首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose: The presence of embB306 mutation in ethambutol (EMB)-susceptible (EMBs) clinical isolates questions the significance of these mutations in conferring resistance to EMB. The present study was carried out to determine the occurrence of embB306 mutation in EMB-resistant (EMBr) and EMBs strains of M. tuberculosis. One hundred and four multidrug-resistant tuberculosis (MDR-TB) strains were also included to establish the relevance of excessive use of rifampicin (RIF) and isoniazid (INH) in occurrence of embB306 mutations in EMBs M. tuberculosis isolates. Materials and Methods: Deoxyribonucleic acid (DNA) from M. tuberculosis clinical strains was isolated by cetyltrimethylammonium bromide (CTAB) method. Phenotypic and genotypic drug susceptibility testing (DST) was performed on 354 M. tuberculosis isolates by using standard proportion method and multiplex-allele-specific polymerase chain reaction assay, respectively. Results: The overall frequency of embB306 mutations in EMBr isolates was found to be five times higher than its occurrence in EMB-susceptible isolates (50% vs 10%). Further, the association between embB306 mutation and EMB-resistance was observed to be statistically significant (P = 0.000). Conclusion: The embB306 is not only the main causative mutation of EMB resistance, but is a sensitive applicant marker for EMB-resistance study.  相似文献   

2.
The new GenoType MTBDRplus assay (Hain Lifescience GmbH, Nehren, Germany) was tested with 125 clinical isolates and directly with 72 smear-positive sputum specimens for its ability to detect rifampin (RMP) and isoniazid (INH) resistance in Mycobacterium tuberculosis complex (MTBC) strains. In total, 106 RMP(r)/INH(r), 10 RMP(s)/INH(r), and 80 RMP(s)/INH(s) MTBC strains were comparatively analyzed with the new and the old MTBDR assays. Besides the detection of mutations within the 81-bp hot spot region of rpoB and katG codon 315, the GenoType MTBDRplus assay is designed to detect mutations in the regulatory region of inhA. The applicability of the new assay directly to specimens was shown, since 71 of 72 results for smear-positive sputa and all 125 results for clinical isolates were interpretable and no discrepancies compared with the results of real-time PCR or DNA sequencing were obtained. In comparison to conventional drug susceptibility testing, both assays were able to identify RMP resistance correctly in 74 of 75 strains (98.7%) and 30 of 31 specimens (96.8%). The misidentification of RMP resistance was obtained for two strains containing rpoB P533L mutations. Compared to the old MTBDR assay, the new GenoType MTBDRplus assay enhanced the rate of detection of INH resistance from 66 (88.0%) to 69 (92.0%) among the 75 INH-resistant strains and 36 (87.8%) to 37 (90.2%) among the 41 specimens containing INH-resistant strains. Thus, the new GenoType MTBDRplus assay represents a reliable and upgraded tool for the detection of INH and RMP resistance in strains or directly from smear-positive specimens.  相似文献   

3.
Multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis complex (MTBC) are defined by resistance to at least rifampin (RMP) and isoniazid (INH). Rapid and accurate detection of multidrug resistance is essential for effective treatment and interruption of disease transmission of tuberculosis (TB). Overdiagnosis of MDR TB may result in treatment with second-line drugs that are more costly, less effective, and more poorly tolerated than first-line drugs. CDC offers rapid confirmation of MDR TB by the molecular detection of drug resistance (MDDR) for mutations associated with resistance to RMP and INH along with analysis for resistance to other first-line and second-line drugs. Simultaneously, CDC does growth-based phenotypic drug susceptibility testing (DST) by the indirect agar proportion method for a panel of first-line and second-line antituberculosis drugs. We reviewed discordance between molecular and phenotypic DST for INH and RMP for 285 isolates submitted as MTBC to CDC from September 2009 to February 2011. We compared CDC''s results with those from the submitting public health laboratories (PHL). Concordances between molecular and phenotypic testing at CDC were 97.4% for RMP and 92.5% for INH resistance. Concordances between CDC''s molecular testing and PHL DST results were 93.9% for RMP and 90.0% for INH. Overall concordance between CDC molecular and PHL DST results was 91.7% for RMP and INH collectively. Discordance was primarily attributable to the absence of known INH resistance mutations in isolates found to be INH resistant by DST and detection of mutations associated with low-level RMP resistance in isolates that were RMP susceptible by phenotypic DST. Both molecular and phenotypic test results should be considered for the diagnosis of MDR TB.  相似文献   

4.
A total of 105 rifampin (RMP)- and/or isoniazid (INH)-resistant strains of Mycobacterium tuberculosis isolated from different parts of Poland in 2000 were screened for mutations associated with resistance to these drugs by two molecular methods, namely sequence analysis and real-time PCR technology. Three loci associated with drug resistance were selected for characterization: they were rpoB (RMP), katG, and the regulatory region of inhA (INH). Nineteen different mutations were identified in 64 RMP-resistant strains, and five new alleles were described. The most common point mutations were in codons 531 (41%), 516 (16%), and 526 (9%) of the rpoB gene. Mutations were not found in two (3%) of the isolates. In the case of resistance to INH, six different mutations in the katG gene of 83 resistant strains were detected. Fifty-seven (69%) isolates exhibited nucleotide substitutions at codon 315. One strain harbored a mutation affecting codon 279 (Gly279Thr). Twelve of 26 INH-resistant strains with the wild-type codon 315 (14.5% of all strains tested) had the mutation -15C-->T in the regulatory region of inhA. A full correlation between the DNA sequence analysis and real-time PCR data was obtained. We conclude that the real-time PCR method is fast and reliable for the detection of RMP and INH resistance-associated mutations in M. tuberculosis clinical isolates.  相似文献   

5.

Background

Russia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia.

Results

We performed an evaluation of the GenoType® MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system. Interpretable GenoType® MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the rpoB gene and codon 315 of the katG gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance).

Conclusion

High sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType® MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.  相似文献   

6.
We evaluated the correlation of phenotypic ethambutol (EMB) susceptibility as determined by two drug susceptibility methods with embB mutations in multidrug-resistant (MDR) Mycobacterium tuberculosis strains. The concordance rate for EMB resistance between broth dilution method and sequencing results (83.6%) was significantly higher than between the proportion method and sequencing results (61.7%) (P = 0.004). Of the embB mutants, 75.4% (46/61) possessed a mutation at embB306. Our results demonstrated that ethambutol resistance determined by broth dilution method reveals better correlation with embB mutations than the proportion method in MDR isolates.  相似文献   

7.
The commercially available line probe assay MTBDRplus 2.0 (Hain Lifescience, Nehren, Germany) was evaluated for its ability to detect Mycobacterium tuberculosis complex (MTBC) and mutations conferring resistance to rifampin (RMP) and isoniazid (INH) directly in smear-negative and smear-positive pulmonary clinical specimens under routine laboratory conditions. A total of 348 samples originating from Moldova, a high-incidence country for tuberculosis (TB), were investigated. Two hundred fifty-seven (73.9%) were smear negative, 12 samples were excluded, and 81 (23.3%) were smear positive. Two DNA extraction methods were applied. Compared to culture and clinical data as the reference standard (adapted from Vadwai V et al., J. Clin. Microbiol. 49:2540-2545, 2011), overall sensitivity and specificity were 87.6 and 99.2%, respectively. One hundred four of the 257 smear-negative samples turned out to be culture positive, and 20 were MTBC culture negative but were positive based on clinical symptoms. The combined sensitivity and specificity in the subgroup of smear-negative samples were calculated to be 79.8 and 99.2%, respectively. MTBDRplus 2.0 detected RMP and INH resistance with sensitivity and specificity of 94.3 and 96.0%, respectively. In conclusion, the MTBDRplus 2.0 assay is a rapid and highly sensitive test for the detection of M. tuberculosis strains from smear-positive and -negative clinical specimens and provides additional information on RMP and INH resistance status, which can easily be included in routine laboratory work flow.  相似文献   

8.
A commercially available DNA strip assay (Genotype MTBDR; Hain Lifescience, Nehren, Germany) was evaluated for its ability to detect mutations conferring resistance to rifampin (RMP) and isoniazid (INH) in clinical Mycobacterium tuberculosis complex isolates. A total of 103 multidrug-resistant (MDR; i.e., at least resistant to RMP and INH) and 40 fully susceptible strains isolated in Germany in 2001 in which resistance mutations have been previously defined by DNA sequencing and real-time PCR analysis were investigated. The Genotype MTBDR assay identified 102 of the 103 MDR strains with mutations in the rpoB gene (99%) and 91 strains (88.4%) with mutations in codon 315 of katG. All 40 susceptible strains showed a wild-type MTBDR hybridization pattern. The concordance between the MTBDR assay and the DNA sequencing results was 100%. Compared to conventional drug susceptibility testing, the sensitivity and specificity were 99 and 100% for RMP resistance and 88.4 and 100% for INH resistance, respectively. In conclusion, the MTBDR assay is a rapid and easy-to-perform test for the detection of the most common mutations found in MDR M. tuberculosis strains that can readily be included in a routine laboratory work flow.  相似文献   

9.
Very fast amplification of DNA in small volumes can be continuously monitored with a rapid cycler that incorporates fluorimetric detection. Primers were designed to amplify a 157-bp fragment of the rpoB gene spanning codons 526 and 531 and a 209-bp fragment of the katG gene spanning codon 315 of Mycobacterium tuberculosis. Most mutations associated with resistance to rifampin (RMP) and isoniazid (INH) in clinical isolates occur in these codons. Two pairs of hybridization probes were synthesized; one in each pair was 3' labeled with fluorescein and hybridized upstream of the codon with the mutation; the other two probes were 5' labeled with LightCycler-Red 640. Each pair of probes recognized adjacent sequences in the amplicon. After DNA amplification was finished by using a LightCycler, the temperature at which the Red 640 probe melted from the product was determined in a 3-min melt program. Twenty M. tuberculosis clinical isolates susceptible to streptomycin, INH, RMP, and ethambutol and 36 antibiotic-resistant clinical M. tuberculosis isolates (16 resistant to RMP, 16 to INH, and 4 to both antimicrobial agents) were amplified, and the presence of mutations was determined using single-strand conformation polymorphism analysis, the LiQor automated sequencer, and the LightCycler system. Concordant results were obtained in all cases. Within 30 min, the LightCycler method correctly genotyped all the strains without the need of any post-PCR sample manipulation. Overall, this pilot study demonstrated that real-time PCR coupled to fluorescence detection is the fastest available method for the detection of RMP and INH resistance-associated mutations in M. tuberculosis clinical isolates.  相似文献   

10.
Chryssanthou E, Ängeby K. The GenoType® MTBDRplus assay for detection of drug resistance in Mycobacterium tuberculosis in Sweden. APMIS 2012; 120: 405–9. The performance of the GenoType®MTBDRplus assay was compared with conventional drug susceptibility testing (DST) in 604 patients with tuberculosis. The study comprised 477 Mycobacterium tuberculosis complex isolates and 127 preparations of DNA from clinical specimens which had been tested positive for M. tuberculosis by COBAS®TaqMan® 48. By DST, isoniazid (INH) monoresistance was diagnosed in 56 (9.3%), rifampicin (RMP) monoresistance in 2 (0.3%) and multidrug resistance (MDR) in 21 (3.5%) of the cases. The sensitivity of the MTBDRplus assay was 87.5%, 100% and 95.2% for INH resistance, RMP resistance and MDR respectively. The specificity was 100% for all resistance patterns. The dominating mutations in RMP and INH resistant isolates were in codon 531 of the rpoB gene and codon 315 of the KatG gene. The turnaround time for detection of drug resistance can be shortened from a median of 21 days for DST to 7 days for the MTBDRplus assay. This may have a significant impact on routine work flow of a mycobacteriology laboratory.  相似文献   

11.
12.
We developed a simplified microarray test for detecting and identifying mutations in rpoB, katG, inhA, embB, and rpsL and compared the analytical performance of the test to that of phenotypic drug susceptibility testing (DST). The analytical sensitivity was estimated to be at least 110 genome copies per amplification reaction. The microarray test correctly detected 95.2% of mutations for which there was a sequence-specific probe on the microarray and 100% of 96 wild-type sequences. In a blinded analysis of 153 clinical isolates, microarray sensitivity for first-line drugs relative to phenotypic DST (true resistance) was 100% for rifampin (RIF) (14/14), 90.0% for isoniazid (INH) (36/40), 70% for ethambutol (EMB) (7/10), and 89.1% (57/64) combined. Microarray specificity (true susceptibility) for first-line agents was 95.0% for RIF (132/139), 98.2% for INH (111/113), and 98.6% for EMB (141/143). Overall microarray specificity for RIF, INH, and EMB combined was 97.2% (384/395). The overall positive and negative predictive values for RIF, INH, and EMB combined were 84.9% and 98.3%, respectively. For the second-line drug streptomycin (STR), overall concordance between the agar proportion method and microarray analysis was 89.5% (137/153). Sensitivity was 34.8% (8/23) because of limited microarray coverage for STR-conferring mutations, and specificity was 99.2% (129/130). All false-susceptible discrepant results were a consequence of DNA mutations that are not represented by a specific microarray probe. There were zero invalid results from 220 total tests. The simplified microarray system is suitable for detecting resistance-conferring mutations in clinical M. tuberculosis isolates and can now be used for prospective trials or integrated into an all-in-one, closed-amplicon consumable.  相似文献   

13.
Background: Early detection of multidrug-resistant tuberculosis (MDR-TB) is essential to prevent its transmission in the community and initiate effective anti-TB treatment regimen. Materials and Methods: High-resolution melting curve (HRM) analysis was evaluated for rapid detection of resistance conferring mutations in rpoB and katG genes. We screened 95 Mycobacterium tuberculosis clinical isolates including 20 rifampin resistant (RIF-R), 21 isoniazid resistant (INH-R) and 54 fully susceptible (S) isolates determined by proportion method of drug susceptibility testing. Nineteen M. tuberculosis isolates with known drug susceptibility genotypes were used as references for the assay validation. The nucleotide sequences of the target regions rpoB and katG genes were determined to investigate the frequency and type of mutations and to confirm HRM results. Results: HRM analysis of a 129-bp fragment of rpoB allowed correct identification of 19 of the 20 phenotypically RIF-R and all RIF-S isolates. All INH-S isolates generated wild-type HRM curves and 18 out of 21 INH-R isolates harboured any mutation in 109-bp fragment of katG exhibited mutant type HRM curves. However, 1 RIF-R and 3 INH-R isolates were falsely identified as susceptible which were confirmed for having no mutation in their target regions by sequencing. The main mutations involved in RIF and INH resistance were found at codons rpoB531 (60% of RIF-R isolates) and katG315 (85.7% of INH-R isolates), respectively. Conclusion: HRM was found to be a reliable, rapid and low cost method to characterise drug susceptibility of clinical TB isolates in resource-limited settings.  相似文献   

14.
The MeltPro TB/INH assay, recently approved by the Chinese Food and Drug Administration, is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test specially designed to detect 30 isoniazid (INH) resistance mutations in katG position 315 (katG 315), the inhA promoter (positions −17 to −8), inhA position 94, and the ahpC promoter (positions −44 to −30 and −15 to 3) of Mycobacterium tuberculosis. Here we evaluated both the analytical performance and clinical performance of this assay. Analytical studies with corresponding panels demonstrated that the accuracy for detection of different mutation types (10 wild-type samples and 12 mutant type samples), the limit of detection (2 × 103 to 2 × 104 bacilli/ml), reproducibility (standard deviation [SD], <0.4°C), and the lowest heteroresistance level (40%) all met the parameters preset by the kit. The assay could be run on five types of real-time PCR machines, with the shortest running time (105 min) obtained with the LightCycler 480 II. Clinical studies enrolled 1,096 clinical isolates collected from three geographically different tuberculosis centers, including 437 INH-resistant isolates and 659 INH-susceptible isolates characterized by traditional drug susceptibility testing on Löwenstein-Jensen solid medium. The clinical sensitivity and specificity of the MeltPro TB/INH assay were 90.8% and 96.4%, respectively. DNA sequencing analysis showed that, except for the 5 mutants outside the detection range of the MeltPro assay, a concordance rate between the two methods of 99.1% (457/461) was obtained. Among the 26 mutation types detected, katG S315T (AGC→ACC), inhA −15C→T, katG S315N (AGC→AAC), and ahpC promoter −10C→T accounted for more than 90%. Overall, the MeltPro TB/INH assay represents a reliable and rapid tool for the detection of INH resistance in clinical isolates.  相似文献   

15.
In a multicenter study involving three reference centers for mycobacteria, the reliability of the Mycobacteria Growth Indicator Tube (MGIT) for rapid antimicrobial susceptibility testing (AST) of Mycobacterium tuberculosis was evaluated and compared to the radiometric method (BACTEC 460TB). Test cultures for which the results of the MGIT and BACTEC 460TB tests were discordant were checked by the conventional proportion method on solid medium. Four hundred forty-one isolates have been tested for susceptibility to isoniazid (INH), rifampin (RMP), ethambutol (EMB), and streptomycin (SM). Discrepant results were obtained for three isolates (0.7%) with INH (susceptible by MGIT, resistant by BACTEC 460TB), for four isolates (0.9%) with RMP (susceptible by MGIT, resistant by BACTEC 460TB), for six isolates (1.9%) with EMB (four susceptible by MGIT, resistant by BACTEC 460TB; two resistant by MGIT, susceptible by BACTEC 460TB), and for four isolates (0.9%) with SM (two susceptible by MGIT, resistant by BACTEC 460TB; two resistant by MGIT, susceptible by BACTEC 460TB). When cultures with discordant results were tested by the conventional proportion method, about half of the cultures yielded results similar to the BACTEC 460TB results, while the other half yielded results similar to the MGIT results. Turnaround times were 3 to 14 days (median, 8.8 days) for MGIT and 3 to 15 days (median, 7.8 days) for BACTEC 460TB. There was no statistically significant difference between the susceptibility testing results of the two methods (P > 0.05). These data demonstrate that the MGIT system is an accurate, nonradiometric alternative to the BACTEC 460TB method for rapid susceptibility testing of M. tuberculosis.  相似文献   

16.
Objective: To evaluate the distribution of acquired resistance in isolates of Mycobacterium tuberculosis from treated patients in two periods, 1984–89 and 1990–95, in the Bursa (Southern Marmara) region.
Method: Susceptibility of 531 M. tuberculosis isolates to four commonly used drugs (isoniazid (INH), streptomycin (SM), ethambutol (EMB) and rifampin (RMP)) was determined by the absolute concentration method of Canetti et al.
Results: In 203 strains isolated in the years 1984–89, the total acquired resistance was 32.5%, and it was 37.5% in 328 strains isolated in 1990–95 ( p >0.05). Resistance to INH, SM, RMP and EMB was found in 23.6%, 16.7%, 6.4% and 3.9%, respectively, in the first period (1984–89), and in 26.2%, 20.4%, 25.3% and 8.2%, respectively, in the second period (1990–95). The increase in RMP resistance was statistically significant ( p <0.001). The incidence of multidrug-resistant strains was 12.3% in the first period, and 24.4% in the second period, a significant increase ( p <0.001).
Conclusions: We believe that progressive emergence of phenotypes resistant to INH+RMP in our region is caused by inadequate treatment for various reasons. In the present study, the fact that multidrug resistance occurred in nearly 25% of patients treated previously but still infective suggests that the approach to surveillance, patient therapy and follow-up programs should be fundamentally reconsidered in our region.  相似文献   

17.
Isoniazid (INH) and rifampicin (RMP) resistance in Mycobacterium tuberculosis complex (MTC) isolates are mainly based on mutations in a limited number of genes. However, mutation frequencies vary in different mycobacterial populations. In this work, we analyzed the distribution of resistance-associated mutations in M. tuberculosis and M. africanum strains from Ghana, West Africa. The distribution of mutations in katG, fabG1-inhA, ahpC, and rpoB was determined by DNA sequencing in 217 INH-resistant (INHr) and 45 multidrug-resistant (MDR) MTC strains isolated in Ghana from 2001 to 2004. A total of 247 out of 262 strains investigated (94.3%) carried a mutation in katG (72.5%), fabG1-inhA (25.1%), or ahpC (6.5%), respectively. M. tuberculosis strains mainly had katG 315 mutations (80.1%), whereas this proportion was significantly lower in M. africanum West-African 1 (WA1) strains (43.1%; p < 0.05). In contrast, WA1 strains showed more mutations in the fabG1-inhA region (39.2%, p < 0.05) compared to M. tuberculosis strains (20.9%). In 44 of 45 MDR strains (97.8%) mutations in the 81-bp core region of the rpoB gene could be verified. Additionally, DNA sequencing revealed that 5 RMP-susceptible strains also showed mutations in the rpoB hotspot region. In conclusion, although principally the same genes were affected in INHrM. tuberculosis and M. africanum strains, disequilibrium in the distribution of mutations conferring resistance was verified that might influence the efficiency of molecular tests for determination of resistance.  相似文献   

18.
Aim: To evaluate E-test as a tool for rapid determination of drug susceptibility against the conventional LJ method focusing on reliability, expense, ease of standardization and performance of the technique in low resource settings. Materials and Methods: A total of 74 clinical isolates (2004-2005) of Mycobacterium tuberculosis were tested using E-test for susceptibility to streptomycin (STM), isoniazid (INH), rifampicin (RIF) and ethambutol (EMB) by E-strip and LJ (LJPM) proportion methods. Results: The LJPM method, the gold standard, detected resistance against STM in 16.2%, INH in 40.5%, RIF in 18.9% and EMB in 27% cases. In comparison, the resistance values showed by E-test was 66.67% for STM, 57.14% for INH 71.43% for RIF and 80% for EMB. The susceptible correlation was 90.32% for STM, 73.91% for INH, 93.33% for RIF and 59.26% for EMB. E-test correctly identified only eight of the 12 (66.6%) MDR isolates and wrongly identified four isolates which were not MDR. The overall agreement between the two methods was only 48.6%. Resistant isolates showed false positive resistance observed while using E-strip towards all the drugs. Conclusion: E-strips are not quite feasible as a replacement for LJ-proportion method on a large scale due to high risk of cross contamination, laboratory infection, expense associated with it and high false positive resistance observed to all first line drugs. However, the good correlation observed for RIF between the two methods indicates that E-test could contribute to the role in rapid screening of MDR TB isolates as rifampicin mutations are invariably observed in MDR TB isolates.  相似文献   

19.
Ethambutol (EMB) is a first-line antituberculosis drug; however, drug resistance to EMB has been increasing. Molecular drug susceptibility testing (DST), based on the embB gene, has recently been used for rapid identification of EMB resistance. The aim of this meta-analysis was to establish the accuracy of molecular assay for detecting drug resistance to EMB. PubMed, Embase, and Web of Science were searched according to a written protocol and explicit study selection criteria. Measures of diagnostic accuracy were pooled using a random effects model. A total of 34 studies were included in the meta-analysis. The respective pooled sensitivities and specificities were 0.57 and 0.93 for PCR-DNA sequencing that targeted the embB 306 codon, 0.76 and 0.89 for PCR-DNA sequencing that targeted the embB 306, 406, and 497 codons, 0.64 and 0.70 for detecting Mycobacterium tuberculosis isolates, 0.55 and 0.78 for detecting M. tuberculosis sputum specimens using the GenoType MTBDRsl test, 0.57 and 0.87 for pyrosequencing, and 0.35 and 0.98 for PCR-restriction fragment length polymorphism. The respective pooled sensitivities and specificities were 0.55 and 0.92 when using a lower EMB concentration as the reference standard, 0.67 and 0.73 when using a higher EMB concentration as the reference standard, and 0.60 and 1.0 when using multiple reference standards. PCR-DNA sequencing using multiple sites of the embB gene as detection targets, including embB 306, 406, and 497, can be a rapid method for preliminarily screening for EMB resistance, but it does not fully replace phenotypic DST. Of the reference DST methods examined, the agreement rates were the best using MGIT 960 for molecular DST and using the proportion method on Middlebrook 7H10 media.  相似文献   

20.
Context: Tuberculosis (TB) is a major public health problem in India and a principal cause of death in adults, especially among the economically productive age group. India accounts for one-fifth of the global burden of TB. It is estimated that about 40% of Indian population is infected with TB bacillus. The GenoType® MTBDRplus molecular method allows rapid diagnosis of the clinical samples and detection of the most common mutations in the genes associated with rifampicin (R) and isoniazid (H) resistance. Aims: To study the drug resistance and mutational patterns in multidrug-resistant (MDR) suspects clinical strains using GenoType® MTBDRplus assay. Subjects and Methods: A total of 770 sputum samples of the MDR-TB suspects were included in this study, which were received at Intermediate Reference Laboratory, Government TB Sanatorium, Dharampur, Solan, Himachal Pradesh from the Designated Microscopy Centres of Himachal Pradesh for the culture and susceptibility testing. All the 521 Mycobacterium tuberculosis complex (MTBC) strains were subjected to GenoType® MTBDRplus (HAIN Lifescience) assay to detect molecular resistance pattern to first line anti-tubercular drugs (isoniazid and rifampicin). Results: Of 770 samples, 556 (72.20%) were from male and 214 (27.80%) were from female. Among the 521 MTBC strains, 19.76% were found to be MDR and mono-resistance to isoniazid and rifampicin was detected in 8.63% and 6.14% strains respectively. About 74.81%, 76.35% and 5.40% strains harboured known mutation in rpoB, katG and inhA genes respectively. Conclusions: In rpoB gene, the most common mutation is associated with S531 L region. The GenoType® MTBDRplus assay is a rapid test for the detection of the most common mutations in MDR-TB strains. In our study, unknown rpoB gene mutations were found in 25.18% strains that may further be detected by gene sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号