首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Clinical and preclinical applications of human hematopoietic stem cells (HSCs) are often limited by scarcity of cells. Expanding human HSCs to increase their numbers while maintaining their stem cell properties has therefore become an important area of research. Here, we report a robust HSC coculture system wherein cord blood CD34(+) CD133(+) cells were cocultured with mesenchymal stem cells engineered to express angiopoietin-like-5 in a defined medium. After 11 days of culture, SCID repopulating cells were expanded ~60-fold by limiting dilution assay in NOD-scid Il2rg(-/-) (NSG) mice. The cultured CD34(+) CD133(+) cells had similar engraftment potential to uncultured CD34(+) CD133(+) cells in competitive repopulation assays and were capable of efficient secondary reconstitution. Further, the expanded cells supported a robust multilineage reconstitution of human blood cells in NSG recipient mice, including a more efficient T-cell reconstitution. These results demonstrate that the expanded CD34(+) CD133(+) cells maintain both short-term and long-term HSC activities. To our knowledge, this ~60-fold expansion of SCID repopulating cells is the best expansion of human HSCs reported to date. Further development of this coculture method for expanding human HSCs for clinical and preclinical applications is therefore warranted.  相似文献   

2.
Ex vivo expansion of hematopoietic stem cells (HSCs) has been explored in the fields of stem cell biology, gene therapy, and clinical transplantation. Here, we demonstrate efficient ex vivo expansion of HSCs measured by long-term severe combined immunodeficient (SCID) repopulating cells (SRCs) from human cord blood CD133-sorted cells using a soluble form of Delta1. After a 3-week culture on immobilized Delta1 supplemented with stem cell factor, thrombopoietin, Flt-3 ligand, interleukin (IL)-3, and IL-6/soluble IL-6 receptor chimeric protein (FP6) in a serum- and stromal cell-free condition, we achieved approximately sixfold expansion of SRCs when evaluated by limiting dilution/transplantation assays. The maintenance of full multipotency and self-renewal capacity during culture was confirmed by transplantation to nonobese diabetic/SCID/gammac(null) mice, which showed myeloid, B, T, and natural killer cells as well as CD133(+)CD34(+) cells, and hematopoietic reconstitution in the secondary recipients. Interestingly, the CD133-sorted cells contained approximately 4.5 times more SRCs than the CD34-sorted cells. The present study provides a promising method to expand HSCs and encourages future trials on clinical transplantation.  相似文献   

3.
Hematopoiesis is a dynamic and strictly regulated process orchestrated by self-renewing hematopoietic stem cells (HSCs) and the supporting microenvironment. However, the exact mechanisms by which individual human HSCs sustain hematopoietic homeostasis remain to be clarified. To understand how the long-term repopulating cell (LTRC) activity of individual human HSCs and the hematopoietic hierarchy are maintained in the bone marrow (BM) microenvironment, we traced the repopulating dynamics of individual human HSC clones using viral integration site analysis. Our study presents several lines of evidence regarding the in vivo dynamics of human hematopoiesis. First, human LTRCs existed in a rare population of CD34(+)CD38(-) cells that localized to the stem cell niches and maintained their stem cell activities while being in a quiescent state. Second, clonally distinct LTRCs controlled hematopoietic homeostasis and created a stem cell pool hierarchy by asymmetric self-renewal division that produced lineage-restricted short-term repopulating cells and long-lasting LTRCs. Third, we demonstrated that quiescent LTRC clones expanded remarkably to reconstitute the hematopoiesis of the secondary recipient. Finally, we further demonstrated that human mesenchymal stem cells differentiated into key components of the niche and maintained LTRC activity by closely interacting with quiescent human LTRCs, resulting in more LTRCs. Taken together, this study provides a novel insight into repopulation dynamics, turnover, hierarchical structure, and the cell cycle status of human HSCs in the recipient BM microenvironment.  相似文献   

4.
T-cell re-constitution after allogeneic stem cell transplantation (alloSCT) is often dampened by the slow differentiation of human peripheral blood CD34(+) (huCD34(+) ) hematopoietic stem cells (HSCs) into mature T cells. This process may be accelerated by the co-transfer of in vitro-pre-differentiated committed T/NK-lymphoid progenitors (CTLPs). Here, we analysed the developmental potential of huCD34(+) HSCs compared with CTLPs from a third-party donor in a murine NOD-scid IL2Rγ(null) model of humanised chimeric haematopoiesis. CTLPs (CD34(+) lin(-) CD45RA(+) CD7(+) ) could be generated in vitro within 10 days upon co-culture of huCD34(+) or cord blood CD34(+) (CB-CD34) HSCs on murine OP9/N-DLL-1 stroma cells but not in a novel 3-D cell-culture matrix with DLL-1(low) human stroma cells. In both in vitro systems, huCD34(+) and CB-CD34(+) HSCs did not give rise to mature T cells. Upon transfer into 6-wk-old immune-deficient mice, CTLPs alone did not engraft. However, transplantation of CTLPs together with huCD34(+) HSCs resulted in rapid T-cell engraftment in spleen, bone marrow and thymus at day 28. Strikingly, at this early time point mature T cells originated exclusively from CTLPs, whereas descendants of huCD34(+) HSCs still expressed a T-cell-precursor phenotype (CD7(+) CD5(+) CD1a(+/-) ). This strategy to enhance early T-cell re-constitution with ex vivo-pre-differentiated T-lymphoid progenitors could bridge the gap until full T-cell recovery in severely immunocompromised patients after allogeneic stem cell transplantation.  相似文献   

5.
Given the tremendous need for and potential of umbilical cord blood (CB) to be utilized as a donor source for hematopoietic stem cell (HSC) transplantation in adults, there is a strong push to overcome the constraints created by the limited volumes and subsequent limited HSC and hematopoietic progenitor cell (HPC) numbers available for HSC transplantation from a single collection. We have previously described the use of CD26 inhibitor treatment of donor cells as a method to increase the transplant efficiency of mouse HSCs and HPCs into a mouse recipient. To study the use of CD26 inhibitors as a method of improving the transplantation of human CB HSCs and HPCs, we utilized the nonobese diabetic/severe combined immunodeficient/beta 2 microglobulin null (NOD/SCID/B2m(null)) immunodeficient mouse model of HSC transplantation. We report here significant improvements in the engraftment of long-term repopulating cells following the treatment of either CD34(+) or lineage negative (lin()) donor CB with the CD26 inhibitor, Diprotin A, prior to transplant. These results establish a basis on which to propose the use of CD26 inhibitor treatment of donor CB units prior to transplantation for the purpose of improving transplant efficiency and subsequently patient outcome.  相似文献   

6.
The fate of phenotypically defined human hematopoietic stem cells (hHSCs) in culture and the link between their surface marker expression profile and function are still controversial. We studied these aspects of hHSC biology by relating the expression of the early lineage markers (ELM) CD33, CD38, and CD71 on the surface of human umbilical cord blood (UCB) CD34(+) cells to their long-term nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse repopulation activity (LT-SRA). In uncultured UCB samples, LT-SRA was largely confined to the small CD34(+)ELM(-) cell fraction. CD34(+) cells expressing ELM markers at their surface usually lacked LT-SRA. After culturing UCB CD34(+) cells for 6 days in serum-free medium and on a feeder layer of Rat2 cells, the number of CD34(+)ELM(-) cells stayed roughly the same or showed a slight increase and the LT-SRA was preserved, suggesting a close association between LT-SRA and the CD34(+)ELM(-) phenotype. Indeed, transplantation of CD34(+)ELM(-) cells isolated from cultured UCB CD34(+) cells resulted in long-term hematopoietic reconstitution of conditioned NOD/SCID mice, whereas CD34(+)ELM(+) cells derived from the same cultures were devoid of LT-SRA. Remarkably, roughly 1% of the cells recovered from cultures initiated with isolated CD34(+)ELM(+) cells had lost ELM surface expression. Concurrently, the cultured CD34(+)ELM(+) cells acquired LT-SRA, suggesting that hematopoietic stem cells (HSCs) may arise by the dedifferentiation of early hematopoietic progenitor cells. The latter finding challenges the paradigm of unidirectional hematopoietic differentiation and opens new opportunities for HSC expansion prior to transplantation.  相似文献   

7.
The biology of hematopoietic stem cell (HSC) is a current topic of interest which has important implications for clinical HSC transplantation as well as for the basic research of HSC. The most primitive HSCs in mammals, including mice and humans, have long been believed to be CD34 antigen (Ag)-positive (CD34(+)) cells. In fact, bone marrow (BM), peripheral blood (PB), and cord blood (CB) stem cell transplantation studies indicate that a CD34(+) subpopulation in the BM, PB, or CB can provide durable long-term donor-derived lymphohematopoietic reconstitution. Therefore, CD34 Ag was used to identify/purify immature HSCs. However, Osawa et al. reported that murine long-term lymphohematopoietic reconstituting HSCs are lineage marker-negative (Lin(-)) c-kit(+)Sca-1(+)CD34-low/negative (CD34(low/-)), which are called CD34(low/-) KSL cells. Recently, human CB-derived CD34(-) HSCs, a counterpart of murine CD34(low/-) KSL cells, were successfully identified using an intra-bone marrow injection (IBMI) method. This review will update the concept of the immunophenotype and the functional characteristics of human primitive CD34(-) HSCs. In addition, the significance of the application of the IBMI technique in clinical HSC transplantation is also discussed. Recent rapid advances in understanding the biological nature of HSCs may make it possible to fully characterize the most primitive class of human HSCs in the near future.  相似文献   

8.
Expansion of hematopoietic stem cells (HSCs) from cord blood is highly desired for treatment and transplantation of adult patients for hematologic diseases. For efficient proliferation of HSCs, CD34(+) cells from cord blood were co-cultured with microencapsulated murine stromal cells (HESS-5) or immortalized human mesenchymal stem cells (MSCs) in their conditioned media (CM). Bioactive substances for HSC proliferation in CM at the onset of culture are likely consumed by HSCs with time, and co-culturing with microencapsulated feeder cells ensures a continuous supply. The cell number of CD34(+) cell progeny efficiently increased under these culture conditions, and progeny were analyzed by flow cytometry, the colony assay and the cobblestone area-forming cell (CAFC) assay. Total nucleated cells and CD34(+) cell number increased 194- and 7.4-fold, respectively, in the presence of microencapsulated HESS-5 in CM. Colony forming cells and CAFCs were well maintained. The effective expansion of total cells and maintenance of primitive progenitor cells suggest that transfusion of the progeny obtained from CD34(+) cell culture with microencapsulated HESS-5 in CM could shorten the time to engraftment by bridging the pancytopenic period and support functional hematopoietic repopulation.  相似文献   

9.
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.  相似文献   

10.
Children with Artemis-deficient T(-)B(-)NK(+) severe combined immunodeficiency are at high risk for graft rejection from natural killer (NK) cells and toxicity from increased sensitivity to the alkylating agents used in mismatched hematopoietic stem cell transplantation (HSCT). We evaluated the use of a nonalkylating agent regimen before HSCT in Artemis-deficient (mArt(-/-)) C57Bl/6 (B6) mice to open marrow niches and achieve long-term multilineage engraftment with full T cell and B cell immune reconstitution. We found that partial depletion of both recipient NK cells using anti-NK1.1 monoclonal antibody and donor T cells sensitized to recipient splenocytes was necessary. BALB/c-sensitized T cells (STCs) were photochemically treated (PCT) with psoralen and UVA light to inhibit proliferation, reduce the risk of graft-versus-host disease (GVHD), and target host hematopoietic stem cells (HSCs). A dose of 4 × 10(5) PCT STCs coinjected with 1 × 10(5) lineage-depleted c-kit(+) BALB/c HSCs resulted in 43.9% ± 3.3% CD4(+) and 10.9% ± 1.2% CD8(+) donor T cells in blood, 29% ± 7.8% and 21.7% ± 4.0 donor B220(+) IgM(+) in spleen and bone marrow, and 15.0% ± 3.6% donor Gran-1(+) cells in bone marrow at 6 months post-HSCT versus 0.02% ± 0.01%, 0.13% ± 0.10%, 0.53% ± 0.16%, 0.49% ± 0.09%, and 0.20% ± 0.06%, respectively, in controls who did not receive PCT STCs. We found that STCs target host HSCs and that PCT STCs are detectable only up to 24 hours after infusion, in contrast to non-photochemically treated STCs, which proliferate resulting in fatal GVHD. Increased mortality in the groups receiving 4-6 × 10(5) PCT STCs was associated with evidence of GVHD, particularly in the recipients of 6 × 10(5) cells. These results demonstrate that blocking NK cell-mediated resistance and making niches in bone marrow are both essential to achieving multilineage engraftment of mismatched donor cells and T cell and B cell reconstitution, even though GVHD is not completely eliminated.  相似文献   

11.
目的:探讨体外定向分化胚胎干细胞(ESCs)为造血干细胞(HSCs)对体内造血功能的重建作用。方法:将小鼠E14.1胚胎干细胞采用“三步诱导法”在体外分化发育为HSCs,造血克隆形成(CFU)实验观察其体外造血集落形成情况,免疫磁珠分选纯化HSCs移植给经亚致死剂量γ射线照射的雌性SCID小鼠,观察其植入及小鼠造血功能恢复情况。结果: 经过分阶段诱导,多种造血刺激因子联合应用能有效促进ESCs定向分化发育为HSCs,流式细胞仪检测HSCs特异性表面标志物CD34+/Sca-1+表达最高为(58.64±4.20)%,CFU培养能形成较多的红系、粒系/巨噬细胞系及混合细胞集落, Wright-Giemsa 染色显示为原始的造血细胞。此阶段的HSCs经分选纯化后移植给经γ射线照射后的小鼠,移植组小鼠+10 d造血功能开始恢复,观察40 d后除血小板恢复较慢外,白细胞、红细胞、血红蛋白等指标已接近正常,植入率为71.4%,存活率为43.0%,染色体检测证实已由受体鼠的XX转为供体鼠的XY。结论: 采用分阶段诱导的方法,可在体外定向诱导小鼠ESCs分化发育为HSCs,此来源的HSCs可以有效重建体内造血功能。  相似文献   

12.
The hematopoietic system of vertebrates can be completely reconstituted with hematopoietic stem cells derived from the bone marrow, fetal liver, or cord blood, or even from peripheral-blood-derived cells. A cellular marker to identify those cells is the proteoglycan CD34, although we have shown that the earliest identifiable hematopoietic stem cell is a CD34(-) fibroblast-like cell which can differentiate into CD34(+) hematopoietic precursors. Peripheral blood mononuclear cells were isolated from the heparinized blood of a dog and incubated in tissue culture in the presence of interleukin 6. After 10-14 days, an adherent layer of fibroblast-like cells had developed and cells were immortalized using the SV-40 large T antigen. Cells were cloned and subcloned by measures of limiting dilution, and various fibroblast-like clones were established. These fibroblast-like cells either do not express the CD34 antigen or express CD34 on a low level, although transcribing CD34. The CD34(-/low) cells express osteocalcin as a mesenchymal cell marker. The fibroblast-like cells eventually differentiate spontaneously in vitro into CD34(+) precursors and show colony formation. Prior to autologous stem cell transplantation, one clone of choice (IIIG7) was transfected with a retroviral construct containing the green-fluorescence protein (GFP). The recipient dog was totally irradiated with 300 cGy and received a stem cell transplant with GFP-containing, immortalized, fibroblast-like monoclonal autologous stem cells (0.5 x 10(8)/kg dog). No additional growth factors were applied. The peripheral blood counts recovered after 23 days (WBC >500; platelets >10,000). A peripheral blood smear showed some dim but definite, although timely, limited expression of the GFP protein in nucleated peripheral blood cells just five weeks after transplantation. A bone marrow biopsy showed GFP-positive cells in the marrow cavity predominantly as "bone-lining cells."  相似文献   

13.
目的:以NOD/SCID小鼠为模型, 经半致死剂量照射后输注新鲜或培养后的造血细胞, 以比较培养前后脐血CD34 细胞的造血重建功能.方法:从新鲜脐血中分离单个核细胞(MNC), 采用干细胞因子(SCF)、血小板生成素(TPO)、Flt3配体(FL)、白细胞介素3(IL-3)和白细胞介素6(IL-6)细胞因子组合体外培养14 d.通过MiniMACS免疫磁性吸附柱从新鲜或培养后的MNC中分离CD34 细胞, 4×105个CD34 细胞和5×106CD34-细胞混合后通过尾静脉输注入NOD/SCID小鼠中.饲养过程中动态观察外周血象恢复情况, 6周后检测小鼠骨髓和脾脏细胞中人源细胞及各系造血细胞的含量.结果:体外培养MNC 14 d后, 总细胞扩增了1.78倍;细胞移植6周后, 输注新鲜和培养后造血细胞的小鼠均存活, 在小鼠骨髓和脾脏中均可检测到人源细胞及各系人源血细胞和人特异ALU基因序列, 小鼠外周血象恢复到辐照前水平.培养后CD34 细胞在小鼠体内的植入水平与新鲜CD34 细胞的相近, 而其各系人源血细胞的含量高于新鲜CD34 细胞. 结论:体外培养14 d后的CD34 细胞仍保持了体内植入和重建造血的能力, 且其多系造血重建能力优于新鲜CD34 细胞.  相似文献   

14.
Alterations in mitochondrial DNA (mtDNA) and consequent loss of mitochondrial function underlie the mitochondrial theory of aging. In this study, we systematically analyzed the mtDNA control region somatic mutation pattern in 2864 single hematopoietic stem cells (HSCs) and progenitors, isolated by flow cytometry sorting on Lin(-)Kit(+)CD34(-) parameters from young and old C57BL/6 (B6) and BALB/cBy (BALB) mice, to test the hypothesis that the accumulated mtDNA mutations in HSCs were strain-correlated and associated with HSC functional senescence during aging. An increased level of mtDNA mutations in single HSCs was observed in old B6 when compared with young B6 mice (P=0.003); in contrast, no significant age-dependent accumulation of mutations was observed in BALB mice (old versus young, P=0.202) and the level of mutations in both young and old BALB mice was close to that of old B6 mice (P>0.280). Cellular reactive oxygen species (ROS) in mouse HSCs could not be correlated with the level of mtDNA mutations in these cells, although B6 mice had a higher proportion of ROS(-) cells when compared with the BALB mice. Propagation assays of single HSCs showed B6 cells form larger colonies compared with cells from BALB mice, irrespective of age and mtDNA mutation load. We infer from our data that age-related mtDNA somatic mutation accumulation in mouse HSCs is influenced by the nuclear genetic background and that these mutations may not obviously correlate to either cellular ROS content or HSC senescence.  相似文献   

15.
Hematopoietic stem cells (HSCs) are ideal targets for genetic manipulation in the treatment of several congenital and acquired disorders affecting the hematopoietic compartment. Although G-CSF-mobilized peripheral blood CD34(+) cells are the favored source of hematopoietic stem cells in clinical transplantation, this source of stem cells does not provide meaningful engraftment levels of genetically modified cells compared with G-CSF + stem cell factor (SCF)-mobilized cells in nonhuman primates. Furthermore, the use of G-CSF mobilization can have disastrous consequences in patients with sickle cell disease, a long-held target disorder for HSC-based gene therapy approaches. We therefore conducted a study to compare the levels of genetically modified cells attainable after retroviral transduction of CD34(+) cells collected from a bone marrow (BM) harvest with CD34(+) cells collected from a leukapheresis product after mobilization with G-CSF (n = 3) or G-CSF in combination with SCF (n = 3) in the rhesus macaque autologous transplantation model. Transductions were performed using retroviral vector supernatant on fibronectin-coated plates for 96 hours in the presence of stimulatory cytokines. BM was equal to or better than G-CSF-mobilized peripheral blood as a source of HSCs for retroviral transduction. Although the highest marking observed was derived from G-SCF + SCF-mobilized peripheral blood in two animals, marking in the third originated only from the BM fraction. These results demonstrate that steady-state BM is at least equivalent to G-CSF-mobilized peripheral blood as a source of HSCs for retroviral gene transfer and the only currently available source for patients with sickle cell disease.  相似文献   

16.
17.
18.
Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34+ cells is the subject of ongoing debate, urging for reproducible strategies for their counting. Here, we used cellular barcoding to determine the frequency and clonal dynamics of human UCB HSCs and to determine how data analysis methods affect these parameters. We transplanted lentivirally barcoded CD34+ cells from 20 UCB donors into Nod/Scid/IL2Ry–/– (NSG) mice (n = 30). Twelve recipients (of 8 UCB donors) engrafted with >1% GFP+ cells, allowing for clonal analysis by multiplexed barcode deep sequencing. Using multiple definitions of clonal diversity and strategies for data filtering, we demonstrate that differences in data analysis can change clonal counts by several orders of magnitude and propose methods to improve their consistency. Using these methods, we show that the frequency of NSG-repopulating cells was low (median ∼1 HSC/104 CD34+ UCB cells) and could vary up to 10-fold between donors. Clonal patterns in blood became increasingly consistent over time, likely reflecting initial output of transient progenitors, followed by long-term HSCs with stable hierarchies. The majority of long-term clones displayed multilineage output, yet clones with lymphoid- or myeloid-biased output were also observed. Altogether, this study uncovers substantial interdonor and analysis-induced variability in the frequency of UCB CD34+ clones that contribute to post-transplant hematopoiesis. As clone tracing is increasingly relevant, we urge for universal and transparent methods to count HSC clones during normal aging and upon transplantation.  相似文献   

19.
Chimerism analysis of hematopoietic cells has emerged as an essential tool in nonmyeloablative hematopoietic stem cell transplantation. We have investigated the development of donor chimerism in granulocytes and CD4(+) and CD8(+) T cells in blood and bone marrow of 24 patients with hematologic malignancies who received HLA-identical sibling peripheral blood stem cell grafts after conditioning with fludarabine and 2 Gy of total body irradiation. The T-cell chimerism of blood and bone marrow was tightly correlated. Complete donor chimerism was reached earlier in the granulocytes than in the T cells. Mixed T-cell chimerism was common at the time of onset of acute graft-versus-host disease (aGVHD), and both CD4(+) and CD8(+) donor T-cell chimerism increased with the occurrence of aGVHD grades II to IV (P =.0002 and P =.019, respectively). The rate of disappearance of recipient CD8(+) T cells was faster in patients with aGVHD grades II to IV than in patients without clinically significant aGVHD (P =.016). This observation indicates a role of graft-versus-lymphohematopoietic tissue reactions in creating complete donor T-cell chimerism. A donor CD8(+) T-cell count above the median on day +14 increased the risk of subsequent development of aGVHD grades II to IV (P =.003).  相似文献   

20.
Human dendritic cells (DC) comprise 2 subsets-plasmacytoid CD123(+) and myeloid CD11c(+) DC-that may have distinct roles in the regulation of immunity after allogeneic hematopoietic stem cell transplantation. In this study, we analyzed the kinetics of CD123(+) DC and CD11c(+) DC reconstitution in 31 patients who underwent transplantation with allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells from HLA-identical sibling donors after myeloablative conditioning. Lineage marker-negative HLA-DR(+) CD11c(+) CD11c(+) DC and lineage marker-negative HLA-DR(+) CD123(+) CD123(+) DC, as well as monocytes and lymphoid subsets, were enumerated in donor grafts and in the PB of patients at various time points after transplantation. Reconstitution of both CD11c(+) DC and CD123(+) DC to normal levels occurred within 6 to 12 months and was not affected by the diagnosis, preparatory regimen, or graft composition. However, PB CD11c(+) DC and CD123(+) DC counts were significantly reduced in patients with acute GVHD grade II to IV (at 1 and 3 months) and grade I (at 1 month). Patients with chronic GVHD instead showed reduced CD123(+) DC counts only 6 months after transplantation. Moreover, treatment with steroids (>0.1 mg/kg) was significantly associated with reduced PB CD11c(+) DC and CD123(+) DC counts at all time points after transplantation. In multivariate analysis, only acute GVHD affected DC reconstitution early after transplantation. These results will prompt new studies addressing whether DC reconstitution correlates with immunity against infectious agents or with graft-versus-tumor reactions after PB stem cell allotransplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号