首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reports differ as to the efficacy of glucose and insulin as cardioplegic additives. Although deliberate oxygenation of crystalloid cardioplegic solutions improves myocardial protection, little is known about the protection afforded by glucose and insulin in such oxygenated solutions. In the isolated working rat heart, we studied the addition of oxygen, glucose, and insulin, separately and together, to a cardioplegic solution. The solution was equilibrated with O2 or N2, with glucose added as a substrate or sucrose as a nonmetabolizable osmotic control, with or without insulin. Hearts were arrested for 2 hours at 8 degrees C by multidose infusions. Oxygenation decreased lactate production and improved high-energy phosphate and glycogen preservation during arrest, prevented ischemic contracture, and improved functional recovery. The addition of glucose to the oxygenated solution increased the level of adenosine triphosphate at end-arrest from 10.5 +/- 0.5 to 13.9 +/- 0.6 nmol/mg dry weight and glycogen stores from 18.7 +/- 2.5 to 35.7 +/- 5.5 nmol/mg dry weight. The further addition of insulin did not better preserve these metabolites. Improvements in functional recovery due to glucose or insulin in the oxygenated solution attained statistical significance when both additives were included. Glucose increased lactate production significantly only when the solution was nitrogenated. Insulin added to the nitrogenated glucose-containing solution increased adenosine triphosphate and glycogen levels after 1 hour of arrest; and, although insulin did not prevent ischemic contracture from developing during the latter part of arrest with profound depletion of these metabolites, functional recovery was improved. The mechanism of improved functional recovery by insulin is not clear.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The merits of oxygenated crystalloid cardioplegic solutions have been well established in experimental animals. The positive effects of oxygenation of Plasmalyte B (Sabax Ltd) and St. Thomas Hospital solution (Plegisol) were achieved by gassing with 95% O2/5% CO2 and 100% O2, respectively. In view of the marked pH differences induced by these gas mixtures, we evaluated the effect of mode of oxygenation on myocardial recovery during reperfusion after hypothermic cardioplegic arrest. Oxygenation with 100% O2 of Plasmalyte B containing high K+ levels caused marked deterioration in myocardial recovery, whereas the mode of oxygenation did not affect recovery after arrest with St. Thomas Hospital solution. Because the major differences between these solutions reside in their respective K+, Mg2+, and HCO3- contents, the effects of variations in the levels of these ions were investigated. The results showed that oxygenation with 100% O2 was deleterious only in the presence of high K+ (29 mmol/L), low Mg2+ (3 mmol/L), and high NaHCO3 (28 mmol/L) levels. The marked decline in mechanical recovery during reperfusion was associated with significant changes in myocardial adenosine triphosphate and intracellular Ca2+ levels. Although an explanation for these findings is not readily available, it is suggested that complex ionic interactions and possibly oxygen free radical generation may lead to intracellular Ca2+ overload, depression in mitochondrial adenosine triphosphate generation, and, hence, deterioration in mechanical recovery.  相似文献   

3.
Possible enhancement of myocardial protection by oxygenation of a crystalloid cardioplegic solution was evaluated in a three-part study. In Part I, canine hearts underwent ischemia followed by heterogeneous cardioplegic arrest for 45 to 60 minutes. Oxygenation led to improved recovery in the left anterior descending region (47% versus 86% recovery, p less than 0.05) (15 minutes of ischemia) and in the circumflex region (9.5% versus 52% recovery, p less than 0.05) (30 minutes of ischemia). Part II was a blind prospective randomized study in 12 patients. It examined creatine kinase, myoglobin, and lactate as well as coronary sinus flow, oxygen consumption, and cardiac work 1 hour after aortic cross-clamping during atrial and during ventricular pacing. No significant difference was demonstrable between control and oxygenated solutions. In Part III, 57 coronary bypass patients were protected with a nonoxygenated solution while 94 patients received an identical oxygenated solution. Twelve-hour creatine kinase levels were similar in the nonoxygenated (9.5 +/- 16 IU, +/- standard deviation) and oxygenated (11 +/- 22 IU) groups if the cross-clamp interval was 28 minutes or less. In patients subjected to longer than 28 minutes of arrest, the 12 hour creatine kinase MB levels were more than twice as high in the nonoxygenated group (26.5 +/- 26 IU) compared to the oxygenated group (9.9 +/- 14 IU, p less than 0.05). In this canine model of heterogeneous cardioplegia and in the routine conduct of coronary bypass operations, oxygenated crystalloid cardioplegia is superior to an identical nonoxygenated solution.  相似文献   

4.
The hypothesis tested is that shifts in pH, induced when a cardioplegic solution is oxygenated, can be detrimental. We added either 100% nitrogen, 95% nitrogen and 5% carbon dioxide, 100% oxygen, or 95% oxygen and 5% carbon dioxide to the cardioplegic solution (St. Thomas' Hospital No. 2 plus glucose 11 mmol/L), and determined postischemic recovery of isolated rat hearts after 3 hours of 10 degrees C cardioplegic protected ischemia. Hearts were arrested and reinfused every 30 minutes throughout the ischemic period with cardioplegic solution. When 5% carbon dioxide was added to nitrogen, the pH of the cardioplegic solution decreased from 9.1 (100% nitrogen) to 7.0 (95% nitrogen: 5% carbon dioxide), a change associated with improved postischemic functional recovery. Aortic output improved from 52.3% +/- 2.7% to 63.9% +/- 2.8%, p less than 0.05, and cardiac output from 60.8% +/- 3.6% to 75.4% +/- 3.3%, p less than 0.01. This improvement was associated with diminished efflux of lactate during ischemia but increased postischemic release of lactate dehydrogenase. When nitrogen was replaced with oxygen, the addition of 5% carbon dioxide resulted in a similar decrease of pH, which again was associated with improved postischemic functional recovery. Aortic output improved from 66.3% +/- 2.8% (100% oxygen) to 88.9% +/- 3.7% (95% oxygen: 5% carbon dioxide), p less than 0.005, and cardiac output from 75.3% +/- 4.1% to 88.9% +/- 2.4%, p less than 0.01. The efflux of lactate during ischemia and the postischemic release of lactate dehydrogenase were similar in both groups. Furthermore, provision of additional oxygen with perfluorocarbons in an electrolyte solution identical to the St. Thomas' Hospital plus glucose solution and oxygenated with 95% oxygen: 5% carbon dioxide conferred no extra protection. In conclusion, the St. Thomas' Hospital No. 2 plus glucose cardioplegic solution should be oxygenated but with 95% oxygen: 5% carbon dioxide and not 100% oxygen because of the additive effect of a relatively "acidotic" pH.  相似文献   

5.
The effect of oxygenation (100% oxygen) of the St. Thomas' Hospital cardioplegic solutions No. 1 (MacCarthy) and No.2 (Plegisol, Abbott Laboratories, North Chicago, Ill.) was examined in the isolated working rat heart subjected to long periods (3 hours for studies with solution No. 1 and 4 hours for studies with solution No. 2) of hypothermic (20 degrees C) ischemic arrest with multidose (every 30 minutes) cardioplegic infusion. At the aortic infusion point the oxygen tension of the oxygenated solutions (measured at 20 degrees C) was in the range of 320 to 560 mm Hg whereas that of the nonoxygenated solutions was less than 150 mm Hg. Twenty hearts (10 oxygenated and 10 nonoxygenated) were studied for each solution. The studies with solution No. 1 demonstrated that oxygenation led to a significant (p less than 0.05) reduction in the incidence of persistent ventricular fibrillation during postischemic reperfusion. Oxygenation of the cardioplegic solution also improved postischemic functional recovery so that the recovery of aortic flow was improved from 18.7% +/- 8.9% (of its preischemic control level) in the nonoxygenated group to 54.6% +/- 6.6% in the oxygenated group (p less than 0.025). Creatine kinase leakage was also significantly reduced from 27.5 +/- 4.8 to 9.9 +/- 0.6 IU/15 min/gm dry weight (p less than 0.005). Studies with solution No. 2 indicated that protection was better than with solution No. 1, even in the absence of oxygenation. A better degree of functional recovery was obtained after 4 hours of arrest with solution No. 2 than that obtained after only 3 hours of arrest with solution No. 1, and persistent ventricular ventricular fibrillation was never observed with solution No. 2. However, despite the superior performance with solution No. 2, further improvements could be obtained by oxygenation, with that time from the onset of reperfusion to the return of regular sinus rhythm being reduced from 55 +/- 8 to 35 +/- 2 seconds (p less than 0.01), postischemic recovery of aortic flow increasing from 59.8% +/- 7.4% to 85.7% +/- 2.5% (p less than 0.005), and creatine kinase leakage being reduced from 38.1 +/- 7.3 to 16.2 +/- 1.5 IU/15 min/gm dry weight (p less than 0.005). It is concluded that oxygenation of the St. Thomas' Hospital cardioplegic solutions improves their ability to protect the heart against long periods of ischemia and that this is manifested by improved postischemic electrical stability, functional recovery, and reduced creatine kinase leakage.  相似文献   

6.
The metabolic effect of excessive oxygenation and frequency of administration of antegrade crystalloid cardioplegic solution was assessed in 33 patients undergoing routine coronary artery bypass graft operations. Four patient groups were designed in which the initial aortic root injection was 1000 ml and then 100 ml administered through the vein grafts after completion of each distal anastomosis. The groups were divided as follows: group 1, single dose, normally oxygenated cardioplegic solution infused via the aortic root; group 2, single dose, high oxygen content cardioplegic solution infused via the aortic root; group 3, normally oxygenated cardioplegic solution with additional 250 ml doses via the aortic root every 20 minutes; group 4, high oxygen content cardioplegic solution with additional 250 ml doses via the aortic root every 20 minutes. In all groups myocardial mean septal temperature showed an immediate fall to approximately 11 degrees C with the initial aortic root doses and then a gradual rewarming to approximately 20 degrees C during the crossclamp period (mean 58.6 minutes). Metabolic parameters measured or calculated from the coronary sinus effluent were myocardial oxygen extraction, lactate production, base deficit, inorganic phosphate, glucose, potassium, creatine kinase (total and myocardial band fraction), and catecholamine production. There was no statistically significant difference in any of these determinations between each patient group. Furthermore, myocardial recovery, myocardial performance, and postoperative recovery characteristics were not different. We conclude that single or multidose aortic root crystalloid cardioplegic solution (either oxygen enriched or normally oxygenated) is equally effective in routine coronary artery bypass graft operations when septal temperatures are maintained between 15 degrees and 21 degrees C for a total arrest time of 60 minutes or less. In this study, increasing the volume cardioplegic solution given in multiple doses appeared to offer no significant metabolic or functional advantage in patients without complications who had satisfactory left ventricular function.  相似文献   

7.
Previous studies from this laboratory demonstrated that the use of an oxygenated cardioplegic solution in the hypothermic arrested rat heart resulted in improved preservation of high-energy phosphate stores (adenosine triphosphate and creatine phosphate), mechanical recovery during reperfusion, and preservation of myocardial ultrastructure. In the current study the effect of cardioplegic solutions oxygenated with 30%, 60%, and 95% oxygen was evaluated in the isolated rat heart with reference to the maintenance of adenosine triphosphate, creatine phosphate, oxygen consumption, functional recovery, and mitochondrial oxidative phosphorylation in vitro. Results indicate that the hearts receiving cardioplegic solutions supplemented with 95% oxygen and 5% carbon dioxide maintained adenosine triphosphate and creatine phosphate at control values for at least 5 hours. The oxygen consumption during elective cardiac arrest, mechanical performance during reperfusion, and in vitro mitochondrial oxygen uptake and phosphorylation rate were highest in the hearts receiving cardioplegic solutions supplemented with 95% oxygen when compared to solutions with 30% and 60% oxygen. Addition of glucose and insulin to the cardioplegic solution (95% oxygen) increased the adenosine triphosphate levels but failed to improve function after reperfusion. Although myocardial adenosine triphosphate and creatine phosphate were well preserved by the oxygenated cardioplegic solution, there was a discrepancy between the adenosine triphosphate levels at the end of the arrest period, which represents the potential for mechanical function, and the actual function of the hearts after 5 hours.  相似文献   

8.
The effect of the calcium and oxygen contents of a hyperkalemic glucose-containing cardioplegic solution on myocardial preservation was examined in the isolated working rat heart. The cardioplegic solution was delivered at 4 degrees C every 15 minutes during 2 hours of arrest, maintaining a myocardial temperature of 8 degrees +/- 2 degrees C. Hearts were reperfused in the Langendorff mode for 15 minutes and then resumed the working mode for a further 30 minutes. Groups of hearts were given the oxygenated cardioplegic solution containing an ionized calcium concentration of 0, 0.25, 0.75, or 1.25 mmol/L or the same solution nitrogenated to reduce the oxygen content and containing 0 or 0.75 mmol ionized calcium per liter. The myocardial adenosine triphosphate concentrations at the end of arrest in these six groups of hearts were 15.6 +/- 1.2, 9.5 +/- 0.5, 8.2 +/- 1.1, 4.9 +/- 1.8, 10.1 +/- 2.0, and 1.6 +/- 0.4 nmol/mg dry weight, respectively. At 5 minutes of working reperfusion, the percentages of prearrest aortic flow were 80 +/- 2, 62 +/- 4, 33 +/- 6, 37 +/- 5, 48 +/- 7 and 46 +/- 8, respectively. The differences among the groups in adenosine triphosphate concentrations and in functional recovery diminished during reperfusion. In hearts given the hypoxic calcium-containing solution, there was a marked increase in coronary vascular resistance during the administration of successive doses of cardioplegic solution, which was rapidly reversible upon reperfusion. These data indicate that hearts given the acalcemic oxygenated solution had better adenosine triphosphate preservation during arrest and better functional recovery than hearts in any other group. Addition of calcium to the oxygenated cardioplegic solution decreased adenosine triphosphate preservation and functional recovery. Oxygenation of the acalcemic solution increased adenosine triphosphate preservation and functional recovery. The lowest adenosine triphosphate levels at end arrest were observed in hearts given the hypoxic calcium-containing solution. In the setting of hypothermia and multidose administration, the addition of calcium to a cardioplegic solution resulted in increased energy depletion during arrest and depressed recovery.  相似文献   

9.
A series of studies was undertaken to establish the optimal oxygenation of St. Thomas' Hospital cardioplegic solution (ST). Using an isolated working rat heart model of cardiopulmonary bypass and the cardioplegic arrest the effect of oxygenation of ST were investigated in this study. The effects of oxygenated ST with various O2/CO2 mixture (100% O2, 99% O2 + 1% CO2, 98% O2 + 2% CO2, 95% O2 + 5% CO2) upon post ischemic functional recovery were compared with those of non-oxygenated ST. Under both normothermic and hypothermic conditions, the pH of the St. Thomas' gassed with 99% O2 + 1% CO2 mixture was maintained at 7.8, and this cardioplegic solution showed highest percent recovery of aortic flow. On the contrary, the pH of St. Thomas' cardioplegic solution oxygenated with 100% O2 exceed 9.0 and it showed lethal effect upon postischemic cardiac function. Thus oxygenation of NaHCO3 containing crystalloid cardioplegic solution oxygenated with 100% O2 is rather harmful and the 99% O2 + 1% CO2 gas is the crucial gas mixture for clinical and experimental use with oxygenated ST.  相似文献   

10.
OBJECTIVE: This study was designed to clarify whether myocardial substrate uptake and oxidation change after a period of hypothermic cardioplegic arrest during coronary artery bypass grafting procedures. METHODS: In 30 patients arterial and coronary sinus blood was sampled and coronary sinus flow measurements were performed before and after sternotomy and 10 minutes, 20 minutes, 50 minutes, and 6 hours after release of the aortic crossclamp. Measurement of free fatty acids, lactate, glucose, oxygen content, and carbon dioxide content in arterial and coronary sinus blood allowed calculations of myocardial substrate use, respiratory quotients, and myocardial oxidation rates of carbohydrates and fat. RESULTS: Uptake of free fatty acids and lactate was significant throughout the study and did not change in association with release of the crossclamp. Free fatty acid and lactate uptake measured 6 +/- 4 micromol/min and 23 +/- 26 micromol/min, respectively, before crossclamping compared with 8 +/- 7 micromol/min and 19 +/- 21 micromol/min, respectively, after release of the clamp. Glucose uptake was significant only during the first hour after crossclamp release and increased from 7 +/- 50 to 28 +/- 34 micromol/L after crossclamp release. Myocardial oxygen consumption did not change significantly (0.5 +/- 0.2 mmol/L compared with 0.35 +/- 0.2 mmol/L) after release of the crossclamp. Myocardial oxygen extraction ratio decreased from 58% +/- 8% to 41% +/- 13% after crossclamp release. Respiratory quotient increased after crossclamp release (0.85 +/- 0. 2 compared with 1.00 +/- 0.2), which implies that carbohydrate oxidation increased at the expense of free fatty acid oxidation. CONCLUSION: We conclude that hypothermic cardioplegic arrest during coronary artery bypass graft operations is associated with a transiently increased uptake and oxidation of carbohydrates during the immediate reperfusion phase.  相似文献   

11.
The myocardial protective effects of crystalloid, blood, and Fluosol-DA-20% cardioplegia were compared by subjecting hypertrophied pig hearts to 3 hours of hypothermic (10 degrees to 15 degrees C), hyperkalemic (20 mEq/L) cardioplegic arrest and 1 hour of normothermic reperfusion. Left ventricular hypertrophy was created in piglets by banding of the ascending aorta, with increase of the left ventricular weight-body weight ratio from 3.01 +/- 0.2 gm/kg (control adult pigs) to 5.50 +/- 0.2 gm/kg (p less than 0.001). An in vivo isolated heart preparation was established in 39 grown banded pigs, which were divided into three groups to receive aerated crystalloid (oxygen tension 141 +/- 4 mm Hg), oxygenated blood (oxygen tension 584 +/- 41 mm Hg), or oxygenated Fluosol-DA-20% (oxygen tension 586 +/- 25 mm Hg) cardioplegic solutions. The use of crystalloid cardioplegia was associated with the following: a low cardioplegia-coronary sinus oxygen content difference (0.6 +/- 0.1 vol%), progressive depletion of myocardial creatine phosphate and adenosine triphosphate during cardioplegic arrest, minimal recovery of developed pressure (16% +/- 8%) and its first derivative (12% +/- 7%), and marked structural deterioration during reperfusion. Enhanced oxygen uptake during cardioplegic infusions was observed with blood cardioplegia (5.0 +/- 0.3 vol%), along with excellent preservation of high-energy phosphate stores and significantly improved postischemic left ventricular performance (developed pressure, 54% +/- 4%; first derivative of left ventricular pressure, 50% +/- 5%). The best results were obtained with Fluosol-DA-20% cardioplegia. This produced a high cardioplegia-coronary sinus oxygen content difference (5.8 +/- 0.1 vol%), effectively sustained myocardial creatine phosphate and adenosine triphosphate concentrations during the extended interval of arrest, and ensured the greatest hemodynamic recovery (developed pressure, 81% +/- 6%, first derivative of left ventricular pressure, 80% +/- 10%) and the least adverse morphologic alterations during reperfusion. It is concluded that oxygenated Fluosol-DA-20% cardioplegia is superior to oxygenated blood and especially aerated crystalloid cardioplegia in protecting the hypertrophied pig myocardium during prolonged aortic clamping.  相似文献   

12.
The intention of this study was to determine whether glucose is beneficial in a cardioplegic solution when the end products of metabolism produced during the ischemic period are intermittently removed. The experimental model used was the isolated working rat heart, with a 3-hour hypothermic 10 degrees C cardioplegic arrest period. Cardioplegic solutions tested were the St. Thomas' Hospital No. 2 and a modified Krebs-Henseleit cardioplegic solution. Glucose (11 mmol/L) was beneficial when multidose cardioplegia was administered every 30 minutes. Including glucose in Krebs-Henseleit cardioplegic solution improved postischemic recovery of aortic output from 57.0% +/- 1.8% to 65.8% +/- 2.2%; p less than 0.025. The addition of glucose to St. Thomas' Hospital No. 2 cardioplegic solution improved aortic output from 74.6% +/- 1.9% to 87.4% +/- 1.9%; p less than 0.005. Furthermore, a dose-response curve showed that a glucose concentration of 20 mmol/L gave no better recovery than 0 mmol/L, and glucose in St. Thomas Hospital No. 2 cardioplegic solution was beneficial only in the range of 7 to 11 mmol/L. In addition, we showed that multidose cardioplegia was beneficial independent of glucose. Multidose St. Thomas' Hospital No. 2 cardioplegia, as opposed to single-dose cardioplegia, improved aortic output recovery from 57.4% +/- 5.2% to 74.6% +/- 1.9%; p less than 0.025, and with St. Thomas' Hospital No. 2 cardioplegic solution plus glucose (11 mmol/L) aortic output recovery improved from 65.9% +/- 2.9% to 87.4% +/- 1.9%; p less than 0.005. Hence, at least in this screening model, the St. Thomas' Hospital cardioplegic solution should contain glucose in the range of 7 mmol/L to 11 mmol/L, provided multidose cardioplegia is given. We cautiously suggest extrapolation to the human heart, on the basis of supporting clinical arguments that appear general enough to apply to both rat and human metabolisms.  相似文献   

13.
Oxygenated cardioplegic solutions can deliver sufficient oxygen to support aerobic metabolism of heart tissue during cardiac arrest, but little is known about oxygen use after cardioplegic solution infusion. Exhaustion of myocardial oxygen stores after infusion of oxygenated crystalloid cardioplegic solution or Krebs-Henseleit buffer was measured in rat hearts. Since nicotinamide adenine dinucleotide accumulates when mitochondria become anaerobic, the epicardium was monitored during perfusion and ischemia. As ischemia progressed, nicotinamide adenine dinucleotide fluorescence increased, indicating exhaustion of oxygen. After buffer perfusion, at 37 degrees C, 50% of peak fluorescence was seen at 13 +/- 1 seconds and 90% at 37 +/- 3 seconds. Oxygenated cardioplegic solution increased these intervals to 57 +/- 6 and 114 +/- 9 seconds, respectively. Oxygenated cardioplegic solution at 10 degrees C increased the time to 50% fluorescence to 238 +/- 12 seconds and to 90% to 320 +/- 14 seconds. Differences between buffer and cardioplegic solution were less at 10 degrees C. Aerobic metabolism was completely abolished 6 minutes after infusion of 10 degrees C oxygenated cardioplegic solution. Maintenance of continuous aerobic metabolism during surgical cardiac arrest would require frequent administration of oxygenated crystalloid cardioplegic solution.  相似文献   

14.
The effects of supplementing oxygenated St. Thomas' Hospital cardioplegic solution No. 2 with L-aspartate and/or D-glucose for the long-term preservation of excised rat hearts were determined with isolated working heart preparations. Left ventricular function was assessed at 37 degrees C with a crystalloid perfusate, before cardioplegic arrest and after 20 hours of low-flow perfusion (1.5 ml/min) with continuing arrest at 4 degrees C, and after this period, again at 37 degrees C with a crystalloid perfusate. Four groups (n = 8/group) of hearts were studied with four cardioplegic solutions: St. Thomas' Hospital solution alone, St. Thomas' Hospital solution with aspartate 20 mmol/L, St. Thomas' Hospital solution with glucose 20 mmol/L, and St. Thomas' Hospital solution plus both aspartate and glucose (20 mmol/L each). The addition of glucose to St. Thomas' Hospital solution made no significant difference in the recovery of aortic flow rates (17.7% +/- 8.6% and 21.6% +/- 7.8% of prearrest values), but when aspartate or aspartate and glucose were present, hearts showed significant improvements (89.8% +/- 5.2% and 85.0% +/- 6.2%, respectively). These improvements were associated with a reduction in the decline of myocardial high-energy phosphates during reperfusion, a reduction in cellular uptake of Na+ and Ca++, and a reduction in ultrastructural damage. These results indicate that low-flow perfusion with St. Thomas' Hospital solution plus aspartate can considerably extend the duration of safe storage of explanted hearts.  相似文献   

15.
Oxygenation of crystalloid cardioplegic solutions is beneficial, yet bicarbonate-containing solutions equilibrated with 100% oxygen become highly alkaline as carbon dioxide is released. In the isolated perfused rat heart fitted with an intraventricular balloon, we recently observed a sustained contraction related to infusion of cardioplegic solution. In the same model, to record these contractions, we studied myocardial preservation by multidose bicarbonate-containing cardioplegic solutions in which first the calcium content and then the pH was varied. An acalcemic cardioplegic solution (Group 1) and the same solution with calcium provided by adding calcium chloride (Group 2) or blood (Group 3) were equilibrated with 100% oxygen. Ionized calcium concentrations were 0, 0.10 +/- 0.06, and 0.11 +/- 0.07 mmol/L and pH values were 8.74 +/- 0.07, 8.54 +/- 0.08, and 8.40 +/- 0.07, all highly alkaline. Hearts were arrested for 2 hours at 8 degrees +/- 2.5 degrees C and reperfused for 1 hour at 37 degrees C. At end-arrest, myocardial adenosine triphosphate was depleted in all three groups, significantly in Groups 2 and 3. In Group 1 the calcium paradox developed upon reperfusion, with contracture (left ventricular end-diastolic pressure = 60 +/- 7 mm Hg), creatine kinase release up to 620 +/- 134 U/L, a profound further decrease in adenosine triphosphate to 1.9 +/- 1.7 nmol/mg dry weight, and either greatly impaired or no functional recovery (17% +/- 10% of prearrest developed pressure). Three hearts in this group released creatine kinase during arrest and did not resume beating during reperfusion. In Groups 2 and 3, the calcium paradox did not occur; functional recovery was 61% +/- 4% and 71% +/- 9% at 5 minutes of reperfusion. In two additional groups (4 and 5), the pH of the acalcemic cardioplegic solution was decreased by equilibration with 2% and 5% carbon dioxide in oxygen to 7.53 +/- 0.03 and 7.11 +/- 0.02. Contractions during arrest were smaller than in Groups 1, 2, and 3; adenosine triphosphate was maintained during arrest; functional recovery was 101% +/- 3% and 96% +/- 4% at 5 minutes of reperfusion. We conclude that acalcemic solutions with carbon dioxide are superior to highly alkaline calcium-containing solutions. If oxygenation of cardioplegic solutions, of proved value, causes severe alkalinity, then calcium paradox may result even with hypothermia. This hazard is prevented by adding calcium or blood to the solution or carbon dioxide to the oxygen used for equilibration.  相似文献   

16.
The potential for improving myocardial protection with the high-energy phosphates adenosine triphosphate and creatine phosphate was evaluated by adding them to the St. Thomas' Hospital cardioplegic solution in the isolated, working rat heart model of cardiopulmonary bypass and ischemic arrest. Dose-response studies with an adenosine triphosphate range of 0.05 to 10.0 mmol/L showed 0.1 mmol/L to be the optimal concentration for recovery of aortic flow and cardiac output after 40 minutes of normothermic (37 degrees C) ischemic arrest (from 24.1% +/- 4.4% and 35.9% +/- 4.1% in the unmodified cardioplegia group to 62.6% +/- 4.7% and 71.0% +/- 3.0%, respectively, p less than 0.001). Adenosine triphosphate at its optimal concentration (0.1 mmol/L) also reduced creatine kinase leakage by 39% (p less than 0.001). Postischemic arrhythmias were also significantly reduced, which obviated the need for electrical defibrillation and reduced the time to return of regular rhythm from 7.9 +/- 2.0 minutes in the control group to 3.5 +/- 0.4 minutes in the adenosine triphosphate group. Under more clinically relevant conditions of hypothermic ischemia (20 degrees C, 270 minutes) with multidose (every 30 minutes) cardioplegia, adenosine triphosphate addition improved postischemic recovery of aortic flow and cardiac output from control values of 26.8% +/- 8.4% and 35.4% +/- 6.3% to 58.0% +/- 4.7% and 64.4% +/- 3.7% (p less than 0.01), respectively, and creatine kinase leakage was significantly reduced. Parallel hypothermic ischemia studies (270 minutes, 20 degrees C) using the previously demonstrated optimal creatinine phosphate concentration (10.0 mmol/L) gave nearly identical improvements in recovery and enzyme leakage. The combination of the optimal concentrations of adenosine triphosphate and creatine phosphate resulted in even greater myocardial protection; aortic flow and cardiac output improved from their control values of 26.8% +/- 8.4% and 35.4% +/- 6.3% to 79.7% +/- 1.1 and 80.7% +/- 1.0% (p less than 0.001), respectively. In conclusion, both extracellular adenosine triphosphate and creatine phosphate alone markedly improve the cardioprotective properties of the St. Thomas' Hospital cardioplegic solution during prolonged hypothermic ischemic arrest, but together they act additively to provide even greater protection.  相似文献   

17.
The ideal temperature and hematocrit level of blood cardioplegia has not been clearly established. This study was undertaken (a) to determine the optimal temperature of blood cardioplegia and (b) to study the effect of hematocrit levels in blood cardioplegia. A comparison of myocardial preservation was done among seven groups of animals on the basis of variations in hematocrit levels and temperature of oxygenated cardioplegic solution. The experimental protocol consisted of a 2-hour hypothermic cardioplegic arrest followed by 1 hour of normothermic reperfusion. Group 1 received oxygenated crystalloid cardioplegic solution at 10 degrees C. Groups 2 through 7 received oxygenated blood cardioplegic solution with the following hematocrit values and temperatures: (2) 10%, 10 degrees C; (3) 10%, 20 degrees C; (4) 10%, 30 degrees C; (5) 20%, 10 degrees C; (6) 20%, 20 degrees C; and (7) 20%, 30 degrees C. Parameters studied include coronary blood flow, myocardial oxygen extraction, myocardial oxygen consumption, and myocardial high-energy phosphate levels of adenosine triphosphate and creatine phosphate during control (prearrest), arrest, and reperfusion. Myocardial oxygen consumption at 30 degrees C during arrest was significantly higher than at 10 degrees C and 20 degrees C, which indicates continued aerobic metabolic activity at higher temperature. Myocardial oxygen consumption and the levels of adenosine triphosphate and creatine phosphate during reperfusion were similar in all seven groups. Myocardial oxygen extraction (a measure of metabolic function after ischemia) during initial reperfusion was significantly lower in the 30 degrees C blood group than in the 10 degrees C blood group at either hematocrit level and in the oxygenated crystalloid group, which suggests inferior preservation. The hematocrit level of blood cardioplegia did not affect adenosine triphosphate or myocardial oxygen consumption or extraction. It appears from this study that blood cardioplegia at 10 degrees C and oxygenated crystalloid cardioplegia at 10 degrees C are equally effective. Elevating blood cardioplegia temperature to 30 degrees C, however, reduces the ability of the solution to preserve metabolic function regardless of hematocrit level. Therefore, the level of hypothermia is important in blood cardioplegia, whereas hematocrit level has no detectable impact, and cold oxygenated crystalloid cardioplegia is as effective as hypothermic blood cardioplegia.  相似文献   

18.
To examine the relationship between intramyocardial pH during global ischemic arrest and subsequent functional and biochemical recovery, 40 canine hearts were subjected to 4 hours of arrest at 10 degrees C. Four groups, each containing 10 hearts, were differentiated by the oxygen concentration of a hyperkalemic crystalloid cardioplegic solution (CCS), which was infused every 20 minutes. In group 1 the CCS was equilibrated at 4 degrees C with nitrogen to remove oxygen. In group 2 the CCS was aerated at 4 degrees C. In group 3 the CCS was treated to achieve an oxygen tension (PO2) similar to group 2 but with a reduced nitrogen content to prevent bubble formation, which is theoretically possible during reperfusion ("myocardial bends"). In group 4 the CCS was fully oxygenated at 4 degrees C. The resulting PO2 of CCS measured at 10 degrees C was less than 20, 170, 170, and 750 mm Hg in groups 1, 2, 3, and 4, respectively. Left ventricular function (LVF) was assessed from function curves at constant mean aortic pressure and heart rate. Functional recovery, expressed as a percentage of prearrest LVF, was 38.1% +/- 10.7% in group 1 and 84.0% +/- 8.1% in group 4 (p less than 0.008). Functional recovery was 64.9% +/- 5.5% and 69.1% +/- 7.0% in groups 2 and 3, which had similar PO2. Differences in recovery between groups 2 and 3 and group 1 approached statistical significance (p less than 0.05, NS). The mean-integrated intramyocardial pH during arrest was higher (p less than 0.003) in group 4 (7.14 +/- 0.05) than in group 1 (6.84 +/- 0.06) or group 2 (6.86 +/- 0.07). The minimum intramyocardial pH during arrest was higher in group 4 than in any other group (p less than 0.002). Myocardial adenosine triphosphate concentration at the end of arrest, expressed as a percentage of its prearrest value, was highest in group 4 (75.9% +/- 8.1%) and lowest in group 1 (54.3% +/- 5.7%), a difference approaching statistical significance (p less than 0.05, NS). These data suggest that the measurement of intramyocardial pH is a useful on-line indicator of the adequacy of preservation during hypothermic arrest and that excess nitrogen in aerated CCS had little or no effect on recovery. The data confirm the hypothesis that oxygenation of CCS is associated with good myocardial preservation, which may be attributed to the provision of oxygen for the support of aerobic metabolism during arrest.  相似文献   

19.
OBJECTIVE: We sought to determine whether pretreatment with a sodium/hydrogen-exchange inhibitor (EMD 96 785) improves myocardial performance and reduces myocardial edema after cardioplegic arrest and cardiopulmonary bypass. METHODS: Anesthetized dogs (n = 13) were instrumented with vascular catheters, myocardial ultrasonic crystals, and left ventricular micromanometers to measure preload recruitable stroke work, maximum rate of pressure rise (positive and negative), and left ventricular end-diastolic volume and pressure. Cardiac output was measured by means of thermodilution. Myocardial tissue water content was determined from sequential biopsy. After baseline measurements, hypothermic (28 degrees C) cardiopulmonary bypass was initiated. Cardioplegic arrest (4 degrees C Bretschneider crystalloid cardioplegic solution) was maintained for 2 hours, followed by reperfusion-rewarming and separation from cardiopulmonary bypass. Preload recruitable stroke work and myocardial tissue water content were measured at 30, 60, and 120 minutes after bypass. EMD 96 785 (3 mg/kg) was given 15 minutes before bypass, and 2 micromol was given in the cardioplegic solution. Control animals received the same volume of saline vehicle. Arterial-coronary sinus lactate difference was similar in both animals receiving EMD 96 785 and control animals, suggesting equivalent myocardial ischemia in each group. RESULTS: Myocardial tissue water content increased from baseline in both animals receiving EMD 96 785 and control animals with cardiopulmonary bypass and cardioplegic arrest but was statistically lower in animals receiving EMD 96 785 compared with control animals (range, 1.0%-1.5% lower in animals receiving EMD 96 785). Preload recruitable stroke work decreased from baseline (97 +/- 2 mm Hg) at 30 (59 +/- 6 mm Hg) and 60 (72 +/- 9 mm Hg) minutes after cardiopulmonary bypass and cardioplegic arrest in control animals; preload recruitable stroke work did not decrease from baseline (98 +/- 2 mm Hg) in animals receiving EMD 96 785 and was statistically greater at 30 (88 +/- 5 mm Hg) and 60 (99 +/- 4 mm Hg) minutes after bypass and arrest compared with control animals. CONCLUSIONS: Sodium/hydrogen-exchanger inhibition decreases myocardial edema immediately after cardiopulmonary bypass and cardioplegic arrest and improves preload recruitable stroke work. Sodium/hydrogen-exchange inhibition during cardiac procedures with cardiopulmonary bypass and cardioplegic arrest may be a useful adjunct to improve myocardial performance in the immediate postbypass or arrest period.  相似文献   

20.
The myocardial protection afforded by GIK solution, widely used as cardioplegic solution in this country, was compared with that provided by St. Thomas solution or oxygenated St. Thomas solution. Eighteen isolated heart-lung preparations of dogs were made and their hearts were subjected to 3 hours cold (4 degrees C) cardioplegic arrest. GIK group hearts (n = 6) received 20 ml/kg of GIK solution at the time of aortic cross-clamp perfused through the aortic root and were subsequently given 10 ml/kg of GIK solution every 30 minutes. St. Thomas group hearts (n = 6) and oxygenated St. Thomas group hearts (n = 6) were treated identically except that cardioplegic solution were St. Thomas solution or fully oxygenated one. Four hearts of GIK group showed ventricular fibrillation immediately after reperfusion that required DC countershock. Temporary A-V block was recognized in two hearts. In the other two groups, however, neither ventricular fibrillation nor A-V block was found. Heart rate, coronary flow, aortic flow and LVSW were measured before arrest and after 60 minutes of reperfusion (mean aortic pressure 70 mmHg, left atrial pressure 4 mmHg). Post reperfusion % recovery rates (post-reperfusion/before arrest) of heart rate, coronary flow, aortic flow and LVSW (mean value +/- standard deviation) were 93.4 +/- 10.32%, 104.6 +/- 24.91%, 18.8 +/- 8.54%, 32.6 +/- 6.12% respectively for GIK group, 81.4 +/- 6.50%, 125.9 +/- 15.23%, 35.4 +/- 9.91%, 56.3 +/- 12.90% for St. Thomas group and 83.1 +/- 8.40%, 121.6 +/- 16.92%, 47.0 +/- 7.89%, 69.1 +/- 9.71% for oxygenated St. Thomas group. St. Thomas and oxygenated St. Thomas groups revealed significantly (p less than 0.05, p less than 0.01 respectively) more excellent functional preservation than GIK group. Intramyocardial pH was also measured by use of glass needle pH electrode punctured into the anterior interventricular septum. Preischemic intramyocardial pH (at 37 degrees C) was 7.49 +/- 0.106 in GIK group, 7.48 +/- 0.113 in St. Thomas group and 7.43 +/- 0.114 in oxygenated St. Thomas group. During 3 hours of cardioplegic arrest, intramyocardial pH (at 4 degrees C) decreased to 6.84 +/- 0.101 in GIK group, 7.03 +/- 0.088 in St. Thomas group and 7.23 +/- 0.239 in oxygenated St. Thomas group, which was significantly higher than GIK group (p less than 0.01). Therefore oxygenated St. Thomas solution was found to maintain more favorable energy supply to ischemic myocardium. These results clearly evidenced that St. Thomas and oxygenated St. Thomas solutions would provide more effective myocardial protection during ischemic arrest than GIK solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号