首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hermansky-Pudlak syndrome (HPS) is an inherited hemorrhagic disease affecting the related subcellular organelles platelet dense granules, lysosomes, and melanosomes. The mouse genes for HPS, pale ear and pearl, orthologous to the human HPS1 and HPS2 (ADTB3A) genes, encode a novel protein of unknown function and the beta(3)A subunit of the AP-3 adaptor complex, respectively. To test for in vivo interactions between these genes in the production and function of intracellular organelles, mice doubly homozygous for the 2 mutant genes were produced by appropriate breeding. Cooperation between the 2 genes in melanosome production was evident in increased hypopigmentation of the coat together with dramatic quantitative and qualitative alterations of melanosomes of the retinal pigment epithelium and choroid of double mutant mice. Lysosomal and platelet dense granule abnormalities, including hyposecretion of lysosomal enzymes from kidneys and depression of serotonin concentrations of platelet dense granules were likewise more severe in double than single mutants. Also, lysosomal enzyme concentrations were significantly increased in lungs of double mutant mice. Interaction between the 2 genes was specific in that effects on organelles were confined to melanosomes, lysosomes, and platelet dense granules. Together, the evidence indicates these 2 HPS genes function largely independently at the whole organism level to affect the production and function of all 3 organelles. Further, the increased lysosomal enzyme levels in lung of double mutant mice suggest a cause of a major clinical problem of HPS, lung fibrosis. Finally, doubly mutant HPS mice are a useful laboratory model for analysis of severe HPS phenotypes.  相似文献   

2.
Hermansky-Pudlak syndrome (HPS) ? characterized by the distinct clinical phenotypes of both oculocutaneous albinism and mild bleeding diathesis–is caused by mutations in genes that have crucial roles in the assembly of cellular organelles (skin melanosomes, platelet delta [dense] granules, lung lamellar bodies, and cytotoxic T-cell lymphocyte granules). Immunodeficiency, pulmonary fibrosis and granulomatous colitis are associated with some, but not all subtypes of HPS, with varying degrees of clinical severity. We describe a patient diagnosed with platelet dense granule storage pool deficiency (DG-SPD) at age 38 years after he presented with spontaneous intracranial hemorrhage. His mild oculocutaneous hypopigmentation was subtle. In the following 27 years, he did not develop severe bleeding nor pulmonary or gastrointestinal complications. A novel homozygous c.1960A>T; p.Lys654* mutation in the HPS-5 protein gene (HPS5) was identified through next generation sequencing, (NGS) which is consistent with the patient’s clinical and laboratory phenotypes. This case underscores the importance of recognizing the mild clinical phenotype of HPS-5 and utilization of both laboratory and molecular testing for diagnosis, prognostication, and surveillance for end organ damage in patients affected with HPS.  相似文献   

3.
Hermansky-Pudlak syndrome (HPS), a disorder of organelle biogenesis, affects lysosomes, melanosomes, and platelet dense bodies. Seven genes cause HPS in humans (HPS1-HPS7) and at least 15 nonallelic mutations cause HPS in mice. Where their function is known, the HPS proteins participate in protein trafficking and vesicle docking/fusion events during organelle biogenesis. HPS-associated genes participate in at least 4 distinct protein complexes: the adaptor complex AP-3; biogenesis of lysosome-related organelles complex 1 (BLOC-1), consisting of 4 HPS proteins (pallidin, muted, cappuccino, HPS7/sandy); BLOC-2, consisting of HPS6/ruby-eye, HPS5/ruby-eye-2, and HPS3/cocoa; and BLOC-3, consisting of HPS1/pale ear and HPS4/light ear. Here, we report the cloning of the mouse HPS mutation reduced pigmentation (rp). We show that the wild-type rp gene encodes a novel, widely expressed 195-amino acid protein that shares 87% amino acid identity with its human orthologue and localizes to punctate cytoplasmic structures. Further, we show that phosphorylated RP is part of the BLOC-1 complex. In mutant rp/rp mice, a premature stop codon truncates the protein after 79 amino acids. Defects in all the 5 known components of BLOC-1, including RP, cause severe HPS in mice, suggesting that the subunits are nonredundant and that BLOC-1 plays a key role in organelle biogenesis.  相似文献   

4.
Molecular defects that affect platelet dense granules   总被引:6,自引:0,他引:6  
Platelet dense granules form using mechanisms shared by melanosomes in melanocytes and by subsets of lysosomes in more generalized cells. Consequently, disorders of platelet dense granules can reveal how organelles form and move within cells. Models for the study of new vesicle formation include isolated delta-storage pool deficiency, combined alphadelta-storage pool deficiency, Hermansky-Pudlak syndrome (HPS), Chediak-Higashi syndrome, Griscelli syndrome, thrombocytopenia absent radii syndrome, and Wiskott-Aldrich syndrome. The molecular bases of dense granule deficiency are known for the seven subtypes of HPS, as well as for Chediak-Higashi syndrome, Griscelli syndrome, and Wiskott-Aldrich syndrome. The gene products involved in these disorders help elucidate the generalized process of the formation of vesicles from extant membranes such as the Golgi.  相似文献   

5.
The ashen (ash) mouse, a model for Hermansky-Pudlak syndrome (HPS) and for a subset of patients with Griscelli syndrome, presents with hypopigmentation, prolonged bleeding times, and platelet storage pool deficiency due to a mutation which abrogates expression of the Rab27a protein. Platelets of mice with the ashen mutation on the C3H/HeSnJ inbred strain background have greatly reduced amounts of dense granule components such as serotonin and adenine nucleotides though near-normal numbers of dense granules as enumerated by the dense granule-specific fluorescent dye mepacrine. Thus, essentially normal numbers of platelet dense granules are produced but the granule interiors are abnormal. Collagen-mediated aggregation of mutant platelets is significantly depressed. No abnormalities in the concentrations or secretory rates of 2 other major platelet granules, lysosomes and alpha granules, were apparent. Similarly, no platelet ultrastructural alterations other than those involving dense granules were detected. Therefore, Rab27a regulates the synthesis and secretion of only one major platelet organelle, the dense granule. There were likewise no mutant effects on levels or secretion of lysosomal enzymes of several other tissues. Together with other recent analyses of the ashen mouse, these results suggest a close relationship between platelet dense granules, melanosomes of melanocytes and secretory lysosomes of cytotoxic T lymphocytes, all mediated by Rab27a. Surprisingly, the effects of the ashen mutation on platelet-dense granule components, platelet aggregation, and bleeding times were highly dependent on genetic background. This suggests that bleeding tendencies may likewise vary among patients with Griscelli syndrome and HPS with Rab27a mutations.  相似文献   

6.
Cocoa: a new mouse model for platelet storage pool deficiency   总被引:2,自引:0,他引:2  
We describe genetic, haematological and biochemical properties of a new mouse pigment mutant, cocoa (coa). Cocoa is a recessive mutation located on the centromeric end of chromosome 3 near the Car-2 locus. The mutation causes increased bleeding time accompanied by symptoms of platelet storage pool deficiency (SPD), including decreased platelet serotonin and decreased visibility of dense granules as analysed by electron microscopy of unfixed platelets. Dense granules were visible in normal numbers when platelets were incubated with the fluorescent dye, mepacrine. The intragranular environment, however, was abnormal as indicated by decreased flashing of mepacrine-loaded dense granules after exposure to ultraviolet light. Unlike the previously described seven mouse pigment mutations with SPD in which pigment granules, platelet dense granules and lysosomes are affected, the cocoa mutant had normal secretion of lysosomal enzymes from kidney proximal tubule cells and platelets. The cocoa mutation thus represents an example of a single gene which simultaneously affects melanosomes and platelet dense granules but probably does not affect lysosomes. The results indicate that melanosomes and platelet dense granules share steps in synthesis and/or processing. Cocoa may be a model for cases of human Hermansky-Pudlak syndrome in which functions of melanosomes and platelet dense granules, but not lysosomes, are involved.  相似文献   

7.
Hermansky-Pudlak syndrome (HPS) is a rare heterogeneously inherited autosomal recessive group of disorders presenting with oculocutaneous albinism, bleeding diathesis and pulmonary disease. HPS is thought to occur as a consequence of disturbed formation or trafficking of intracellular vesicles, most importantly, melanosomes, platelet dense granules and lysosomes. The latter finding, in particular, contributes much to the morbidity associated with the disease, as ceroid lipofuscin deposits in lysosomes affect many organ systems. This is especially problematic in the lungs where it is often associated with pulmonary fibrosis and premature death. Currently, there are 7 known HPS genes in humans. In the mouse, at least 16 known HPS genes produce HPS-mutant phenotypes. The HPS gene mutation is considered to be one of the most prevalent single-gene disorders in northwest Puerto Rico, home to the largest cohort of known patients. In HPS, interventions addressing the bleeding diathesis and pulmonary fibrosis are often disappointingly ineffectual. Pirfenidone, a novel compound with documented anti-inflammatory, antioxidant and antifibrotic effects, appears to hold promise in delaying or preventing fibrosis. To date, there has been one successful lung transplant performed on a patient with HPS. We present a patient with HPS and review the current literature on our understanding of this rare disorder.  相似文献   

8.
9.
Defects in a triad of organelles (melanosomes, platelet granules, and lysosomes) result in albinism, prolonged bleeding, and lysosome abnormalities in Hermansky-Pudlak syndrome (HPS). Defects in HPS1, a protein of unknown function, and in components of the AP-3 complex cause some, but not all, cases of HPS in humans. There have been 15 inherited models of HPS described in the mouse, underscoring its marked genetic heterogeneity. Here we characterize a new spontaneous mutation in the mouse, cappuccino (cno), that maps to mouse chromosome 5 in a region conserved with human 4p15-p16. Melanosomes of cno/cno mice are immature and dramatically decreased in number in the eye and skin, resulting in severe oculocutaneous albinism. Platelet dense body contents (adenosine triphosphate, serotonin) are markedly deficient, leading to defective aggregation and prolonged bleeding. Lysosomal enzyme concentrations are significantly elevated in the kidney and liver. Genetic, immunofluorescence microscopy, and lysosomal protein trafficking studies indicate that the AP-3 complex is intact in cno/cno mice. It was concluded that the cappuccino gene encodes a product involved in an AP-3-independent mechanism critical to the biogenesis of lysosome-related organelles. (Blood. 2000;96:4227-4235)  相似文献   

10.
Spritz RA 《Platelets》1998,9(1):21-29
Hermansky-Pudlak syndrome(HPS) and Chediak-Higashi syndrome(CHS) are similar but distinct autosomal recessive genetic diseases in which a bleeding diathesis resulting from platelet storage pool deficiency is accompanied by deficient pigmentation of the skin and hair and various systemic abnormalities associated with defective lysosomal function. The diverse multi-systemic manifestations of HPS and CHS are associated with abnormalities of a number of different cytoplasmic organelles--platelet dense granules, melanosomes, lysosomes and various cytoplasmic secretory granules. Though rare, HPS and CHS probably represent just the first of what will eventually be a novel class of genetic disorders resulting from defective biogenesis, structure or function of these organelles. The genes responsible for HPS and CHS have recently been identified and are beginning to yield insights into the molecular genetics and cellular pathophysiology of these intriguing disorders.  相似文献   

11.
《Platelets》2013,24(7):538-543
Patients with Hermansky–Pudlak syndrome type 2 (HPS2) present with oculocutaneous albinism, nystagmus, prolonged bleeding time, and increased susceptibility to infections. Twelve HPS2 patients with mutations in the β3A-subunit of the cytosolic adaptor-related protein complex 3 (AP3B1, also called HPS2) have been described so far. Here, we report on a patient with oculocutaneous albinism who developed a life-threatening bleeding after tonsillectomy. She presented with moderate neutropenia and reduced granulopoiesis. Analyzing patient's impaired platelet function using electron microscopy and flow cytometry led to the diagnosis of HPS2. Flow cytometric analysis of the patient's platelets showed already elevated CD63 expression on resting platelets with no further increase after thrombin stimulation. Natural killer (NK) cell degranulation was partially impaired but target cell lysis of NK cells and cytotoxic T-lymphocytes (CTLs) were normal and the patient did not develop signs of hemophagocytic syndrome. Molecular genetic analyses revealed a novel 2?bp-deletion (c.3222_3223delTG) in the last exon of AP3B1 causing a frameshift and a prolonged altered protein. The location of the deletion at the very C-terminal end may prevent a complete loss of the HPS2 protein leading to a less pronounced severity of immunodeficiency than in other HPS2 patients.  相似文献   

12.
Hermansky-Pudlak syndrome (HPS) is a disorder of organelle biogenesis affecting 3 related organelles-melanosomes, platelet dense bodies, and lysosomes. Four genes causing HPS in humans (HPS1-HPS4) are known, and at least 15 nonallelic mutations cause HPS in the mouse. Where their functions are known, the HPS-associated proteins are involved in some aspect of intracellular vesicular trafficking, that is, protein sorting and vesicle docking and fusion. Biochemical and genetic evidence indicates that the HPS-associated genes encode components of at least 3 distinct protein complexes: the adaptor complex AP-3; the HPS1/HPS4 complex; and BLOC-1 (biogenesis of lysosome-related organelles complex-1), consisting of the proteins encoded at 2 mouse HPS loci, pallid (pa) and muted (mu), and at least 3 other unidentified proteins. Here, we report the cloning of the mouse HPS mutation cappuccino (cno). We show that the wild-type cno gene encodes a novel, ubiquitously expressed cytoplasmic protein that coassembles with pallidin and the muted protein in the BLOC-1 complex. Further, we identify a frameshift mutation in mutant cno/cno mice. The C-terminal 81 amino acids are replaced with 72 different amino acids in the mutant CNO protein, and its ability to interact in BLOC-1 is abolished. We performed mutation screening of patients with HPS and failed to identify any CNO defects. Notably, although defects in components of the HPS1/HPS4 and the AP-3 complexes are associated with HPS in humans, no defects in the known components of BLOC-1 have been identified in 142 patients with HPS screened to date, suggesting that BLOC-1 function may be critical in humans.  相似文献   

13.
The clinical, pigmentary, and ceroid storage manifestations of the Hermansky-Pudlak syndrome (HPS) triad of albinism, hemorrhagic diathesis, and ceroid storage disease are variable. Therefore, a rapid and accurate method of diagnosing HPS is needed. Platelets of 66 albinos were examined by electron microscopy for the presence or absence of dense bodies. Results show that patients reexamined over a period of 1 year had consistent findings. Those lacking dense bodies (15) when first examined also lacked dense bodies when reexamined a year later, and they had evidence of ceroid storage. Those with dense bodies when first examined (8) also had dense bodies when reexamined, did not have evidence of storage disease, and had types of albinism other than HPS. Of 20 propositi lacking dense bodies, all 32 albino relatives also lacked dense bodies, while 6 albino relatives of 6 propositi with dense bodies also had dense bodies in their platelets. The evidence supports the concept that HPS is a distinct genetic and biochemical disease in which the components of the triad are the result of a single genetic defect, either a point mutation or a small deletion. Comparison of whole mount preparations with thin section preparations of 13 albinos shows that whole mount preparations are an accurate and rapid method for diagnosing HPS. The most consistent diagnostic feature of HPS is lack of platelet dense bodies.  相似文献   

14.
Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency.  相似文献   

15.
Meng R  Wang Y  Yao Y  Zhang Z  Harper DC  Heijnen HF  Sitaram A  Li W  Raposo G  Weiss MJ  Poncz M  Marks MS 《Blood》2012,120(2):404-414
Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.  相似文献   

16.
Thomas A. Blair 《Platelets》2020,31(5):633-640
Abstract

Mass cytometry is a next generation flow cytometry technology which analyzes cells one at a time (up to 1000/sec) using mass spectrometry to detect probes labeled with rare-earth metals. Rare-earth metals detected by mass spectrometry have extremely low backgrounds and can be identified with high resolution enabling the routine simultaneous detection of more than 45 probes on each cell without the need for complex compensation matrices. Here we describe a panel of 14 platelet-specific metal-conjugated antibodies (targeting cluster of differentiation [CD] 9, CD29, CD31, CD36, CD41, CD42a, CD42b, CD61, CD62P, CD63, CD107a, CD154, glycoprotein [GP] VI and activated integrin αIIbβ3) and methods for staining and analysis of platelets by mass cytometry. High dimensional clustering algorithms, which take into account the levels of all 14 markers detected by mass cytometry on each cell, allow identification of platelet subpopulations not previously appreciated. We previously reported that platelet heterogeneity identified by mass cytometry appears similar across healthy donors and consistent over time. High dimensional analysis revealed the presence of a platelet subpopulation with significantly higher levels of surface expression of activated GPIIb-IIIa and P-selectin suggesting this subpopulation may play a greater role in thrombus formation than other platelet subpopulations. Thus, analysis by mass cytometry of platelet heterogeneity and subpopulations may suggest distinct biological roles for different platelet subpopulations and may be useful in evaluating inherited or acquired platelet disorders and platelet function in health and disease.  相似文献   

17.
M. Schuyler  K. Gott  B. Edwards 《Lung》1999,177(6):377-389
Cultured murine CD4+ T cell lines from Saccharopolyspora rectivirgula–sensitized donors with cytokine secretion characteristics of Th1 cells can adoptively transfer murine experimental hypersensitivity pneumonitis (EHP), whereas Th2 CD4+ cell lines cannot (Cell Immunol 177:169–175, 1997). To assess the differences between these cell lines that may be related to the ability to transfer EHP, we determined cell surface markers that distinguish naive from activated/memory cells that indicate activation and that mediate endothelial adhesion. Both Th1 and Th2 T cell lines are CD4+, CD11a+, ICAM-1+, and L-selectin negative. Th1 cells are CD49d (α4) and LPAM (α4β7) positive, with 32% and 42% of the apparent membrane site density quantitated as the mean molecules of equivalent soluble fluorochromes (MESF) values of unstimulated spleen cells, respectively. Th2 cells are weakly α4 and α4β7 positive, with 15% and 11% of the MESF of unstimulated spleen cells. Th1 cell lines are CD45Rb negative and CD44+, whereas Th2 cell lines are CD45Rb intermediate and CD44−/low. Th1 cells are CD25 (IL-2 receptor) low and Th2 cells CD25 high. We conclude that Th1 cells capable of transfer are activated/memory T cells, and Th2 cells incapable of transfer lack some characteristics of memory/activated T cells (i.e., increase of CD44 and decrease of CD45Rb). Both Th1 and Th2 cell lines express α4β7 and α4 (Th1 > Th2), suggesting that α4 integrin may be important in conferring ability to cells to adoptively transfer EHP. Accepted for publication: 10 August 1999  相似文献   

18.
Hermansky-Pudlak syndrome (HPS) defines a group of autosomal recessive disorders characterized by deficiencies in lysosome-related organelles such as melanosomes and platelet-dense granules. Several HPS genes encode proteins of unknown function including HPS1, HPS3, and HPS4. Here we have identified and characterized endogenous HPS3 and HPS4 proteins from HeLa cells. Both proteins were found in soluble and membrane-associated forms. Sedimentation-velocity and coimmunoprecipitation experiments revealed that HPS4 but not HPS3 associates with HPS1 in a complex, which we term biogenesis of lysosome-related organelles complex 3 (BLOC-3). Mutant fibroblasts deficient in either HPS1 or HPS4 displayed abnormal localization of lysosomes and late endosomes, which were less concentrated at the juxtanuclear region in mutant cells than in control fibroblasts. The coat-color phenotype of young homozygous double-mutant mice deficient in subunits of BLOC-3 (HPS1) and BLOC-1 (pallidin) was indistinguishable from that of BLOC-1 single mutants. Taken together, these observations suggest that HPS1 and HPS4 are components of a protein complex that regulates the intracellular localization of lysosomes and late endosomes and may function in a BLOC-1-dependent pathway for melanosome biogenesis.  相似文献   

19.
CD63 is a component of Weibel-Palade bodies of human endothelial cells   总被引:5,自引:4,他引:5  
Vischer  UM; Wagner  DD 《Blood》1993,82(4):1184-1191
Weibel-Palade bodies are secretory granules of vascular endothelial cells specialized in the storage of von Willebrand factor (vWF) and P- selectin, two adhesion proteins that can be rapidly mobilized to the cell surface by exocytosis in response to thrombin or other agonists. In this study, we attempted to identify additional components of Weibel- Palade bodies by raising monoclonal antibodies to these granules, purified by cell fractionation. One antibody, 2C6, was found to be specific for CD63, a membrane glycoprotein previously described in the lysosomes of platelets and other cell types. The immunopurified 2C6 antigen was recognized by an anti-CD63 reference antibody, 2.28, by Western blotting. Also, the biosynthetic profile of the 2C6 antigen in endothelial cells showed a nascent molecular mass and a glycosylation pattern identical to that of CD63. Immunofluorescence staining with 2C6 showed the lysosomes, and also elongated structures identified as Weibel-Palade bodies by their shape, distribution, and positive staining with anti-vWF antibodies, CD63 was also found by Western blotting of subcellular fractions highly enriched in Weibel-Palade bodies. Our results indicate that CD63 colocalizes with vWF and P- selectin in the Weibel-Palade bodies of endothelial cells, and together with these adhesion proteins it could be rapidly expressed on the cell surface in areas of vascular injury and inflammation.  相似文献   

20.
The recessive mutation at the pale ear (ep) locus on mouse chromosome 19 was found to be the homologue of human Hermansky–Pudlak syndrome (HPS). A positional cloning strategy using yeast artificial chromosomes spanning the HPS locus was used to identify the HPS gene and its murine counterpart. These genes and their predicted proteins are highly conserved at the nucleotide and amino acid levels. Sequence analysis of the mutant ep gene revealed the insertion of an intracisternal A particle element in a protein-coding 3′ exon. Here we demonstrate that mice with the ep mutation exhibit abnormalities similar to human HPS patients in melanosomes and platelet-dense granules. These results establish an animal model of HPS and will facilitate biochemical and molecular analyses of the functions of this protein in the membranes of specialized intracellular organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号