletion, and one missense) were identified in patients with BFH. Sixteen mutations are to the best of our knowledge new and private.  相似文献   

10.
BACKGROUND: Carriers of autosomal-recessive and X-linked Alport syndrome often have a thinned glomerular basement membrane (GBM) and have mutations in the COL4A3/COL4A4 and COL4A5 genes respectively. Recently, we have shown that many individuals with thin basement membrane disease (TBMD) are also from families where hematuria segregates with the COL4A3/COL4A4 locus. This study describes the first COL4A4 mutation in an individual with biopsy-proven TBMD who did not have a family member with autosomal-recessive or X-linked Alport syndrome, inherited renal failure, or deafness. METHODS: The index case and all available family members were examined for dysmorphic hematuria> 50,000/mL using phase contrast microscopy and for segregation of hematuria with the COL4A3/COL4A4 and COL4A5 loci using DNA satellite markers. COL4A4 exons from the index case were then studied using the enzyme mismatch cleavage method, and exons that demonstrated abnormal cleavage products were sequenced. RESULTS: Hematuria in this family segregated with a haplotype at the COL4A3/COL4A4 locus (P = 0.031) but not with haplotypes at the COL4A5 locus. A mutation in COL4A4 that changed C to T resulting in an arginine residue being replaced by a stop codon (R1377X) was demonstrated in exon 44, which encodes part of the alpha 4(IV) collagen sequence close to the junction with the noncollagenous domain. This mutation was present in all five family members with hematuria, but not in the four unaffected family members, 33 unrelated individuals with TBMD, or 22 nonhematuric normals. CONCLUSIONS: R1377X has been described previously in a compound heterozygous form of autosomal-recessive Alport syndrome. Our observation is evidence that TBMD can represent a carrier state for autosomal-recessive Alport syndrome in at least some individuals.  相似文献   

11.
Mutations in either the COL4A3 or the COL4A4 genes, encoding the alpha3 and alpha4 chains of type IV collagen, are responsible for the autosomal-recessive form of Alport syndrome, a progressive hematuric nephropathy characterized by glomerular basement membrane abnormalities. Reported here are the complete COL4A3 exon-intron structure and a comprehensive screen for mutations of the 52 COL4A3 exons in 41 unrelated patients diagnosed as having autosomal Alport syndrome. This resulted in the identification of 21 mutations that are expected to be causative. Furthermore, it is shown that heterozygous COL4A3 missense mutations, when symptomatic, can be associated with a broad range of phenotypes, from familial benign hematuria to the complete features of Alport syndrome nephropathy.  相似文献   

12.
Type-IV collagen related diseases   总被引:3,自引:0,他引:3  
Alport syndrome (ATS) is a progressive inherited glomerulonephritis accounting for 1-2% of all patients who start renal replacement therapy, with an estimated gene frequency of approximately 1 in 5000. ATS is a genetically heterogeneous disease, commonly inherited as an X-linked semi-dominant trait, caused by mutations in COL4A5, on the X-chromosome, and only rarely (less than 10% of cases) caused by the COL4A3 or the COL4A4 gene on chromosome 2q. In the X-linked form females are generally less affected than males, microhematuria being the only sign present throughout life, although approximately 30% can progress to end-stage renal disease. It became evident in recent years that mutations in the COL4A3 or the COL4A4 gene can give rise not only to autosomal recessive ATS syndrome, in which males and females are severely affected, but also to an autosomal dominant form, where the clinical progression towards impaired renal function can be very slow and also to benign familial hematuria (BFH) in which renal function is preserved.  相似文献   

13.
The course of renal involvement and hearing loss is much milder in most female X-linked Alport syndromes than in male patients. We examined the molecular mechanism of development of the disease in a female patient with severe Alport syndrome. The patient showed heavy proteinuria, hematuria, neurosensory hearing loss and primary amenorrhea. Renal biopsy findings of electron microscopy and immunostaining of the α5 chain of type IV collagen indicated a female X-linked Alport syndrome. G-banding chromosomal analysis showed a t(X;1)(q22.3;p36.32) balanced translocation. Analysis of the collagen type IV (COL4A5) gene by genomic DNA sequencing, complementary DNA (cDNA) sequencing and multiplex ligation-dependent probe amplification assay showed no mutations or deletions/duplications of the gene. However, fluorescence in situ hybridization using the probes for exon 1 and exon 51 of the COL4A5 gene showed disruption of one copy of the gene. Replication R-banding chromosomal analysis indicated preferential inactivation of the normal X chromosome. This is the first report of severe Alport syndrome in a female patient carrying a balanced translocation between the chromosome X and 1 producing the disruption of one copy of COL4A5 gene and silencing of the other copy because of preferential inactivation of the normal X chromosome. Chromosomal abnormalities should be considered in female patients with severe forms of Alport syndrome.  相似文献   

14.
Alport syndrome (AS) is a hereditary glomerulonephritis variably associated with neural hearing loss and ocular abnormalities. The prevalence of the disease is estimated at approximately 1 in 50,000 live births. AS arises from mutations in genes encoding alpha chains constituting type IV collagen. In 85% of patients, the disease results from mutations in the COL4A5 gene located on X chromosome. In the hemizygous male, persistent microhematuria is present from early life, then proteinuria and renal insufficiency occur with time, leading to end-stage renal failure before age 40. In the heterozygous female, clinical manifestations vary from completely healthy state to end-stage renal failure, most often reached after the age of 40. In 15% of patients, the disease results from mutations in either the COL4A3 or the COL4A4 gene, both located on chromosome 2. When both alleles are mutated (autosomal recessive form), the phenotype is constantly severe, resembling that of the hemizygous male in the X-linked form. In the heterozygous individual, the clinical spectrum vary from the absence of any manifestation to the development of proteinuria - the so-called autosomal-dominant AS -, and even renal insufficiency, sometimes reaching end-stage (after the age of 40) through the most frequently encountered phenotype, i.e. a persistently isolated microhematuria, accounting for the so-called benign familial hematuria (or healthy carrier state). The determinants of the phenotype remain largely unknown, so that it may be risky to predict renal prognosis in the individual with a single COL4A3/A4 mutation and an isolated microhematuria at the time of examination.  相似文献   

15.
Familial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN). A number of X-linked AS patients follow a milder course reminiscent of that of patients with heterozygous COL4A3/COL4A4 mutations and TBMN, while at the same time a significant subset of patients with TBMN and familial MH progress to chronic kidney disease (CKD) or end-stage kidney disease (ESKD). A mutation in CFHR5, a member of the complement factor H family of genes that regulate complement activation, was recently shown to cause isolated C3 glomerulopathy, presenting with MH in childhood and demonstrating a significant risk for CKD/ESKD after 40?years old. Through these results molecular genetics emerges as a powerful tool for a definite diagnosis when all the above conditions enter the differential diagnosis, while in many at-risk related family members, a molecular diagnosis may obviate the need for another renal biopsy.  相似文献   

16.
17.
Alport syndrome is an inherited disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Autosomal recessive Alport syndrome is suspected in consanguineous families and when female patients develop renal failure. Fifteen percent of patients with Alport syndrome have autosomal recessive inheritance caused by two pathogenic mutations in either COL4A3 or COL4A4. Here, we describe the mutations and clinical features in 40 individuals including 9 children and 21 female individuals (53%) with autosomal recessive inheritance indicated by the detection of two mutations. The median age was 31 years (range, 6–54 years). The median age at end stage renal failure was 22.5 years (range, 10–38 years), but renal function was normal in nine adults (29%). Hearing loss and ocular abnormalities were common (23 of 35 patients [66%] and 10 of 18 patients [56%], respectively). Twenty mutation pairs (50%) affected COL4A3 and 20 pairs affected COL4A4. Of the 68 variants identified, 39 were novel, 12 were homozygous changes, and 9 were present in multiple individuals, including c.2906C>G (p.(Ser969*)) in COL4A4, which was found in 23% of the patients. Thirty-six variants (53%) resulted directly or indirectly in a stop codon, and all 17 individuals with early onset renal failure had at least one such mutation, whereas these mutations were less common in patients with normal renal function or late-onset renal failure. In conclusion, patient phenotypes may vary depending on the underlying mutations, and genetic testing should be considered for the routine diagnosis of autosomal recessive Alport syndrome.Alport syndrome is an inherited renal disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Alport commented in 1927 that the occurrence of hematuria and hearing loss in a pedigree was not coincidental but represented a clinical syndrome, and that the more severe disease in male individuals was consistent with X-linked inheritance.1 We now understand that nearly 85% of patients have X-linked disease due to a pathogenic mutation in the COL4A5 gene, and the remaining individuals usually have autosomal recessive inheritance with two pathogenic mutations in either the COL4A3 or COL4A4 gene.Alport syndrome is usually suspected when the typical clinical features are present. Diagnostic features2 include a positive family history, a lamellated glomerular basement membrane (GBM),3 high tone sensorineural hearing loss, and lenticonus and macular flecks on ophthalmoscopy.4 However, these features do not distinguish between X-linked and autosomal inheritance. The possibility of autosomal recessive disease is often overlooked, but its recognition is important because the genetic implications are different for the patient and other family members. Affected male individuals with X-linked disease, but few female individuals, eventually develop renal failure and the disease is transmitted from one generation to another. With autosomal recessive inheritance, male and female individuals are equally likely to be affected; renal failure tends to occur in only one generation except in the presence of multiple consanguinity. In our previous report of 206 patients referred for molecular testing of COL4A5, the pathogenic mutation detection rates in families fulfilling none, one, two, three, or four diagnostic criteria were 0%, 18%, 64%, 89%, and 81%, respectively. Autosomal recessive inheritance was suspected to account for the families meeting four diagnostic criteria in whom no pathogenic COL4A5 mutation was detected.5Nearly 300 pathogenic mutations have been described in the COL4A3 and COL4A4 genes (Leiden Open Variation Database; https://grenada.lumc.nl/LOVD2/COL4A/home.php?action=switch_db), but many of these are from patients with thin basement membrane nephropathy (TBMN). There are few reports describing two pathogenic mutations in individuals with autosomal recessive Alport syndrome.616 Even fewer studies have examined how mutations may determine clinical features.Here we describe genetic mutations and clinical features in 40 patients in whom two pathogenic mutations were identified in the COL4A3 or COL4A4 gene, consistent with the diagnosis of autosomal recessive Alport syndrome. In many cases, the mutations were demonstrated to be in trans, which is on different chromosomes, confirming autosomal recessive inheritance. Testing examined the entire coding region and splice sites of both COL4A3 and COL4A4 using unidirectional fluorescent Sanger DNA sequencing, analyzed using Mutation Surveyor software. For detecting point mutations in the regions screened, this approach has an analytical sensitivity and specificity of >99%.17  相似文献   

18.
Familial benign hematuria (FBH) is a common autosomal dominant disorder characterized by the presence of persistent or recurrent hematuria. The clinical and pathologic features of this syndrome resemble those of early Alport syndrome (AS), and for this reason a common molecular defect has been proposed. The COL4A3/4 genes seem to be involved in both autosomal AS and FBH. This study involves a linkage analysis for the COL4A3/4 loci and a search for mutations within these genes in 11 biopsy-proven FBH families. Haplotype analysis showed that linkage to the COL4A3/4 locus could not be excluded in eight of nine families. One family was not linked to this locus; however, it included three affected women who could be X-linked AS carriers. Two families were too small to perform linkage analysis. COL4A3 and COL4A4 mutation screening disclosed six new pathogenic mutations, two in the COL4A3 gene (G985V and G1015E) and four in the COL4A4 gene (3222insA, IVS23-1G>C, 31del11, and G960R). It is the first time that mutations within the COL4A3 gene are described in families with FBH. This study clearly demonstrates the main role of the COL4A4 and COL4A3 genes in the pathogenesis of FBH.  相似文献   

19.
Alport syndrome (AS) is a progressive renal disease characterized by hematuria and progressive renal failure. X-linked dominant (XLAS) is the major inheritance form, accounting for almost 80% of the cases, caused by mutations in COL4A5 genes. Klinefelter syndrome (KS) is the most common genetic cause of human male gonadal dysgenesis. AS and KS are both rare disease, there are only three cases of combined AS and KS in the literatures. Fanconi syndrome (FS) caused by AS is also very rare. We report here the first case combined AS, KS and FS in a Chinese boy. We suggest that the severe renal phenotype and FS might be due to the two homozygous COL4A5 variants in our boy, and cases of AS combined KS will be good research objects for X chromosome inactivation.  相似文献   

20.
The genetics of thin basement membrane nephropathy   总被引:2,自引:0,他引:2  
The diagnosis of thin basement membrane nephropathy (TBMN) usually is made on the basis of the clinical features or the glomerular membrane ultrastructural appearance. Only now are we beginning to understand the genetics of TBMN and the role of diagnostic genetic testing. The similarity of clinical and glomerular membrane features first suggested TBMN might represent the carrier state for autosomal-recessive Alport syndrome. This was confirmed subsequently by the demonstration that 40% of families with TBMN have hematuria that segregates with the corresponding locus ( COL4A3/COL4A4 ), and identical mutations occur in both conditions. To date, about 20 COL4A3 and COL4A4 mutations have been shown in TBMN, and these mainly are single nucleotide substitutions that are different in each family. The families in whom hematuria does not appear to segregate with the COL4A3/COL4A4 locus cannot all be explained by de novo mutations, and nonpenetrant or coincidental hematuria. This suggests a further TBMN locus. In patients with persistent hematuria, testing for COL4A3 and COL4A4 mutations to diagnose TBMN is problematic because of the huge size of these genes, their frequent polymorphisms, and the likelihood of a further gene locus. It is far more practicable to perform genetic testing to exclude or confirm X-linked Alport syndrome because this condition is the major differential diagnosis of TBMN and has a very different prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号