首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurogenesis in the subgranular zone of the hippocampal dentate gyrus and olfactory bulbs continues into adulthood and has been implicated in the cognitive function of the adult brain. The basal forebrain cholinergic system has been suggested to play a role in regulating neurogenesis as well as learning and memory in these regions. Herein, we report that highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive immature cells as well as neuronal nuclei (NeuN)-positive mature neurons in the dentate gyrus and olfactory bulb express multiple acetylcholine receptor subunits and make contact with cholinergic fibers. To examine the function of acetylcholine in neurogenesis, we used donepezil (Aricept), a potent and selective acetylcholinesterase inhibitor that improves cognitive impairment in Alzheimer's disease. Intraperitoneal administrations of donepezil significantly enhanced the survival of newborn neurons, but not proliferation of neural progenitor cells in the subgranular zone or the subventricular zone of normal mice. Moreover, donepezil treatment reversed the chronic stress-induced decrease in neurogenesis. Taken together, these results suggest that activation of the cholinergic system promotes survival of newborn neurons in the adult dentate gyrus and olfactory bulb under both normal and stressed conditions.  相似文献   

2.
Neurogenesis occurs continuously in the forebrain of adult mammals, but the functional importance of adult neurogenesis is still unclear. Here, using a genetic labeling method in adult mice, we found that continuous neurogenesis results in the replacement of the majority of granule neurons in the olfactory bulb and a substantial addition of granule neurons to the hippocampal dentate gyrus. Genetic ablation of newly formed neurons in adult mice led to a gradual decrease in the number of granule cells in the olfactory bulb, inhibition of increases in the granule cell number in the dentate gyrus and impairment of behaviors in contextual and spatial memory, which are known to depend on hippocampus. These results suggest that continuous neurogenesis is required for the maintenance and reorganization of the whole interneuron system in the olfactory bulb, the modulation and refinement of the existing neuronal circuits in the dentate gyrus and the normal behaviors involved in hippocampal-dependent memory.  相似文献   

3.
The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21 days after irradiation, the animals with blocked neurogenesis performed poorer than controls in a hippocampus-dependent place-recognition task, indicating that the presence of newly generated neurons may be necessary for the normal function of this brain area. The animals were never impaired in a hippocampus-independent object-recognition task. These results are in line with other reports documenting the functional significance of newly generated neurons in this region. As our irradiation procedure models prophylactic cranial irradiation used in the treatment of different cancers, we suggest that blocked neurogenesis contributes to the reported deleterious side effects of this treatment, consisting of memory impairment, dysphoria and lethargy.  相似文献   

4.
The dentate gyrus of the hippocampal formation produces new neurons throughout adulthood in mammalian species. Several experimental statuses and factors regulating to neurogenesis have been identified in the adult dentate gyrus. For example, exposure to an enriched environment enhances neurogenesis in the dentate gyrus and improves hippocampus-dependent spatial learning. Furthermore, serotonin is known to influence adult neurogenesis, and learning and memory. However, the effects of long-lasting depletion of serotonin over the developing period on neurogenesis have not been investigated. Thus, we examined the influence of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis and spatial memory performance. As reported previously, environmental enrichment significantly increased new neurons in the dentate gyrus. However, there was no improvement of the spatial learning test in adult rats in standard and in environmental enrichment housings. Intracisternal administration of the serotonergic neurotoxin, 5,7-dihydroxytryptamine, on postnatal day 3 apparently reduced serotonin content in the adult hippocampus without regeneration. This experimental depletion of serotonin in the hippocampus of rats housed in an enriched environment had no effect on spatial memory performance, but produced significant decreases in the number of bromodeoxyuridine-labeled new cells in the dentate gyrus. These findings indicate that newly generated cells stimulated by environmental enrichment are not critical for improvements in hippocampus-dependent learning. Furthermore, numbers of bromodeoxyuridine-labeled cells in the dentate gyrus of 5,7-dihydroxytryptamine-injected rats did not differ between 1 day and 4 weeks after bromodeoxyuridine injection. These data suggest that survival of newly generated dentate gyrus cells remains relatively constant under long-lasting serotonin depletion.  相似文献   

5.
The main aim of the paper is to present an up-to-date computational theory of hippocampal function and the predictions it makes about the different subregions (dentate gyrus, CA3 and CA1), and to examine behavioral and electrophysiological data that address the functions of the hippocampus and particularly its subregions. Based on the computational proposal that the dentate gyrus produces sparse representations by competitive learning and via the mossy fiber pathway forces new representations on the CA3 during learning (encoding), it has been shown behaviorally that the dentate gyrus supports spatial pattern separation during learning. Based on the computational proposal that CA3-CA3 autoassociative networks are important for episodic memory, it has been shown behaviorally that the CA3 supports spatial rapid one-trial learning, learning of arbitrary associations where space is a component, pattern completion, spatial short-term memory, and sequence learning by associations formed between successive items. The concept that the CA1 recodes information from CA3 and sets up associatively learned backprojections to neocortex to allow subsequent retrieval of information to neocortex, is consistent with findings on consolidation. Behaviorally, the CA1 is implicated in processing temporal information as shown by investigations requiring temporal order pattern separation and associations across time; computationally this could involve temporal decay memory, and temporal sequence memory which might also require CA3. The perforant path input to DG is implicated in learning, to CA3 in retrieval from CA3, and to CA1 in retrieval after longer time intervals ("intermediate-term memory").  相似文献   

6.
It has recently been shown that hippocampal neurogenesis can be modulated either directly or indirectly by ascending cholinergic inputs from the basal forebrain. In the present work, we sought to address whether extended training in a spatial navigation task would affect hippocampal neurogenesis in the presence of a severe and selective cholinergic depletion. Young female rats received stereotaxic injections of the immunotoxin 192 IgG-saporin into the basal forebrain nuclei and/or the cerebellar cortex. Starting from 4 to 5 weeks post-lesion, and for the subsequent 2 weeks, the animals were trained on paradigms of reference and working memory in the water maze and received single daily i.p. injections of bromodeoxyuridine (BrdU) at the end of each testing session. In line with previous observations, a dramatic 80% decrease in neuron proliferation was seen in the dentate gyrus of lesioned animals, as compared to vehicle-injected or intact controls. Interestingly, however, rats subjected to maze training over 2 weeks, irrespective of their learning success, exhibited significantly fewer newborn neurons than matched controls with no maze exposure. Thus, at least for the type of task used here, which has previously been shown to impose a certain degree of stress, extended training and learning does not appear to affect proliferation in the dentate gyrus.  相似文献   

7.
The hippocampal dentate gyrus is a major recipient of olfactory input in rodents, via connections from the olfactory (piriform) cortex and the olfactory bulb to the entorhinal cortex. Given this connectivity and the known role of activity in dentate gyrus granule cell survival, the present experiment examined the immediate effects of loss of olfactory input to the hippocampus on apoptosis. Adults rats underwent unilateral or bilateral olfactory bulb ablations (OBX), and allowed to recover 24–72 h before the piriform cortex and hippocampal dentate gyrus were processed for terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling [TUNEL] of apoptotic cells. OBX transiently increased TUNEL-positive cells in the ipsilateral piriform cortex and dentate gyrus. Increased TUNEL-labeling was apparent within 24 h in both structures, but was more extensive and prolonged in piriform cortex. The results suggest a trans-synaptic regulation of cell survival through at least two synapses.  相似文献   

8.
In this report, we investigated the electrophysiological dynamics of the neuronal circuit including the dentate gyrus during an associative task. A group of rats was trained to discriminate between a patterned electrical stimulation of the lateral olfactory tract, used as an artificial cue associated with a water reward, and a natural odor associated with a light flash. Polysynaptic field potential responses, evoked by a single electrical stimulation of the same lateral olfactory tract electrode, were recorded in the molecular layer of the ipsilateral dentate gyrus prior to and just after each training session. An increase in this response was observed when a significant discrimination of the two cues began. A positive correlation was found between the change in the polysynaptic potentiation and behavioral performances. The onset latency of the potentiated polysynaptic response was 35-45 ms. When a group of naive animals was pseudoconditioned, no change in field potential was observed. These results are consistent with the hypothesized dynamic activation of the dentate gyrus early in the making of association, allowing gradual storage of associative information in a defined set of synapses. Moreover, the onset latency of the potentiated response suggests the existence of reactivating hippocampal loops during the processing of associative information.  相似文献   

9.
In the current study, the authors investigated whether Morris water maze learning induces alterations in hippocampal neurogenesis or neural cell adhesion molecule (NCAM) polysialylation in the dentate gyrus. Two frequently used rat strains, Wistar and Sprague-Dawley, were trained in the spatial or the nonspatial version of the water maze. Both training paradigms did not have an effect on survival of newly formed cells that were labeled 7-9 days prior to the training or on progenitor proliferation in the subgranular zone. However, the granule cell layer of the spatially trained rats contained significantly more positive cells of the polysialylated form of the NCAM. These data demonstrate that Morris water maze learning causes plastic change in the dentate gyrus without affecting hippocampal neurogenesis.  相似文献   

10.
Pregnancy and the postpartum period are a time of maximal neural and behavioral plasticity. Recent work has shown that hippocampus-dependent learning and memory performance and hippocampus morphology are affected by motherhood and reproductive experience (number of times pregnant and given birth). Adult neurogenesis in the dentate gyrus of the hippocampus is influenced by steroid hormones such as estradiol and corticosterone, which fluctuate during pregnancy and the postpartum period. Thus, it is possible that hippocampal neurogenesis may be affected by motherhood and reproductive experience. The present study aimed to investigate the role of reproductive experience on hippocampal neurogenesis via cell proliferation and cell survival and to determine whether differences were due to the effect of pregnancy and/or pup-exposure alone. Four groups of female Sprague-Dawley rats were used; multiparous, primiparous, nulliparous, and nulliparous rats exposed to pups. All rats were injected with 5-bromo-2-deoxyuridine (BrdU) (200 mg/kg) approximately 24 h after birth/pup-exposure with age-matched controls. Rats were perfused either 24 h (Expt. 1: Cell proliferation) or 21 days (Expt. 2: Cell survival) after BrdU injection. Results show there is a significant decrease in cell proliferation in the dentate gyrus of primiparous and multiparous rats during the early postpartum period, and a decrease in cell survival in the dentate gyrus during the postpartum in primiparous rats, regardless of pup-exposure, compared with all other groups. In addition, brief pup exposure to nulliparous rats significantly increased cell proliferation and cell death in the dentate gyrus, while 22 days of pup exposure to nulliparous rats (sensitized rats) resulted in increased cell survival and cell death in the dentate gyrus. Collectively these results indicate that reproductive experience significantly affects hippocampal neurogenesis and that these effects are not due to the effect of pregnancy or pup-exposure alone.  相似文献   

11.
Neurogenesis is known to take place in the adult brain. This work identifies T lymphocytes and microglia as being important to the maintenance of hippocampal neurogenesis and spatial learning abilities in adulthood. Hippocampal neurogenesis induced by an enriched environment was associated with the recruitment of T cells and the activation of microglia. In immune-deficient mice, hippocampal neurogenesis was markedly impaired and could not be enhanced by environmental enrichment, but was restored and boosted by T cells recognizing a specific CNS antigen. CNS-specific T cells were also found to be required for spatial learning and memory and for the expression of brain-derived neurotrophic factor in the dentate gyrus, implying that a common immune-associated mechanism underlies different aspects of hippocampal plasticity and cell renewal in the adult brain.  相似文献   

12.
Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. Over the last two decades, much evidence has been gathered showing that enhanced free radical levels and an impaired antioxidant pool are important factors underlying the pathophysiological mechanisms in a variety of neurocognitive and neurodegenerative ailments. Since oxidative stress is reported to be implicated in impaired neurogenesis, it is likely that antioxidants such as melatonin and its metabolites could restore or minimize cellular death in the hippocampal dentate gyrus. The present review summarizes the recent studies documenting the protective role of melatonin against radiation-induced impairment of neurogenesis and cognitive functions.  相似文献   

13.
Neurogenesis plays a role in many physiological (memory formation) and pathological (stroke, depression) processes. However the mechanisms of postnatal stem cell proliferation and neurogenesis are still poorly understood. We characterized early neurogenesis in vitro in rat organotypic hippocampal slice cultures. Proliferation was assessed by bromodeoxyuridine incorporation, neurogenesis by bromodeoxyuridine-double labeling with doublecortin or beta-III tubulin. We showed for the first time that in addition to the dentate gyrus organotypic hippocampal slice cultures include a second neurogenic zone: the posterior periventricle, which is a part of the lateral ventricle wall. This structure lining the stratum oriens contained Nestin+ precursors. We could identify morphological and functional differences between dentate gyrus and posterior periventricle precursor populations. Our data demonstrate that basic fibroblast growth factor treatment induced a fast but short-lasting neurogenic response in the dentate gyrus while the posterior periventricle showed a more pronounced and long lasting neurogenic effect of basic fibroblast growth factor. Thus two neurogenic zones with different neurogenic properties were identified in organotypic hippocampal slice cultures.  相似文献   

14.
Adult hippocampal neurogenesis in depression   总被引:3,自引:0,他引:3  
Sahay A  Hen R 《Nature neuroscience》2007,10(9):1110-1115
The development of new treatments for depression is predicated upon identification of neural substrates and mechanisms that underlie its etiology and pathophysiology. The heterogeneity of depression indicates that its origin may lie in dysfunction of multiple brain regions. Here we evaluate adult hippocampal neurogenesis as a candidate mechanism for the etiology of depression and as a substrate for antidepressant action. Current evidence indicates that adult hippocampal neurogenesis may not be a major contributor to the development of depression, but may be required for some of the behavioral effects of antidepressants. We next revisit the functional differentiation of the hippocampus along the septo-temporal axis within the context of adult hippocampal neurogenesis and suggest that neurogenesis in the ventral dentate gyrus may be preferentially involved in regulation of emotion. Finally, we speculate on how increased adult hippocampal neurogenesis may modulate dentate gyrus function to confer the behavioral effects of antidepressants.  相似文献   

15.
Adult neurogenesis and the olfactory system   总被引:1,自引:0,他引:1  
Though initially described in the early 1960s, it is only within the past decade that the concept of continuing adult neurogenesis has gained widespread acceptance. Neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) into the olfactory bulb, where they differentiate into interneurons. Neuroblasts from the subgranular zone (SGZ) of the hippocampal formation show relatively little migratory behavior, and differentiate into dentate gyrus granule cells. In sharp contrast to embryonic and perinatal development, these newly differentiated neurons must integrate into a fully functional circuit, without disrupting ongoing performance. Here, after a brief historical overview and introduction to olfactory circuitry, we review recent advances in the biology of neural stem cells, mechanisms of migration in the RMS and olfactory bulb, differentiation and survival of new neurons, and finally mechanisms of synaptic integration. Our primary focus is on the olfactory system, but we also contrast the events occurring there with those in the hippocampal formation. Although both SVZ and SGZ neurogenesis are involved in some types of learning, their full functional significance remains unclear. Since both systems offer models of integration of new neuroblasts, there is immense interest in using neural stem cells to replace neurons lost in injury or disease. Though many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. We discuss here some of the central features of these advances, as well as speculate on future research directions.  相似文献   

16.
Neural stem cells that continue to produce neurons are retained in the adult hippocampal dentate gyrus. The mechanisms by which embryonic neural progenitors expand and transform into postnatal neural stem cells, an essential process for the continual production of neurons throughout life, remain unknown. We found that radial astrocytes, the postnatal progenitors in the dentate gyrus, failed to develop after embryonic ablation of ciliary genes or Smoothened (Smo), an essential component for Sonic hedgehog (Shh) signaling. Postnatal dentate neurogenesis failed in these mutant mice, and the dentate gyrus became severely hypotrophic. In contrast, expression of a constitutively active Smo (SmoM2-YFP) resulted in a marked expansion of the dentate gyrus. Double-mutant analyses suggested that both wild-type Smo and SmoM2-YFP function through the primary cilia. We conclude that Shh signaling, acting through the primary cilia, has a critical role in the expansion and establishment of postnatal hippocampal progenitors.  相似文献   

17.
Neurogenesis in the adult hippocampal dentate gyrus is promoted by transient forebrain ischemia. The mechanism responsible for this ischemia-induced neurogenesis, however, remains to be determined. It has been suggested that there may be a close relationship between neurogenesis and the expression of vascular endothelial growth factor, an angiogenic factor. The purpose of the present study was to examine the relationship between vascular endothelial growth factor and cell proliferation in the dentate gyrus after transient forebrain ischemia. The mRNA expression of vascular endothelial growth factor was increased in the dentate gyrus on day 1 after ischemia. Immunohistochemical analysis on day 9 after ischemia, when a significant increase in cell proliferation was seen, showed that the cerebral vessel space in the subgranular zone of the dentate gyrus had not been affected by the ischemia. Neither were the vascular densities on days 1 and 3 after ischemia altered compared with those of non-operated naïve control rats. Furthermore, the distance from the center of the proliferative cells to the nearest cerebral vessel of ischemic rats was comparable to that of the sham-operated rats. We demonstrated that transient forebrain ischemia-induced cell proliferation and differentiation to mature neurons in the hippocampal dentate gyrus was attenuated by the i.c.v. administration of a vascular endothelial growth factor receptor tyrosine kinase inhibitor. These results suggest that vascular endothelial growth factor receptor at the early period of reperfusion may contribute to neurogenesis rather than to angiogenesis in the hippocampal dentate gyrus.  相似文献   

18.
Accumulating evidence indicates that neurogenesis in the adult brain occurs in restricted brain regions, including the hippocampal dentate gyrus and is promoted by ischemia. The mechanism responsible for ischemia-induced neurogenesis in the adult brain, however, remains unclear. Notch pathway plays a pivotal role in the regulation of the timing for differentiation and determination of the fate of neural progenitor cells in the developing nervous system. To elucidate the mechanism underlying ischemia-induced neurogenesis, we investigated changes in the expression of mRNAs of Hes5, which is a downstream target of Notch, and Mash1, a neurogenic basic helix-loop-helix factor, which is negatively regulated by Hes5, in the adult hippocampal dentate gyrus after transient forebrain ischemia. Transient forebrain ischemia was produced by four-vessel occlusion procedure in rats. The levels of Hes5 mRNA decreased on days 1 and 3 after the start of reperfusion and the decreased levels of the mRNA returned to the basal level by 5 days after ischemia. In contrast, the level of Mash1 mRNA increased on day 1 and then returned to the basal level by 3 days after ischemia. These results suggest that an inhibition of Notch activity and subsequent expression of neurogenic basic helix-loop-helix factors, including Mash1, may, at least in part, contribute to ischemia-induced neurogenesis in the adult dentate gyrus.  相似文献   

19.
Adult neurogenesis in the dentate gyrus of the hippocampus is altered with stress exposure and has been implicated in depression. High levels of corticosterone (CORT) suppress neurogenesis in the dentate gyrus of male rats. However both acute and chronic stress do not consistently reduce adult hippocampal neurogenesis in female rats. Therefore, this study was conducted to investigate the effect of different doses of corticosterone on hippocampal neurogenesis in male and female rats. Rats received 21 days of s.c. injections of either oil, 10 or 40 mg/kg CORT. Subjects were perfused 24 h after the last CORT injection and brains were analyzed for cell proliferation (Ki67-labeling) or immature neurons (doublecortin-labeling). Results show that in both males and females high CORT, but not low CORT, reduced both cell proliferation and the density of immature neurons in the dentate gyrus. Furthermore, high CORT males had reduced density in immature neurons in both the ventral and dorsal regions while high CORT females only showed the reduced density of immature neurons in the ventral hippocampus. The high dose of CORT disrupted the estrous cycle of females. Further, the low dose of CORT significantly reduced weight gain and increased basal CORT levels in males but not females, suggesting a greater vulnerability in males with the lower dose of CORT. Thus we find subtle sex differences in the response to chronic CORT on both body weight and on neurogenesis in the dorsal dentate gyrus that may play a role in understanding different vulnerabilities to stress-related neuropsychiatric disorders between the sexes.  相似文献   

20.
目的:探讨miR-30c 通过调控海马神经发生对APP/PS1 转基因小鼠的学习记忆的影响。方法:用免疫荧光 检测Ki67 的表达和Morris 行为学检测APP/PS1 转基因小鼠海马的神经发生及学习记忆能力,并通过脑立体定位 技术显微注射miR-30c 过表达和miR-30c 敲减慢病毒载体以干扰海马齿状回区域的神经发生,检测海马神经发生 对学习记忆的影响。结果:APP/PS1 转基因小鼠的海马神经发生和学习记忆能力明显低于野生小鼠。然而,当 APP/PS1 转基因小鼠海马的miR-30c 过表达后,海马神经发生明显增加(14.2 倍);相反,当海马miR-30c 敲减后, 海马神经发生明显降低(0.25 倍),并且Morris 行为学结果显示,miR-30c 敲减后小鼠的学习记忆能力明显降低, 而miR-30c 过表达后小鼠的学习记忆能力明显增强。结论:miR-30c 可能通过调控海马神经发生影响学习记忆功能, 提示miR-30c 可作为干预阿尔茨海默症神经发生与学习记忆能力的潜在靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号