首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustering of activated microglia in Abeta deposits is related to accumulation of amyloid associated factors and precedes the neurodegenerative changes in AD. Microglia-derived pro-inflammatory cytokines are suggested to be the driving force in AD pathology. Inflammation-related proteins, including complement factors, acute-phase proteins, pro-inflammatory cytokines, that normally are locally produced at low levels, are increasingly synthesized in Alzheimer's disease (AD) brain. Similar to AD, in prion diseases (Creutzfeldt-Jakob disease, Gerstmann-Str?ussler-Scheinker disease and experimentally scrapie infected mouse brain) amyloid associated factors and activated glial cells accumulate in amyloid deposits of conformational changed prion protein (PrPres). Biological properties of Abeta and prion (PrP) peptides, including their potential to activate microglia, relate to Abeta and PrP peptide fibrillogenic abilities that are influenced by certain amyloid associated factors. However, since small oligomers of amyloid forming peptides are more toxic to neurons than large fibrils, certain amyloid associated factors that enhance fibril formation, may sequester the potentially harmful Abeta and PrP peptides from the neuronal microenvironment. In this review the positive and negative actions of amyloid associated factors on amyloid peptide fibril formation and on the fibrillation state related activation of microglia will be discussed. Insight in these mechanisms will enable the design of specific therapies to prevent neurodegenerative diseases in which amyloid accumulation and glial activation are prominent early features.  相似文献   

2.
The amyloid plaques in Alzheimer's disease (AD) brains are co-localised with a broad variety of inflammation-related proteins (complement proteins, acute-phase proteins, pro-inflammatory cytokines) and clusters of activated microglia. The present data suggest that the Abeta depositions in the neuroparenchyma are closely associated with a locally-induced, non-immune-mediated chronic inflammatory response. Clinicopathological and neuroradiological data show that activation of microglia are a relatively early pathogenic event that precedes the process of severe neuropil destruction in patients. Recent gene findings (cDNA microarray) confirm the immunohistochemical findings of an early involvement of inflammatory and regenerative pathways in AD pathogenesis. Abeta deposition, inflammation and regenerative mechanisms are also early pathogenic events in transgenic mice models harbouring the pathological AD mutations, while "later" neurodegenerative characteristics are not seen in these models. Next to the plaques, Abeta amyloid deposition is frequently found in the walls of cerebral vessels (cerebral amyloid angiopathy). Most common is the type of amyloid deposition in the walls of meningeal and medium-sized cortical arteries, and more rarely, microcapillary amyloid angiopathy (dyshoric angiopathy). Immunohistochemical studies show that in AD patients, the majority of the amyloid deposits in the walls of the larger vessels is not associated with a chronic inflammatory response in contrast to micro-capillary amyloid angiopathy. In this contribution, we will give an overview of the similarities and differences between the involvement of inflammatory mechanisms in vascular and plaque amyloid in AD and transgenic models. The implications of the reviewed studies for an inflammation-based therapeutical approach in AD will be discussed.  相似文献   

3.
There is an increasing amount of evidence showing the importance of intermediate aggregation species of amyloid beta (Abeta) in the pathogenic cascade of Alzheimer's disease (AD). Different Abeta assembly forms may mediate diverse toxic effects at different stages of the disease. Mouse models for AD suggest that intraneuronal accumulation of Abeta oligomers might be involved in AD pathogenesis at a very early stage of the disease. The detrimental effect of oligomeric Abeta on synaptic efficacy is suggested to be an early event in the pathogenic cascade. Also early neuronal responses as activation of the unfolded protein response are processes likely to be associated with the increased occurrence of oligomeric or low fibrillar Abeta in AD pathology. In later stages of AD pathology, the fibrillarity of Abeta increases, concomitantly with a neuroinflammatory response, followed by tau related neurofibrillary changes in end stage pathology. We will review recent findings in in vitro cell models, in vivo mouse models, and post mortem AD brain tissue in view of the effects of different Abeta peptide species on neurodegeneration during AD pathogenesis. Insight into the role of different Abeta species during AD pathogenesis is essential for the development of disease modifying drugs and therapeutical strategies.  相似文献   

4.
Alzheimer's disease (AD) is the most common cause of age-related cognitive decline. Both active and passive immunization paradigms have illustrated the potential to prevent and reverse established AD pathology in transgenic and non-transgenic animal models of AD. Follow-up studies have shown that changes in amyloid burden observed with immunization could rescue cognitive deficits in both young and aged mice. Despite the success of immunotherapy in animal models, clinical trials were halted early. It has become clear that more preclinical work was needed before initiating trials, as most of the adverse events observed in patients could have been predicted using animal models. Despite these setbacks, clinical trials have demonstrated the utility of amyloid-beta (Abeta) vaccination in reducing amyloid pathology and potentially reducing cognitive decline. Several novel approaches to immunotherapy, including modified immunogens, adjuvants and modes of administration have been designed, which hold promise for human testing. Clinical trials using a safer vaccine, which is potent enough to elicit a robust antibody response in the absence of encephalitis may prove effective in mitigating progressive neurodegeneration seen in AD. If so, Abeta vaccination could supplant current symptomatic treatment and represent one of the first therapeutic options for AD based on the amyloid cascade hypothesis.  相似文献   

5.
Amyloid (Abeta) deposition remains a hallmark in the pathology of Alzheimer's disease (AD). Important drug discovery efforts dedicated to the inhibition of the polymerization process leading to amyloid neurotoxicity are pursued by academic groups and the pharmaceutical industry as a potential preventive treatment for AD. The aim of this review is to up-date current knowledge on the amyloid aggregation process and the various available peptidic and non-peptidic Abeta aggregation inhibitors.  相似文献   

6.
Transgenic mice models for Alzheimer's disease (AD) are essential to the understanding of disease pathophysiology, develop robust behavioral models and predict outcomes from pharmacological interventions. In the last 10 years, numerous mice models have been developed particularly focusing on the amyloid precursor protein-processing pathway and Tau pathology since brain amyloid deposits and Tau tangles are some of the primary neuropathological consequences of AD. Current views on the amyloid hypothesis and mice models relating to the role of soluble Abeta oligomers and intracellular Abeta in AD pathophysiology will be reviewed. Several novel transgenic mice models that have recently been developed and their potential impact on understanding disease pathogenesis will also be summarized.  相似文献   

7.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of beta amyloid (Abeta) protein and the formation of neurofibrillary tangles. In addition, there is an increase of inflammatory proteins in the brains of AD patients. Epidemiological studies, indicating that non-steroidal anti-inflammatory drugs (NSAIDs) decrease the risk of developing AD, have encouraged the study on the role of inflammation in AD. The best-characterized action of most NSAIDs is the inhibition of cyclooxygenase (COX). The expression of the constitutively expressed COX-1 and the inflammatory induced COX-2 has been intensively investigated in AD brain and different disease models for AD. Despite these studies, clinical trials with NSAIDs or selective COX-2 inhibitors showed little or no effect on clinical progression of AD. The expression levels of COX-1 and COX-2 change in the different stages of AD pathology. In an early stage, when low-fibrillar Abeta deposits are present and only very few neurofibrillary tangles are observed in the cortical areas, COX-2 is increased in neurons. The increased neuronal COX-2 expression parallels and colocalizes with the expression of cell cycle proteins. COX-1 is primarily expressed in microglia, which are associated with fibrillar Abeta deposits. This suggests that in AD brain COX-1 and COX-2 are involved in inflammatory and regenerating pathways respectively. In this review we will discuss the role of COX-1 and COX-2 in the different stages of AD pathology. Understanding the physiological and pathological role of cyclooxygenase in AD pathology may facilitate the design of therapeutics for the treatment or prevention of AD.  相似文献   

8.
9.
Overproduction of the peptide amyloid beta (Abeta) is a critical pathogenic event in Alzheimer's disease (AD), leading to the formation of amyloid plaques, neurofibrillary tangles, synaptic loss and dementia. Decreasing Abeta production may therefore slow or halt the progression of AD. Recent animal experiments suggest that Abeta overproduction in aging and sporadic AD may be due to age-related loss of cortical cholinergic innervation. Muscarinic agonists, particularly M1-selective agents, have been shown to decrease the production of Abeta in vitro and in vivo; these compounds may be uniquely suited to a preventative role in AD therapy.  相似文献   

10.
Amyloid-beta (Abeta) is a normally soluble 39-43 amino peptide. Genetic and biochemical data strongly suggest that the conversion of Abeta from soluble to insoluble forms with high beta-sheet content and its buildup in the brain is a key step in the pathogenesis of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Prevention and/or reversal of this process may serve as a treatment. Methods to prevent or reverse Abeta deposition and its toxic effects would include decreasing its production, preventing its conversion to insoluble forms (e.g. inhibit beta-sheet formation) or in changing the dynamics of extracellular brain Abeta, either locally within the brain or by altering net flux of Abeta between the central nervous system (CNS) and plasma compartment. Transgenic mouse models of AD that develop age-dependent Abeta deposition, damage to the neuropil, and behavioral deficits have enabled researchers to test whether different manipulations can influence these AD-like changes. Recently, active immunization with different forms of the Abeta peptide has been shown to decrease brain Abeta deposition and improve cognitive performance in mouse models of AD. Certain peripherally administered anti-Abeta antibodies have similar effects. The mechanism(s) by which anti-Abeta antibodies result in these effects is just beginning to be elucidated. Abeta-related immune therapies in humans are an exciting new area of AD research. Understanding their detailed mechanism(s) of action and their potential usefulness awaits the results of future animal and human studies.  相似文献   

11.
In addition to synapse loss, neurofibrillary tangles, and neurodegeneration, oxidative stress and amyloid beta-peptide [Abeta] deposition are hallmarks of Alzheimer's disease [AD] brain. Our laboratory coupled these two characteristics of AD into a comprehensive model to account for the synapse loss and neurodegeneration in AD brain. This model combines much of the extant studies on AD and is based on oxidative stress associated with amyloid beta-peptide. This review presents evidence in support of this model and provides insight into the molecular basis of this devastating dementing disorder.  相似文献   

12.
In the early 1990s, genetic mapping of the amyloid precursor protein (APP) locus and the markers linking it to FAD were recent discoveries. Since then, Alzheimer's disease (AD) research has progressed from the identification of FAD-linked mutation to the generation of transgenic animals that express these mutant genes. Transgenic animals can represent models of aberrant beta-amyloid (Abeta) production either through the expression of mutant APP genes or mutant presenilin (PS)-1 genes, or both. Currently, this plethora of well-characterized animal models is being applied to test candidate therapeutic agents and strategies to reverse or prevent amyloid deposition into plaques. Treatments included specific inhibitors of the enzymes that produce Abeta, non-steroidal anti-inflammatory therapies (NSAIDs), Abeta-chelating agents and dietary supplements.  相似文献   

13.
Excessive amyloid-beta (Abeta) deposition in the brain is one of the most crucial events in the early pathological stage of Alzheimer's disease (AD). Therefore, Abeta deposits have enough potential to become a useful biomarker for not only an early diagnosis of AD, but also for the assessment of the clinical efficacy of anti-Abeta therapies, if they can be measured non-invasively and reliably in living patients. As a potent candidate technique to measure this biomarker, PET amyloid imaging using a radioligand for Abeta deposits has received much attention. A large number of Abeta ligands have been synthesized and evaluated as candidates for amyloid imaging agents. These can be classified into six categories of derivatives: Congo-red, Thioflavine T, stilbene, vinylbenzoxazole, DDNP, and miscellaneous. Many of these derivatives exhibit high binding affinities to Abeta fibrils (below 20 nM) and some of them also show excellent brain pharmacokinetic profiles. The concept of amyloid imaging is currently being tested in human PET studies using optimized amyloid imaging agents. Despite the small number of subjects, these studies have demonstrated sufficiently promising results. This review article provides an overview of recent advances in the development of amyloid imaging agents, and includes: a summary of the fundamental basis and clinical significance of amyloid imaging; lists of binding affinity data for 135 compounds classified into 12 molecular frameworks; a comprehensive discussion of the in vitro and in vivo features of representative Abeta ligands; and a discussion of the current state of clinical evaluation of these amyloid imaging agents (PIB, SB-13, BF-227, and FDDNP).  相似文献   

14.
Emerging beta-amyloid therapies for the treatment of Alzheimer's disease   总被引:4,自引:0,他引:4  
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder marked by loss of memory, cognition, and behavioral stability. AD is defined pathologically by extracellular neuritic plaques comprised of fibrillar deposits of beta-amyloid peptide (Abeta) and neurofibrillary tangles comprised of paired helical filaments of hyperphosphorylated tau. Current therapies for AD, such as cholinesterase inhibitors, treat the symptoms but do not modify the progression of the disease. The etiology of AD is unclear. However, data from familial AD mutations (FAD) strongly support the "amyloid cascade hypothesis" of AD, i.e. that neurodegeneration in AD is initiated by the formation of neurotoxic beta-amyloid (Abeta) aggregates; all FAD mutations increase levels of Abeta peptide or density of Abeta deposits. The likely link between Abeta aggregation and AD pathology emphasizes the need for a better understanding of the mechanisms of Abeta production. This review summarizes current therapeutic strategies directed at lowering Abeta levels and decreasing levels of toxic Abeta aggregates through (1) inhibition of the processing of amyloid precursor protein (APP) to Abeta peptide, (2) inhibition, reversal or clearance of Abeta aggregation, (3) cholesterol reduction and (4) Abeta immunization.  相似文献   

15.
Amyloidosis and Alzheimer's disease   总被引:8,自引:0,他引:8  
Alzheimer's disease (AD) is the most frequent type of amyloidosis in humans and the commonest form of dementia. Extracellular Abeta amyloid deposits in the form of amyloid plaques and cerebral amyloid angiopathy as well as intraneuronal neurofibrillary tangles co-exist in the brain parenchyma of AD patients, the cognitive areas being the most severely affected. This review focuses on the potential role of amyloid in the development of neurodegeneration and presents studies of AD and other unrelated inherited dementia syndromes associated with neuronal loss and amyloid deposition in the brain.  相似文献   

16.
Alzheimer's disease (AD) is a progressive senile dementia characterized by deposition of a 4 kDa peptide of 39-42 residues known as amyloid beta-peptide (Abeta) in the form of senile plaques and the microtubule associated protein tau as paired helical filaments. Genetic studies have identified mutations in the Abeta precursor protein (APP) as the key triggers for the pathogenesis of AD. Other genes such as presenilins 1 and 2 (PS1/2) and apolipoprotein E (APOE) also play a critical role in increased Abeta deposition. Several biochemical and molecular studies using transfected cultured cells and transgenic animals point to mechanisms by which Abeta is generated and aggregated to trigger the neurodegeneration that may cause AD. Three important enzymes collectively known as 'secretases' participate in APP processing leading to the generation of either Abeta or non-amyloid proteins. However, the mechanisms of neurotoxicity of Abeta and the role of APP function in AD remain important unanswered questions. Although early studies recognized the loss of cholesterol and other lipids in the brain, these findings have been poorly connected with AD pathogenesis, despite the identification of the epsilon4 allele of APOE as a major risk factor in AD. The recent finding that cholesterol can modulate the yield of potentially toxic Abeta has boosted research on its role in AD. Consequently, several cholesterol-reducing drugs are currently being evaluated for the treatment of AD. The present review summarizes our current understanding of the relationship of AD pathogenesis with cholesterol, lipids and other genetic and environmental risk factors.  相似文献   

17.
Although there is still no known effective preventative treatment or cure for Alzheimer's disease (AD), the development of new drugs that target pathological features that appear early in the course of this disease and alleviate some of the early cognitive and memory symptoms is a laudable goal that may be one step closer. To date, the acetylcholinesterase inhibitors have been the most widely used AD drugs and have been somewhat successful in slowing loss of cognition. In the last few years, a number of studies have demonstrated that amyloid beta (1-42) (Abeta42), the predominant Abeta peptide species in amyloid plaques, first accumulates in vulnerable neurons prior to plaque formation. Recently, we have shown that many (if not most) amyloid plaques in the entorhinal cortex of AD brains are actually the lysis remnants of degenerated, Abeta42-overburdened neurons. Furthermore, the most vulnerable neurons appear to be those that abundantly express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), and internalization of Abeta42 appears to be facilitated by the high-affinity binding of Abeta42 to the alpha7nAChR on neuronal cell surfaces, followed by endocytosis of the resulting complex and its accumulation within the lysosomal compartment. This mechanism provides a reasonable explanation for the selective vulnerability of cholinergic and cholinoceptive neurons in AD brains and for the fact that Abeta42 is the dominant Abeta peptide species in both intraneuronal accumulations and amyloid plaques. In view of the pathophysiological consequences of Abeta42 binding to alpha7nAChR on neuronal surfaces that stem from excessive intraneuronal Abeta42 accumulation, the alpha7nAChR could be an important therapeutic target for treatment of AD. In addition, it further emphasizes the potential merits of new and effective therapeutic strategies pointed towards the goal of lowering of Abeta42 levels in the blood and cerebrospinal fluid as well as blocking Abeta42 in the blood from penetrating the blood-brain barrier and entering into the brain parenchyma.  相似文献   

18.
Non-steroidal anti-inflammatory drugs (NSAIDs) have been considered for treatment and prevention of Alzheimer's disease (AD) for more than two decades. Biochemical markers in the brains of individuals with AD suggest that inflammation might be a driving cause of the disease that can be suppressed by drug treatment. In addition, a subgroup of widely used NSAIDs inhibits generation of the pathogenic amyloid-beta(1-42) peptide (Abeta42) independently of the inflammatory cyclooxygenase (COX) pathway. Here, we summarize evidence showing that the efficacy of NSAIDs in AD might be attributable to either anti-inflammatory or anti-amyloidogenic activities, and we acknowledge the possibility that current NSAIDs could be neuroprotective through synergistic mechanisms. Ongoing drug development efforts are concentrating on improvement of the COX-independent Abeta42-lowering activity to prevent amyloid pathology and secondary inflammatory reactions and to avoid the clinical side-effects associated with inhibition of COX.  相似文献   

19.
Amyloid fibres are stable, persistent and highly ordered aggregates of mis-folded protein that accumulate in tissues and are a prominent feature of the pathology of a wide range of human diseases. The presumed role of amyloid as a causative factor of tissue damage is based largely on 'guilt by association'. However, growing understanding of the nature of amyloid, its formation by a nucleated growth mechanism from destabilised and partially unfolded precursors and its persistence at sites of deposition has provided the foundation for the development of approaches to inhibit amyloid formation and enable its clearance. In spite of intensive study, our understanding of the detailed structure of amyloid itself remains incomplete although 'crossed-beta' structure is clearly a common constituent. On the other hand detailed structural understanding of transthyretin, beta-secretase and serum amyloid P component is contributing to the design of small molecule compounds to target amyloid. Thyroxin mimetics stabilise the native tetrameric protein structure, beta-secretase inhibitors will limit the production of the amyloidogenic Abeta1-42 polypeptide. Compounds that crosslink serum amyloid P component rapidly deplete the plasma and amyloid-bound pool of this protein. The efficacy of these compounds as drugs to prevent formation or enable removal of amyloid will provide a stringent test of the 'amyloid hypothesis' of disease.  相似文献   

20.
In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis of Alzheimer's disease (AD), which has been transferred into extensive experimental approaches aimed at reversing disease progression. The trend in future AD therapy has been shifted from traditional anti-acetylcholinesterase treatment to multiple mechanisms-based therapy targeting amyloid plaques formation and amyloid peptides (Abeta)-mediated cytotoxicity, and neurofibrillary tangles generation. This review will cover current experimental studies with the focus on secretases-based drug development, immunotherapy, and anti-neurofibrillary tangles intervention. The outcome of these on-going studies may provide high hope that AD can be cured in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号