首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Activation of hepatic stellate cells (HSC) is a central event in the pathogenesis of liver fibrosis during chronic liver injury. We examined the expression of retinoic acid (RAR) and retinoid X receptors (RXR) during HSC activation and evaluated the influence of natural and synthetic retinoic acids (RA) on the phenotype of culture-activated HSC. The expression of the major RAR/RXR subtypes and isoforms was analyzed by Northern hybridization. Presence of functional receptor proteins was established by gel shift analysis. Retinoic acids, RAR, and RXR selective agonists and an RAR antagonist were used to evaluate the effects of retinoid signalling on matrix synthesis by Northern blotting and immunoprecipitation, and on cell proliferation by BrdU incorporation. The 9-cisRA and synthetic RXR agonists reduced HSC proliferation and synthesis of collagen I and fibronectin. All-trans RA and RAR agonists both reduced the synthesis of collagen I, collagen III, and fibronectin, but showed a different effect on cell proliferation. Synthetic RAR agonists did not affect HSC proliferation, indicating that ATRA inhibits cell growth independent of its interaction with RARs. In contrast, RAR specific antagonists enhance HSC proliferation and demonstrate that RARs control proliferation in a negative way. In conclusion, natural RAs and synthetic RAR or RXR specific ligands exert differential effects on activated HSC. Our observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or to animals subjected to fibrogenic stimuli.  相似文献   

2.
3.
BACKGROUND AND AIMS: Activated pancreatic stellate cells (PSCs) are implicated in the production of alcohol induced pancreatic fibrosis. PSC activation is invariably associated with loss of cytoplasmic vitamin A (retinol) stores. Furthermore, retinol and ethanol are known to be metabolised by similar pathways. Our group and others have demonstrated that ethanol induced PSC activation is mediated by the mitogen activated protein kinase (MAPK) pathway but the specific role of retinol and its metabolites all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-RA) in PSC quiescence/activation, or its influence on ethanol induced PSC activation is not known. Therefore, the aims of this study were to (i) examine the effects of retinol, ATRA, and 9-RA on PSC activation; (ii) determine whether retinol, ATRA, and 9-RA influence MAPK signalling in PSCs; and (iii) assess the effect of retinol supplementation on PSCs activated by ethanol. METHODS: Cultured rat PSCs were incubated with retinol, ATRA, or 9-RA for varying time periods and assessed for: (i) proliferation; (ii) expression of alpha smooth muscle actin (alpha-SMA), collagen I, fibronectin, and laminin; and (iii) activation of MAPKs (extracellular regulated kinases 1 and 2, p38 kinase, and c-Jun N terminal kinase). The effect of retinol on PSCs treated with ethanol was also examined by incubating cells with ethanol in the presence or absence of retinol for five days, followed by assessment of alpha-SMA, collagen I, fibronectin, and laminin expression. RESULTS: Retinol, ATRA, and 9-RA significantly inhibited: (i) cell proliferation, (ii) expression of alpha-SMA, collagen I, fibronectin, and laminin, and (iii) activation of all three classes of MAPKs. Furthermore, retinol prevented ethanol induced PSC activation, as indicated by inhibition of the ethanol induced increase in alpha-SMA, collagen I, fibronectin, and laminin expression. CONCLUSIONS: Retinol and its metabolites ATRA and 9-RA induce quiescence in culture activated PSCs associated with a significant decrease in the activation of all three classes of MAPKs in PSCs. Ethanol induced PSC activation is prevented by retinol supplementation.  相似文献   

4.
目的 观察洛伐他丁对肝星状细胞增殖及细胞外基质分泌的影响,并探讨其作用机制。方法 用不同浓度的洛伐他丁和胆固醇合成过程中产生的非脂性中间产物香叶基香叶基焦磷酸处理大鼠肝星状细胞株;用MTT法检测细胞增殖,流式细胞仪检测细胞周期,ELISA检测细胞外基质IV型胶原和层粘连蛋白,免疫细胞化学结合计算机图文分析系统检测c—jun、c-fos基因表达。结果 洛伐他丁可剂量依赖性地抑制肝星状细胞增殖(对照组A值24 h和48 h分别为0.736±0.090和0.972±0.097,洛伐他丁浓度在10μmol/L时24h和48h分别为0.602±0.049和0.785±0.028,两组比较差异有显著性),影响其细胞周期,使G0/G1期细胞增多,S期细胞减少,并明显抑制c-jun、c—fos表达(洛伐他丁浓度在 50μmol/L时分别较对照组降低51.5%和 54.5%),抑制IV型胶原和层粘连蛋白分泌(P<0.01)。而香叶基香叶基焦磷酸可部分拮抗洛伐他丁的上述抑制作用。结论 洛伐他丁可显著抑制肝星状细胞增殖及细胞外基质分泌,其机制可能与抑制香叶基香叶基焦磷酸产生而阻止信号转导有关。  相似文献   

5.
AIM: To elucidate the interaction between non- parenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2- acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic Iobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver Iobule structures began to recover.CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions.  相似文献   

6.
Peroxisome proliferator activator receptor (PPAR) ligands prevent liver fibrosis, while the role of all-trans retinoic acid (ATRA) and its metabolite 9-cis retinoic acid (9-cis RA) is less clear. We have investigated the ability of the combination of PPARγ ligand rosiglitazone (RSG) and of ATRA to prevent liver fibrosis. In vivo treatment with RSG or ATRA reduced fibrotic nodules, spleen weight, and hydroxyproline levels in rat model of thioacetamide-induced liver fibrosis. The combination of ATRA + RSG caused the strongest inhibition, accompanied by decreased expression of collagen I, α-smooth muscle actin, TGFβ1, and TNFα. In vitro studies showed that PPARγ ligand 15-deoxy-Δ12,14-prostaglandinJ(2)[PJ(2)] and RXR ligand 9-cis RA or PJ(2) and ATRA inhibited proliferation of hepatic stellate cells HSC-T6. 9-cis RA inhibited c-jun levels and also inhibited expression of its receptor RXRα in HSC-T6 cells. The combination of PPAR-γ and RAR agonists demonstrated an additive effect in the inhibition of TAA-induced hepatic fibrosis, due to inhibition of HSC proliferation and reduction of profibrotic TGFβ1 and proinflammatory TNFα.  相似文献   

7.
BACKGROUND: The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. AIMS: To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). METHODS: Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. RESULTS: Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. CONCLUSIONS: Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.  相似文献   

8.
目的 探讨肝素对HSC生长、细胞外基质和基质金属蛋白酶基因表达的影响。方法 用肝素和不用肝素对活化的HSC进行处理,以直接细胞计数和BrdU标记免疫细胞化学染色检测细胞的生长情况。用免疫细胞化学染色和细胞闰核酸分子杂交分别检测I、Ⅳ型前胶原蛋白、纤连蛋白和Ⅰ、Ⅳ型胶原、纤连蛋白、基质金属蛋白酶-2及膜型基质金属蛋白酶基因的表达,并用酶图法检测基质金属蛋白酶-2的活性。结果 肝素使血清所致的HSC生  相似文献   

9.
A single injection of D-galactosamine hydrochloride induces acute self-limiting liver disease in rats that morphologically resembles drug-induced hepatitis in human beings. In this immunohistochemical study we examined the localization and expression of the hepatic extracellular matrix components fibronectin, laminin, collagen type I, collagen type III and collagen type IV and of the cell surface receptors (integrins) for fibronectin and laminin. Sections of liver tissue obtained at intervals of 6, 12, 18, 24, 30, 36, 48 and 72 hr and 7 and 21 days after galactosamine administration were immunostained with a panel of polyclonal monospecific antibodies and studied independently by two of us. Fibronectin was the first extracellular matrix component found to be increased, 12 hr after galactosamine injection, followed by collagen type III, and, in a later phase, collagen type IV, type I and laminin. Increased deposition of extracellular matrix was found in areas with liver cell necrosis and along sinusoids. Extracellular matrix immunoreactivity reached a maximum at 36 to 48 hr and decreased thereafter to preinjury levels 3 wk after galactosamine. Immunostaining for the fibronectin and laminin receptors revealed tissue localization identical to that of their ligands. However, the intensity of staining was opposite of that for the extracellular matrix, with a decrease of immunoreactivity after 24 to 48 hr. The observed sequence of changes in hepatic extracellular matrix proteins after galactosamine injection resembles the repair reaction in other tissues and may reflect the particular function that each carries out during the process of liver healing after toxic injury.  相似文献   

10.
Background  Uterine leiomyomas are clinically significant tumours that may develop due to an altered differentiation pathway. We have previously identified a dysregulated retinoic acid (RA) pathway that reduced retinoic exposure in human leiomyoma surgical specimens, and have shown that the leiomyoma phenotype was characterized by excessive and disorganized extracellular matrix (ECM).
Objective  The goal of this study was to determine the impact of RA exposure on the disrupted ECM phenotype of leiomyomas.
Design and methods  Study of immortalized and molecularly confirmed cells generated from surgical specimens of spontaneous uterine leiomyoma and matched myometrium.
Results  Immortalized leiomyoma and myometrial cells retained the molecular characteristics of their progenitor tissue. Proliferation of leiomyoma cells was inhibited by all -trans retinoic acid (ATRA). Furthermore, there was a dose-dependent decrease in soluble extracellular collagen protein in ATRA-treated leiomyoma cells. Exposure of leiomyoma cells to ATRA resulted in a dose-dependent inhibition of templates for specific ECM protein production including collagen 1, collagen 4, fibronectin and versican. Notably, expression levels in treated leiomyoma cells approached those found in myometrial cells. These mRNA alterations translated into altered protein. Down-regulation was also observed among the RA pathway genes such as CYP26A1 with exposure to ATRA. Finally, ATRA down-regulated TGF-β3 mRNA expression and the TGF-β regulated genes in leiomyoma cells.
Conclusion  Exposure of leiomyomas to ATRA down-regulated cell proliferation, ECM formation, RA metabolism and TGF-β regulation, suggesting that RA exposure can alter the leiomyoma phenotype to one that more closely approximates normal myometrium.  相似文献   

11.
BACKGROUND/AIM: Restitution of periportal liver necrosis induced by allyl alcohol involves proliferation and differentiation of putative liver stem cells. The participation of different non-epithelial cell types required to restore the liver cord structure in this process has not been well documented. The aim of the study was to determine the anatomic relationships among cells of liver lineage, extracellular matrix, and non-parenchymal cells during repair of periportal liver injury. METHODS: Periportal liver injury in rats was induced by intraperitoneal injection of allyl alcohol. Cells of the liver lineage, as well as Kupffer cells, hepatic stellate cells, macrophages, and the extracellular matrix components fibronectin and laminin were localized using immunohistologic methods for 7 days after injury. RESULTS: During the first day there was loss of periportal hepatocytes, as well as sinusoidal nonparenchymal cells, including macrophages, Kupffer cells and hepatic stellate cells. After day 1 macrophages appeared within the necrotic zone, increased until days 3-4, and then decreased to a few cells within reappearing sinusoids. At days 2-5 there was first proliferation of small "null" intraportal cells, which later acquired markers of ductular (OV-6, CKPan ) and liver cell differentiation (alphafetoprotein, carbamoylphosphate synthetase-I), eventually assuming mature hepatocyte morphology. There was also moderate bile duct hyperplasia with extension of small newly-formed ducts from the intraportal zone into the immediate periportal zone. Kupffer cells and hepatic stellate cells became enlarged at the borders of the necrotic and non-necrotic central zone and then appeared to migrate into the oval cell population expanding across the periportal zone. During the restitution phase, hepatic stellate cells were closely associated with the proliferating oval cells, surrounding small aggregates of oval cells which appeared to be forming liver cords. Kupffer cells also stained for fibronectin, and fibronectin was seen at the intersection of the injured portal and uninjured central zones and around the expanding oval cells. In some intraportal zones, the laminin surrounding the bile ducts was lost. It was speculated that this may permit proliferating ductular cells to migrate out of the bile ducts into the periportal zone. By days 6 and 7 most of the injured liver was restored to normal, with a few foci of chronic inflammation remaining. CONCLUSIONS: There is a close anatomic relationship between immature liver lineage cells (oval/duct cells) and non-parenchymal cells during the restitutive repair of periportal injury. The nature of this relationship to the possible production of growth factors and expression of growth factor receptors by the cells involved during the restitution process is discussed.  相似文献   

12.
《Hepatology (Baltimore, Md.)》1996,23(5):1189-1199
Interferon gamma (IFN-gamma) inhibits in vitro the activation of hepatic stellate cells (HSC), the primary extracellular matrix-producing cells in liver fibrosis. This study was undertaken to determine in vivo the effect of IFN-gamma in the rat model of liver fibrosis induced by dimethylnitrosamine (DMN), where HSC activation represents an early response to cell injury. Rats were killed after 1 or 3 weeks of treatment with DMN, IFN-gamma, DMN + IFN-gamma, or saline. Immunohistochemistry was used to identify proliferating (desmin- positive/bromodeoxyuridine (BrdU)-positive cells) and activated (alpha- smooth-muscle actin [alpha-SMA]-positive cells) HSCs. Collagen deposition was determined colorimetrically and by morphometry. The parenchymal extension of desmin- and actin-positive cells and of fibrotic tissue was measured by point-counting technique and expressed as a percentage of area. Western blot was used to determine laminin and fibronectin accumulation. The levels of messenger RNA (mRNA) for procollagen type I, fibronectin, and laminin were evaluated by Northern blot. No differences were observed in rats treated with either saline or IFN-gamma alone. IFN-gamma reduced HSC activation induced by liver injury, as shown by the decreased number of proliferating HSC and the reduction of parenchymal area occupied by alpha-SMA-positive cells observed in DMN + IFN-gamma-treated animals compared with the DMN group. This was associated with reduced collagen, laminin, and fibronectin accumulation and lower levels of mRNA for procollagen type I, fibronectin, and laminin in the DMN + IFN-gamma group. Thus, this study indicates that IFN-gamma reduces extracellular matrix deposition in vivo by inhibition of HSC activation. (Hepatology 1996 May;23(5):1189-99)  相似文献   

13.
Hepatic fibrosis, is a wound healing process characterized by accumulation of extracellular matrix proteins (ECM) especially collagen types I and III, as well as an increase in other extracellular matrix constituents such as proteoglycans, fibronectin and laminin in response to liver injury. Recruitment of leukocytes takes place after the insult and requires several adhesion molecules. Monocytes and macrophages are involved in inflammatory actions by producing nitric oxide and inflammatory cytokines. As a consequence of chronic tissue damage stellate cells (SC) as well as extracellular matrix producting cells, undergo a process of activation characterized by proliferation, motility, contractility, and synthesis of extracellular matrix. Activation of SC is regulated by several soluble factors, including cytokines, chemokines, growth factors, and products of oxidative stress. TGF - b and IL- 6 are the two main fibrogenic cytokines. Potential regulatory factors of the activation of SC are important targets for future antifibrogenic treatments.  相似文献   

14.
Aim: Cytokines and growth factors released by various hepatic cells exert both paracrine and autocrine effects on hepatic stellate cell (HSC) activation during liver injury. The aim of the present study was to examine whether the surrounding extracellular matrix (ECM) influences the activation, transdifferentiation and survival of HSCs. Methods: An in vitro model system of isolated HSCs maintained in culture on different matrix protein substrata was employed. Results: The rate of loss of HSC‐specific retinol uptake activity and gain of myofibroblast‐like activity such as 35[S] proteoglycan synthesis varied in cells maintained on different matrix proteins and was in the order collagen I > collagen IV ≥ laminin. 3[H]‐thymidine incorporation by HSCs maintained on different matrix proteins varied and was in the order collagen I > collagen IV > laminin. MTT assay revealed that the growth inhibition in response to curcumin was significantly low in cells maintained on collagen I. Apoptotic marker activities such as DNA fragmentation, 4′,6′‐diamidino‐2‐phenylindole dihydrochloride (DAPI) staining, annexin staining and caspase‐3 activities showed that cells maintained on collagen I showed minimal apoptosis than those maintained on collagen IV, laminin and polylysine, showing the influence of ECM on HSC apoptosis. Experiments using blocking antibodies showed that the collagen I effect was mediated through α2β1 integrin. Conclusions: These results indicate that ECM influences activation, transdifferentiation and survival of HSCs, and suggest that apart from diffusible factors, the surrounding ECM also influences HSC behavior critical in both the progression of the fibrosis and the restitution of the liver during recovery after hepatic injury.  相似文献   

15.
BACKGROUND & AIMS: Several lines of evidence indicate that aldosterone antagonists may exert direct antifibrogenic effects. The aim of this study was to evaluate the possible direct antifibrogenic effects of canrenone, the active metabolite of spironolactone, in activated human hepatic stellate cells. METHODS: The effects of canrenone were assessed on platelet-derived growth factor-induced mitogenic and chemotactic effects and the increased de novo synthesis of different extracellular matrix components induced by transforming growth factor-beta1. RESULTS: Canrenone dose-dependently reduced platelet-derived growth factor-induced cell proliferation and motility. This effect was not associated with either changes in the phosphorylation of platelet-derived growth factor receptor and phospholipase C gamma or in the activation of the Ras/extracellular signal-regulated kinase pathway, whereas it was accompanied by a dose-dependent inhibition of platelet-derived growth factor-induced phosphatidylinositol 3-kinase activity. In addition, canrenone inhibited the activity of the Na(+)/H(+) exchanger 1 induced by platelet-derived growth factor. The effect of canrenone on Na(+)/H(+) exchanger 1 activity was reproduced by phosphatidylinositol 3-kinase inhibitors, thus supporting an inhibitory action of canrenone on phosphatidylinositol 3-kinase activity. To further address this possibility, the action of canrenone was compared with that of 2 established Na(+)/H(+) exchanger 1 inhibitors: ethylisopropylamiloride and cariporide. Whereas ethylisopropylamiloride was able to inhibit platelet-derived growth factor-induced phosphatidylinositol 3-kinase activity, cariporide was without any effect. Both compounds reproduced the effects of canrenone on platelet-derived growth factor-induced mitogenesis and chemotaxis. Finally, canrenone was able to reduce transforming growth factor-beta1-induced de novo synthesis of procollagen type I/IV and fibronectin and thrombin-induced hepatic stellate cell contraction. CONCLUSIONS: These results indicate that canrenone may be active as an antifibrogenic drug.  相似文献   

16.
BACKGROUND/AIMS: Hepatic fibrosis is the common wound-healing response to chronic liver injury. Ginkgo biloba extract (GbE) has been indicated to reverse hepatic fibrosis and exhibit therapeutic effects both in vitro and in vivo. This study aimed to investigate the underlying mechanism of GbE using HSC-T6 cells, a subline of hepatic stellate cells (HSC) as a model. METHODS: HSC-T6 cells were seeded into six-well plates and allowed to attach overnight. After exposure to different concentrations of GbE761 for 24 or 48 h, cell cycle analysis, semiquantitative RT-PCR, Western blotting analysis and analysis of ECM secretion were performed. RESULTS: It was revealed that GbE (1, 10, 100, 500 mg/l) suppressed HSC proliferation and caused G0/G1 phase arrest in a concentration-dependent manner. RT-PCR and Western blot assays were applied to detect the decline of transforming growth factor beta1(TGF-beta1) and connective tissue growth factor (CTGF) in both mRNA and protein levels after GbE treatment in HSC-T6 cells for 24 or 48 h. Meanwhile, GbE inhibited the synthesis of type I and type III collagens. Secretion of some extracellular matrix (ECM) proteins, such as type III procollagen (PC III), type IV collagen (collagen IV), laminin (LN), hyaluronic acid (HA), were all decreased in supernatant of GbE treated HSC cells. CONCLUSIONS: Our results suggest that GbE confers its anti-fibrosis effects through inhibiting HSC proliferation, reducing TGF-beta1 and CTGF expression and consequently suppressing the collagen production and ECM secretion.  相似文献   

17.
18.
We have isolated and characterized collagen type VI from murine, canine, and nonhuman primate hearts. In the three species studied, collagen type I was the major collagenous component of the cardiac interstitium (80% of total collagen), whereas collagen type VI represented approximately 5% of total collagen. To define the exact distribution of collagen type VI and its possible interactions with other components of the cardiac extracellular matrix, collagen types I, III, IV, and VI, laminin, and fibronectin were localized in the rat myocardium by immunohistochemistry, using monospecific antibodies. In the rat myocardium, collagen type VI was prevalent in the media and adventitia of muscular arteries, in fine connective tissue septa, in the area surrounding capillaries, and in the delicate endomysium in proximity to myocardial cells. When compared with the immunohistochemical localization of collagen types I, III, and IV, laminin, and fibronectin, the continuity and hierarchical organization of the cardiac extracellular matrix became apparent. The matrix forms a continuous network extending from the pericardium to the endocardium. Furthermore, there is an arborescent hierarchy in the system such that collagen type I is more prevalent in the wider septa, collagen type III being more obvious in medium-sized branches, and fibronectin and collagen type VI prevailing in the terminal (pericellular) aspects of the network. In this pericellular location, fibronectin and collagen type VI, by means of specific interactions, may act as anchor components linking the myocardial cell basement membranes not only to the extracellular matrix but also to the cardiac interstitial cells. This continuity, organization, and coupling of the cardiac extracellular matrix appears well suited to integrate and distribute the physical stress generated by the continuous contraction and relaxation of the myocardium.  相似文献   

19.
Left ventricular hypertrophy (LVH) is accompanied by progressive accumulations of extracellular matrix proteins. They are produced predominantly by cardiac fibroblasts that surround the cardiac myocytes. The aim of this study was to emphasize the role of a combined approach using both in vivo and in vitro studies to elucidate the effects of carvedilol on cardiac remodeling. We therefore used an established model of supravalvular aortic banding and cardiac fibroblasts. LVH was induced by banding of the ascending aorta. Male Wistar rats were allocated to four groups: sham-operated, sham+carvedilol, aortic stenosis (AS), and AS+carvedilol. Treatment time was four weeks. Fibroblasts were isolated from the entire left ventricle of sham and AS rats. Carvedilol/metoprolol/prazosin were added (0.1, 1.0 and 10 microM; 24 h). In addition, interferon- gamma was applied for 24 h (10, 100 and 1000 IU). AS rats revealed increased LV weights (+27%) and cardiomyocyte widths as compared to sham-operated rats (1.6-fold, P<0.01). Carvedilol reduced LVH by 20%. This finding was accompanied by a decrease of laminin, fibronectin, collagen I and III in vivo. Collagen I/III and fibronectin were increased in fibroblasts of AS v sham rats (P<0.0001, each). Carvedilol reduced collagen I, III and fibronectin by 40/60/35% (0.1 microM; P<0.001) irrespective of LVH. Carvedilol had no effects on collagen IV and laminin. Carvedilol dose-dependently reduced the proliferation rate by 20% at 0.1 microM(P<0.0001). Metoprolol and prazosin had no effect on the expression of extracellular matrix proteins and on the proliferation of the cells of either origin. Interferon- gamma blunted the proliferation rate of cultured fibroblasts and lead to a significant decrease in extracellular matrix deposits. These results indicate that the effects of carvedilol may be due to the antiproliferative or antioxidative properties of this unselective beta-adrenergic receptor antagonist. These changes of the extracellular matrix represent a new mechanism of carvedilol that may contribute to the observed beneficial effects in congestive heart failure.  相似文献   

20.
The specific development of the human fetal adrenal gland requires cell proliferation, migration, apoptosis, and zone-specific steroidogenic activity. The present work was designed to determine the physiological significance of the previously identified spatial distribution of extracellular matrix components in the fetal gland. Primary cultures of human fetal adrenal cells grown on collagen IV, laminin, or fibronectin revealed that cell morphology was affected by environmental cues. Matrices also modulated the profile of steroid secretion by the fetal cells. Collagen IV favored cortisol secretion after ACTH or angiotensin II stimulation and increased dehydroepiandrosterone production when the AT(2) receptor of angiotensin II was specifically stimulated. These effects were correlated by changes in the mRNA levels of 3beta-hydroxysteroid dehydrogenase and cytochrome P450C17. In contrast, fibronectin and laminin decreased cell responsiveness to ACTH in terms of cortisol secretion, but enhanced ACTH-stimulated androgen secretion. Finally, extracellular matrices were able to orchestrate cell behavior. Collagen IV and laminin enhanced cell proliferation, and fibronectin increased cell death. This study is the first to demonstrate that the nature of extracellular matrix coordinates specific steroidogenic pathways and cell turnover in the developing human fetal adrenal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号