首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclosporin A (CsA) and sirolimus (SRL) are immunosuppressive agents (IAs) associated with dyslipidemia, insulin resistance and new onset diabetes after transplantation (NODAT). However, the molecular mechanisms involved are not fully understood. We investigated the effects of six-week treatment of either CsA or SRL on glucose and lipid metabolism in Wistar rats. The results show that, compared with vehicle-treated rats, SRL-treated rats were significantly lighter starting at week 5. CsA or SRL caused glucose intolerance, increased storage of lipids in the liver and skeletal muscle, and decreased the insulin-stimulated glucose uptake in isolated adipocytes. Furthermore, these agents significantly decreased genes involved in insulin action and glucose uptake, such as, IRS-1, Glut4 and Glut1, and increased genes and/or proteins involved in hepatic lipogenesis and gluconeogenesis, while decreasing them in adipose tissue. After either treatment PGC1α gene expression was down regulated in skeletal muscle, an important player in fatty acid oxidation. Moreover, there was an increase in IL-6 gene expression in adipose tissue in the SRL-treated rats, suggesting stimulation of lipolysis. The results of the present study suggest that CsA and SRL lead to metabolic alterations in liver, muscle and adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.  相似文献   

2.
Obesity, a state of increased adipose tissue mass, is a major cause for type 2 diabetes, hyperlipidemia, and hypertension, resulting in clustering of risk factors for atherosclerosis. Heterozygous PPARgamma knockout mice and KKA(y) mice administered with a PPARgamma antagonist were protected from high-fat diet-induced adipocyte hypertrophy and insulin resistance. Moderate reduction of PPARgamma activity prevented adipocyte hypertrophy, thereby diminution of TNFalpha, resistin, and FFA and upregulation of adiponectin and leptin. These alterations led to reduction of tissue TG content in muscle/liver, thereby ameliorating insulin resistance. Insulin resistance in the lipoatrophic mice and KKA(y) mice were ameliorated by replenishment of adiponectin. Moreover, adiponectin transgenic mice ameliorated insulin resistance and diabetes, but not the obesity of ob/ob mice. Furthermore, targeted disruption of the adiponectin gene caused moderate insulin resistance and glucose intolerance. In muscle, adiponectin activated AMP kinase and PPARgamma pathways, thereby increasing beta-oxidation of lipids, leading to decreased TG content, which ameliorated muscle insulin resistance. In the liver, adiponectin also activated AMPK, thereby downregulating PEPCK and G6Pase, leading to decreased glucose output from the liver. In conclusion, PPARgamma plays a central role in the regulation of adipocyte hypertrophy and insulin sensitivity. The upregulation of the adiponectin pathway by PPARgamma may play a role in the increased insulin sensitivity of heterozygous PPARgamma knockout mice, and activation of adiponectin pathway may provide novel therapeutic strategies for obesity-linked disorders such as type 2 diabetes and metabolic syndrome.  相似文献   

3.
In the last few years there has been an explosion of research that has improved our understanding of the pathogenesis of Type 2 diabetes mellitus (DM-2) and has led to the development of new oral antidiabetic drugs. Thiazolidinediones (TZDs) are the newest of these antidiabetic agents. TZDs are insulin sensitisers that depend on the presence of insulin for their action. They target insulin resistance, which is thought to play a central role in DM-2 and the associated metabolic syndrome characterised by central obesity, hypertension, dyslipidemia and hypercoagulability, all leading to increased cardiovascular morbidity and mortality. As a result, TZDs have the potential to improve other conditions associated with the metabolic syndrome, in addition to their glycaemic action. TZDs act by activating peroxisome proliferator-activated receptor (PPAR) phi a nuclear receptor implicated not only in lipid and glucose metabolism but other physiological functions as well. TZDs may have wide clinical applications beyond DM-2, as they can potentially be used to treat other conditions associated with insulin resistance and PPAR-phi receptors, such as impaired glucose tolerance, polycystic ovarian syndrome and HIV lipodystrophy.  相似文献   

4.
In the last few years there has been an explosion of research that has improved our understanding of the pathogenesis of Type 2 diabetes mellitus (DM-2) and has led to the development of new oral antidiabetic drugs. Thiazolidinediones (TZDs) are the newest of these antidiabetic agents. TZDs are insulin sensitisers that depend on the presence of insulin for their action. They target insulin resistance, which is thought to play a central role in DM-2 and the associated metabolic syndrome characterised by central obesity, hypertension, dyslipidemia and hypercoagulability, all leading to increased cardiovascular morbidity and mortality. As a result, TZDs have the potential to improve other conditions associated with the metabolic syndrome, in addition to their glycaemic action. TZDs act by activating peroxisome proliferator-activated receptor (PPAR) γ, a nuclear receptor implicated not only in lipid and glucose metabolism but other physiological functions as well. TZDs may have wide clinical applications beyond DM-2, as they can potentially be used to treat other conditions associated with insulin resistance and PPAR-γ receptors, such as impaired glucose tolerance, polycystic ovarian syndrome and HIV lipodystrophy.  相似文献   

5.
Obesity was first described as a low-grade inflammatory condition more than a decade ago. However, it is only relatively recently that obese individuals have been described with increased macrophage infiltration of adipose tissue, as well as an increase in the number of "M1" or "classically activated" macrophages. Furthermore, macrophages have been identified as the primary source of many of the circulating inflammatory molecules that are detected in the obese state and are postulated to be causal both in the development of insulin resistance and in the progression to type 2 diabetes. There is also novel evidence to suggest that macrophages inhibit adipocyte differentiation, potentially leading to adipocyte hypertrophy, altered secretion of adipokines and ectopic storage of lipid within liver, muscle and other non-adipose tissues. Currently, it is not clear what causes increased macrophage infiltration of adipose tissue in obese individuals. Theories include altered signalling by adipocytes, nutritional induction of metabolic endotoxemia or reduced angiogenesis and local adipose cell hypoxia. Importantly, PPAR-gamma agonists have been shown to alter macrophage phenotype to "M2" or an "alternatively activated" anti-inflammatory phenotype and may induce macrophage specific cell death. Consequently, excitement surrounds the potential for specific inhibition of macrophage infiltration of adipose tissue via pharmacotherapy for obese patients and more particularly as adjunct therapy to improve insulin sensitivity in obese individuals with insulin resistance and overt type 2 diabetes.  相似文献   

6.
Insulin resistance is the hallmark of type 2 diabetes. As an essential trace element, selenium (Se) is recommended worldwide for supplementation to prevent Se-deficient pathological conditions, including diabetes and insulin resistance. However, recent evidence has shown that supra-nutritional Se intake is positively associated with the prevalence of diabetes. In the present research, we examined the effect of high Se on insulin sensitivity, and studied possible mechanisms in rats and in rat hepatocytes. Insulin sensitivity and glucose/lipid metabolism were determined by glucose/insulin tolerance test, western blot, immunofluorescence, specific probes and other biochemical assays. We show that high Se activates selenoproteins, including glutathione peroxidase and selenoprotein P, and depletes chromium, leading to a common metabolic intersection—lipolysis in adipose tissue and influx of fatty acids in liver. Fatty acid β-oxidation generates acetyl-CoA, which is metabolized in trichloroacetic acid cycle, supplying excessive electrons for mitochondrial oxidative phosphorylation and leading to increased “bad” reactive oxygen species (ROS) production in mitochondria and final disturbance of insulin signaling. Furthermore, high Se-activated selenoproteins also weaken insulin-stimulated “good” ROS signal generated by NAD(P)H oxidase, leading to attenuation of insulin signaling. Taken together, these data suggest that excessive intake of Se induces hepatic insulin resistance through opposite regulation of ROS.  相似文献   

7.
The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.  相似文献   

8.
Genome-wide scanning is a powerful tool to identify susceptible chromosome loci, however, individual chromosomal regions still have many candidate genes. Although cDNA microarray analysis provides valuable information for identifying genes involved in pathogenesis, expression levels of many genes are changed. A novel approach for identification of therapeutic targets is the combination of genome-wide scanning and the use of DNA chips, as shown in Fig. (1). Using DNA chips, we screened for secreted molecules, the expressions of which were changed in adipose tissues from mice rendered insulin resistance. Decreased expression of one of these molecules, adiponectin/Acrp30, correlates strongly with insulin resistance. Interestingly, recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where adiponectin gene is located. Decreasing serum adiponectin levels are associated with increased risk for type 2 diabetes. Interestingly, adiponectin was decreased in insulin resistant rodent models both of obesity and lipoatrophy, and replenishment of adiponectin ameliorated their insulin resistance. Moreover, adiponectin transgenic mice ameliorated insulin resistance and diabetes Adiponectin knockout mice showed insulin resistance and glucose intolerance. In muscle and liver, adiponectin activated AMP kinase and PPARalpha pathways thereby increasing beta-oxidation of lipids, leading to decreased TG content, which ameliorated insulin resistance under a high-fat diet. Despite similar plasma glucose and lipid levels on an apoE deficient background, adiponectin transgenic apoE deficient mice showed amelioration of atherosclerosis, which was associated with decreased expressions of class A scavenger receptor and tumor necrosis factor alpha. Finally, cDNA encoding adiponectin receptors (AdipoR1 and R2) have been identified by expression cloning, which facilitates the understanding of molecular mechanisms of adiponectin actions and obesity-linked diseases such as diabetes and atherosclerosis and the designing of novel antidiabetic and anti-atherogenic drugs with AdipoR1 and R2 as molecular targets.  相似文献   

9.
10.
Obesity is a major risk factor for the development of the metabolic syndrome, a cluster of diseases including insulin resistance, type 2 diabetes, dyslipidemia, hypertension, microalbuminuria, atherosclerosis, and non-alcoholic steatohepatitis. On the other hand, it is now generally accepted that adipose tissue acts as an endocrine organ producing a number of substances with an important role in the regulation of food intake, energy expenditure and a series of metabolic processes. Adiponectin is a recently discovered hormone produced exclusively by adipocytes. In fact, adiponectin is considered currently as a major factor in obesity-related insulin resistance and atherosclerosis. This new hormone differs from other adipocytokines in that its production and concentrations are actually decreased in insulin resistant subjects. The aim of this review is to summarize the current knowledge about the chemistry and physiology of adiponectin and to discuss its implications in the pathophysiology and potential treatment of insulin resistance and non-alcoholic fatty liver disease.  相似文献   

11.
The prevalence of metabolic syndrome including central obesity, insulin resistance, impaired glucose tolerance, hypertension, and dyslipidemia is increasing. Development of adequate therapy for metabolic syndrome requires an animal model that mimics the human disease state. Therefore, we have characterized the metabolic, cardiovascular, hepatic, renal, and pancreatic changes in male Wistar rats (8-9 weeks old) fed on a high-carbohydrate, high-fat diet including condensed milk (39.5%), beef tallow (20%), and fructose (17.5%) together with 25% fructose in drinking water; control rats were fed a cornstarch diet. During 16 weeks on this diet, rats showed progressive increases in body weight, energy intake, abdominal fat deposition, and abdominal circumference along with impaired glucose tolerance, dyslipidemia, hyperinsulinemia, and increased plasma leptin and malondialdehyde concentrations. Cardiovascular signs included increased systolic blood pressure and endothelial dysfunction together with inflammation, fibrosis, hypertrophy, increased stiffness, and delayed repolarization in the left ventricle of the heart. The liver showed increased wet weight, fat deposition, inflammation, and fibrosis with increased plasma activity of liver enzymes. The kidneys showed inflammation and fibrosis, whereas the pancreas showed increased islet size. In comparison with other models of diabetes and obesity, this diet-induced model more closely mimics the changes observed in human metabolic syndrome.  相似文献   

12.
The prevalence of metabolic syndrome including central obesity, insulin resistance, impaired glucose tolerance, hypertension, and dyslipidemia is increasing. Development of adequate therapy for metabolic syndrome requires an animal model that mimics the human disease state. Therefore, we have characterized the metabolic, cardiovascular, hepatic, renal, and pancreatic changes in male Wistar rats (8-9 weeks old) fed on a high-carbohydrate, high-fat diet including condensed milk (39.5%), beef tallow (20%), and fructose (17.5%) together with 25% fructose in drinking water; control rats were fed a cornstarch diet. During 16 weeks on this diet, rats showed progressive increases in body weight, energy intake, abdominal fat deposition, and abdominal circumference along with impaired glucose tolerance, dyslipidemia, hyperinsulinemia, and increased plasma leptin and malondialdehyde concentrations. Cardiovascular signs included increased systolic blood pressure and endothelial dysfunction together with inflammation, fibrosis, hypertrophy, increased stiffness, and delayed repolarization in the left ventricle of the heart. The liver showed increased wet weight, fat deposition, inflammation, and fibrosis with increased plasma activity of liver enzymes. The kidneys showed inflammation and fibrosis, whereas the pancreas showed increased islet size. In comparison with other models of diabetes and obesity, this diet-induced model more closely mimics the changes observed in human metabolic syndrome.  相似文献   

13.
糖皮质激素(GC)是维持机体能量代谢平衡的重要激素之一:GC作用于靶组织,不仅有赖于循环中的GC浓度,还与糖皮质激素受体(GR)的表达相关:外源性及内源性的GC水平升高均会导致机体出现胰岛素抵抗以及与之紧密相关的多种代谢综合征症候,如血脂障碍、内脏性肥胖和高血压。本文对近年来GR介导的胰岛素抵抗及其受体拮抗剂的研究进展进行综述。  相似文献   

14.
The metabolic syndrome represents a constellation of co-morbidities that include central adiposity, insulin resistance, dyslipidemia and hypertension, which results from an elevated prevalence of obesity. An increased abdominal adiposity is observed in upper-body obesity with preferential accumulation of fat in the visceral depot, which renders these individuals more prone to metabolic and cardiovascular problems. The pathophysiology of the metabolic syndrome seems to be closely associated to an elevated efflux of free fatty acids from the visceral fat compartment and a dysregulation of the expression of adipose tissue-derived factors (also termed "adipokines"). Weight reduction and increased physical activity represent the main approach to tackle the "diabesity" epidemic. Nonetheless, taking advantage of the different biochemical and molecular characteristics of visceral and subcutaneous adipose tissue may open up novel pharmacological strategies to combat the metabolic and cardiovascular derangements accompanying the metabolic syndrome.  相似文献   

15.
BACKGROUND AND OBJECTIVE: Metabolic syndrome is characterized by insulin resistance (IR) as well as dyslipidemia, ventral overweight, hypertension and elevated fasting plasma glucose. Since diabetic and prediabetic states are commonly associated with hypertriglyceridemia, fenofibrates have been used in such patients. The aim of this pilot open trial was to study the influence of micronized fenofibrate on insulin resistance and plasma insulin levels in prediabetic and diabetic patients. SUBJECTS: From 114 dyslipidemic patients, 31 with dyslipidemia and insulin resistance were selected to take part in the study. Of the 31 patients, 20 were nondiabetic and only 11 had noninsulin-dependent diabetes mellitus. Eighteen dyslipidemic patients acted as controls. METHODS: Insulin resistance was assessed in a short-term insulin tolerance test. Plasma insulin, antiinsulin antibodies, lipid parameters and the insulin sensitivity index (ISI) were measured at entry and after a 3-month therapy with 200 mg micronized fenofibrate daily. RESULTS: Three-month therapy with micronized fenofibrate resulted in significant ISI increase and was accompanied by a decrease in plasma insulin levels in dyslipidemic patients with metabolic syndrome. ISI also improved in patients with type 2 diabetes mellitus and there was an unexpected increase in plasma insulin levels. Antiinsulin antibodies were unchanged throughout the trial. Reductions in plasma triglycerides and total cholesterol exceeding 50% and 20%, respectively, were observed in patients with metabolic syndrome. These changes were accompanied by an increase in mean levels of plasma high-density lipoprotein (HDL) cholesterol (above 35%). CONCLUSIONS: Micronized fenofibrate is an effective drug in normalizing lipid-lipoprotein levels in patients with metabolic syndrome. After a 3-month fenofibrate therapy, insulin resistance was reduced in a group of patients with dyslipidemia and metabolic syndrome.  相似文献   

16.
Polycystic ovary syndrome (PCOS) is a common gynecologic endocrinopathy. The pathogenesis of PCOS is associated with both heredity and environment. PCOS has adverse impacts on female endocrine, reproduction, and metabolism. PCOS can impact women's reproductive health, leading to anovulatory infertility and higher rate of early pregnancy loss. PCOS has additional metabolic derangements, such as insulin resistance, impaired glucose tolerance, and dyslipidemia. The risks of diabetes, cardiovascular disease, hypertension, metabolic syndrome, and endometrial cancer among PCOS patients are significantly increased as well.  相似文献   

17.
Insulin is the main anabolic and anticatabolic hormone in mammals. The stimulatory effect of insulin on glucose uptake in muscle and adipose tissue is a consequence of the rapid translocation of GLUT4 glucose transporters from an intracellular site to the cell surface. The actions of insulin are initiated by hormone binding to its cell surface receptors. Insulin receptors are ligand-stimulated protein tyrosine kinases and phosphorylate a number of proteins, known as insulin receptor substrate proteins. Insulin resistance has been recognized as a main pathogenic factor in the development of type 2 diabetes, and has been associated with dyslipidemia, hypertension, endothelial dysfunction, inflammation and coagulative state. The current challenge is the study of impaired insulin signaling pathways leading to beta-cell dysfunction and its progression to type 2 diabetes, as well as control of chronic inflammation processes that may improve insulin action.  相似文献   

18.
Nutrient-induced insulin resistance in human skeletal muscle   总被引:3,自引:0,他引:3  
Nutrient excess is associated with reduced insulin sensitivity (insulin resistance) and plays a central role in the pathogenesis of type 2 diabetes. Recently, free fatty acids as well as amino acids were shown to induce insulin resistance by decreasing glucose transport/phosphorylation with subsequent impairment of glycogen synthesis in human skeletal muscle. These results do not support the traditional concept of direct substrate competition with glucose for mitochondrial oxidation but indicate that the cellular mechanisms of such lipotoxicity and "proteotoxicity" might primarily affect the insulin signaling cascade. The signaling pathways involved in nutrient dependent modulation of insulin action include protein kinase C isoforms and IkappaB kinase. Therefore, pharmacological modulation of these enzymes might represent a promising target for future treatment of insulin resistance. Finally, hyperglycemia which occurs late in the insulin resistance syndrome further augments insulin resistance by mechanisms summarized as glucose toxicity. Chronic hyperglycemia might lead to inhibition of lipid oxidation and thereby to accumulation of intracellular lipid metabolites. Therefore, glucotoxicity might be in part indirectly caused by lipotoxicity (glucolipotoxicity). In conclusion, different nutrients affect common metabolic pathways and thereby induce insulin resistance in humans.  相似文献   

19.
Cardiovascular disease and PPARdelta: targeting the risk factors   总被引:1,自引:0,他引:1  
Metabolism, in part, is regulated by the peroxisome proliferator-activated receptors (PPARs). The PPARs act as nutritional lipid sensors and three mammalian PPAR subtypes designated PPARalpha (NR1C1), PPARgamma (NR1C3) and PPARdelta (NR1C2) have been identified. This subgroup of nuclear hormone receptors binds DNA and controls gene expression at the nexus of pathways that regulate lipid and glucose homeostasis, energy storage and expenditure in an organ-specific manner. Recent evidence has demonstrated activation of PPARdelta in the major mass peripheral tissue (ie, adipose and skeletal muscle). It enhances glucose tolerance, insulin-stimulated glucose disposal, lipid catabolism, energy expenditure, cholesterol efflux and oxygen consumption. These effects positively influence the blood-lipid profile. Furthermore, PPARdelta activation produces a predominant type I/slow twitch/oxidative muscle fiber phenotype that leads to increased endurance, insulin sensitivity and resistance to obesity. PPARdelta has rapidly emerged as a potential target in the battle against dyslipidemia, insulin insensitivity, type II diabetes and obesity, with therapeutic efficacy in the treatment of cardiovascular disease risk factors. GW-501516 is currently undergoing phase II safety and efficacy trials in human volunteers for the treatment of dyslipidemia. The outcome of these clinical trials are eagerly awaited against a background of conflicting reports about cancer risks in genetically predisposed animal models. This review focuses on the potential pharmacological utility of selective PPARdelta agonists in the context of risk factors associated with metabolic and cardiovascular disease.  相似文献   

20.
Chemerin是新发现的一种脂肪因子,在脂肪组织中高度表达,它能通过自分泌途径,作用于自身受体CMKLR1,促进脂肪细胞分化及葡萄糖转运,并可通过自分泌或旁分泌途径,对脂肪组织及脂质代谢产生一系列影响。近期研究发现,Chemerin除具有炎症因子的趋化作用外,还与肥胖、胰岛素抵抗和代谢综合征有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号