首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC) can represent an important target for vaccine development against viral infections. Here, we studied whether interferon-gamma (IFN-gamma) could improve the functions of DC and analyzed human red blood cells (RBC) as a delivery system for Tat protein. Monocyte-derived DC were cultured in human serum and matured with monocyte-conditioned medium (MCM) in the presence or not of IFN-gamma. Tat was conjugated to RBC (RBC-Tat) through avidin-biotin bridges. Stimulation of DC with IFN-gamma increased the release of interleukin (IL)-12 and tumor necrosis factor-alpha and inhibited the production of IL-10. Moreover, IFN-gamma-treated DC up-regulated the release of CXCL10 (IP-10) markedly and reduced the secretion of CCL17 TARC significantly, attracting preferentially T-helper (Th)1 and Th2 cells, respectively. DC internalized RBC-Tat efficiently. Compared with DC pulsed with soluble Tat, DC incubated with RBC-Tat elicited specific CD4+ and CD8+ T-cell responses at a much lower antigen dose. DC matured in the presence of MCM were more effective than immature DC in inducing T-cell proliferation and IFN-gamma release. Finally, immature and mature DC exposed to IFN-gamma were better stimulators of allogeneic T cells and induced a higher IFN-gamma production from Tat-specific CD4+ and CD8+ T lymphocytes. In conclusion, erythrocytes appear an effective tool for antigen delivery into DC, and IFN-gamma could be used advantageously for augmenting the ability of DC to induce type 1 immune responses.  相似文献   

2.
Influenza virus envelope proteins incorporated into immunostimulating complexes (iscoms) are taken up and processed by various kinds of antigen-presenting cells (APC), encompassing peritoneal cells (PEC), unfractionated splenocytes, splenic dendritic cells (DC) or B cells. The iscom-pulsed naive APC stimulated primed T cells to proliferate and produce cytokine in vitro. In contrast, only DC and B cells pulsed with the same antigen (Ag) in the micelle form functioned as accessory cells stimulating the primed T cells to proliferate and produce cytokine. In general, iscoms were better inducers of cell proliferation than micelles. Iscoms stimulated more secretion of IL-2 and interferon-gamma (IFN-gamma) than the micelles, but both antigenic forms stimulated secretion of IL-4. DC and B cells pulsed with iscoms stimulated most efficiently the secretion of IL-2 and IFN-gamma. DC were superior to the other APC in stimulating primed T cells to secrete IFN-gamma. On the other hand, micelles stimulated more efficiently than iscoms splenic T cells from micelle-primed as well as iscom-primed mice to secrete IL-10. These data indicate that influenza virus envelope proteins incorporated in iscoms stimulate a broad T cell response, possibly emphasizing a Th1 type of response. The same Ag in a micelle form induce a more prominent Th2 type of T cell response. The results indicate that the administration of an Ag in an adjuvant formulation can superimpose a different cytokine profile on the immune response than that induced by the protein Ag alone.  相似文献   

3.
Previous studies have suggested that defective immune responses in early life may be related to the immaturity of neonatal antigen-presenting cells. To test this hypothesis, we assessed the capacity of neonatal dendritic cells (DC) to prime and polarize in vitro human naive antigen-specific T cells. We report that mature cord blood DC efficiently prime an oligoclonal population of antigen-specific CD8 T cells, capable of cytolytic activity and IFN-gamma secretion. In contrast, cells primed by immature cord blood DC do not acquire cytolytic activity and secrete lower amounts of IFN-gamma. Upon priming by either immature or mature DC, neonatal T cells acquire markers of activation and differentiation towards effector-memory cells. Our results demonstrate that, if appropriately activated, neonatal DC can prime efficient cytotoxic T lymphocyte (CTL) responses. Furthermore, these findings have important implications for the development of vaccine strategies in early life and for the reconstitution of a functional CTL repertoire after bone marrow transplantation.  相似文献   

4.
We have compared the efficiency of central nervous system and peripheral antigen-presenting cells (APC) in T cell priming and restimulation. OVA peptide 323 - 339-dependent activation of DO11.10 TCR-transgenic naive CD4+ and polarized Th1 or Th2 cells was assessed in the presence of microglia and astrocytes from the neonatal mouse brain as well as dendritic cells (DC) and B cells purified from adult mouse lymph nodes. DC were the most efficient in inducing naive T cell proliferation, IL-2 secretion and differentiation into Th1 cells, followed by IFN-gamma-preactivated microglia, large and small B cells. Astrocytes failed to activate naive T cells. IFN-gamma-pretreated microglia were as efficient as DC in the restimulation of Th1 cells, whereas IFN-gamma-pretreated astrocytes, large and small B cells were much less efficient. Conversely, Th2 cells were efficiently restimulated by all the APC types examined. During T cell priming, DC secreted more IL-12 than microglia but similar amounts of IL-12 were secreted by the two cell types upon interaction with Th1 cells. The hierarchy of APC established in this study indicates that DC and microglia are the most efficient in the stimulation of naive CD4(+) T cells and in the restimulation of Th1 cells, suggesting that activated microglia may effectively contribute to Th1 responses leading to central nervous system inflammation and tissue damage. These potentially pathogenic responses could be counteracted by the high efficiency of astrocytes as well as microglia in restimulating Th2 cells.  相似文献   

5.
Human CD83 is a marker molecule for mature dendritic cells (DC) and is also expressed on activated B and T cells. Although CD83 has been implicated in immune responses, its function on DC and T cells remains unclear. In this study, we wanted to assess the role of CD83 expressed on DC and T cells in the immune response. Down-regulation of CD83 expression on human DC through RNA interference (RNAi) results in a less potent induction of allogeneic T cell proliferation, reduced IFN-gamma secretion by established T cells and decreased capacity in the priming of functional tumor antigen-specific CD8+ T lymphocytes. In addition, CD83 mRNA-electroporated DC are stronger T cell stimulators. However, CD83 overexpression on Melan-A/MART-1-specific tumor-infiltrating lymphocytes (TIL) circumvents the need for CD83 expression on DC. Co-culture of immature DC with TIL or K562 cells overexpressing CD83 results in the production of enhanced levels of pro-inflammatory cytokines, whereas this production is less pronounced or even absent in co-cultures with non-modified TIL or K562 cells. In conclusion, we demonstrate that CD83 expression on T cells and DC modulates the immune response by activating DC and by delivering costimulatory signals for the stimulation of naive and memory T cells, respectively.  相似文献   

6.
F5 TCR transgenic mice challenged in vivo with peptide generate long-lived primed CD8 T cells that hyper-proliferate in response to peptide in vitro. These primed CD8 T cells can be subdivided into three distinct populations on the basis of CD44 cell surface expression. In this report, we show that among primed CD8 T cells, those expressing intermediate levels of CD44 appear to be true memory T cells by the measurement of a variety of characteristics. Indeed, these cells hyper-proliferate in response to peptide re-stimulation in vitro, and produce IFN-gamma with faster kinetics and at higher levels than naive populations in vitro. We also show that CD8 T cells expressing high levels of CD44 express several activation markers and cycle in vivo in the absence of antigen. However, this population is unable to respond to peptide stimulation in vitro as measured by both proliferation and IFN-gamma secretion. The origin and specificity of these cells is unknown. These results provide evidence that memory CD8 T cells are functionally different from naive CD8 T cells both in terms of proliferation and cytokine secretion. They identify the CD8/CD44(int) T cells as the population responsible for hyper-reactivity in vitro.  相似文献   

7.
Naturally occurring CD4+CD25+ regulatory T (TR) cells play crucial roles in normal immunohomeostasis. CD4+CD25+ TR cells exhibit a number of interesting in vitro properties including a 'default state' of profound anergy refractory to conventional T cell stimuli. We investigated the in vitro activation requirements of CD4+CD25+ TR cells using bone marrow-derived DC, which as professional antigen presenting cells (APC) can support the activation of normal naive T cells. Comparison of different APC types revealed that LPS-matured DC were by far the most effective at breaking CD4+CD25+ TR cell anergy and triggering proliferation, and importantly their IL-2 production. Examination of Foxp3, a key control gene for CD4+CD25+ TR cells, showed this to be stably expressed even during active proliferation. Although CD4+CD25+ TR cell proliferation was equivalent to that of CD25- cells their IL-2 production was considerably less. Use of IL-2-/- mice demonstrated that the DC stimulatory ability was not dependent on IL-2 production; nor did IL-15 appear crucial but was, at least in part, related to costimulation. DC also blocked normal CD4+CD25+ TR cell-mediated suppression partially via IL-6 secretion. DC therefore possess novel mechanisms to control the suppressive ability, expansion and/or differentiation of CD4+CD25+ TR cells in vivo.  相似文献   

8.
Pertussis toxin (PTx), an exotoxin produced by Bordetella pertussis, has long been used as a mucosal adjuvant. We examined the T cell stimulatory properties of PTx in order to dissect its mechanisms of adjuvanticity. PTx or the B-oligomer of PTx (PTxB) failed to activate purified murine CD4+ or CD8+ T cells, as measured by a lack of proliferation or expression of early T cell activation markers. However, these T cells proliferated extensively in response to the toxin in the presence of syngeneic DC, and proliferation was accompanied by a high level of IFN-gamma production in the absence of IL-12. Interestingly, such responses were independent of signals mediated by MHC-TCR interaction. Both PTx and PTxB were found to bind stably to the surface of DC, and increased the adherence of DC to surrounding cells. These data suggest that polyclonal T cell responses mediated by the toxin are likely to be caused by the toxin bound on the surface of APC, either cross-linking cell surface molecules on T cells, or directly stimulating T cells together with the co-stimulatory molecules expressed on APC. B. pertussis may use this toxin as a mechanism to evade a specific immune response.  相似文献   

9.
Few data are available regarding the induction of memory T-lymphocyte responses in cattle following Bacille Calmette Guérin (BCG) vaccination. Studies of the immune response induced by BCG vaccination provide an insight into the basis of antimycobacterial immunity that could be exploited for the development of more effective vaccination strategies. We used autologous dendritic cells (DC) infected with Mycobacterium bovis Bacille Calmette Guérin (BCG) or pulsed with purified protein derivative from M. bovis (PPD-B) or M. avium (PPD-A) to assess responses of CD4+, CD8+ and WC1+ gammadelta TCR+ lymphocytes from BCG vaccinated and nonvaccinated cattle. Mycobacteria-specific CD4+ and CD8+, but not WC1+ gammadelta TCR+, memory T lymphocytes were demonstrated in BCG-vaccinated cattle. CD4+ and CD8+ lymphocytes proliferated and produced interferon (IFN)-gamma in response to BCG-infected or PPD-B-pulsed DC. Proliferative responses were greater for CD4+ than CD8+ lymphocytes, although secretion of IFN-gamma was higher from the CD8+ T cells. Responses to PPD-A-pulsed DC were lower, with no CD8+ response. Lymphocytes from nonvaccinated calves were also stimulated to proliferate by BCG-infected DC, although the magnitude of proliferation was lower. The findings suggest that immunity to M. bovis induced by BCG vaccination in cattle may involve CD8+ memory T cells which produce IFN-gamma, as well as CD4+ memory T cells.  相似文献   

10.
Dendritic cells (DC) play a pivotal role in linking innate and adaptive immunity. Only mature DC are able to initiate adaptive immune responses by sensitising naive antigen-specific T cells. For clinical immunotherapeutic applications, safe and efficient clinical grade maturation factors of DC are required. Here, we investigated the impact of OM-197-MP-AC (OM-197), a synthetic lipid A analogue pseudo-dipeptide derived from amino acids linked to three fatty acid chains, on the maturation of human monocyte-derived-DC (Mo-DC) and leukemia-derived DC generated in serum-free conditions. After culture with clinical grade GM-CSF and IL-13, OM-197 at 20 microg/ml efficiently induced CD83+ Mo-DC. In comparison to immature Mo-DC that were derived by culture with GM-CSF and IL-13 only, CD40, CD80, CD86, HLA-ABC and HLA-DR molecules were up-regulated upon OM-197 or LPS treatment similarly. In MLR, OM-197-matured Mo-DC were found to be as potent stimulators as LPS-matured Mo-DC for CD4+ T cell proliferation. No significant difference in IFN-gamma quantification was shown between naive CD4+ T cells stimulated by LPS- or OM-197-Mo-DC suggesting that OM-197-Mo-DC can drive naive T cells towards a Th1 response profile that was mainly independent of IL-12 secretion. Similarly, CD8+ T cells could be efficiently polarized into IFN-gamma-secreting-cells by OM-197-Mo-DC, and activated polyclonal pp65-cytomegalovirus-specific CD8+ T lymphocytes. Finally, myeloid leukemic blasts were able to differentiate in vitro into mature functional DC-like cells upon OM-197 treatment in our culture model. Overall, the in vitro effects of clinical grade adjuvant OM-197, showed that it represents a potent inducer of both normal and leukemic-DC maturation, and is likely a good candidate for adjuvant immunotherapy in DC-based vaccines.  相似文献   

11.
Intraperitoneal peptide injection of TCR-transgenic mide or expression of antigen in hepatocytes leads to an accumulation in the liver of specific apoptotic CD8+ T cells expressing activation markers. To determine whether liver cells are capable of directly activating naive CD8+ T cells, we have studied the ability of purified hepatocytes to activate TCR-transgenic CD8+ T cells in vitro. We show that hepatocytes which do not express CD80 and CD86 co-stimulatory molecules are able to induce activation and effective proliferation of specific naive CD8+ T cells in the absence of exogenously added cytokines, a property only shared by professional antigen-presenting cells (APC). Specific T cell proliferation induced by hepatocytes was comparable in magnitude to that seen in response to dendritic cells and was independent of CD4+ T cell help or bystander professional APC co-stimulation. During the first 3 days, the same number of divisions was observed in co-cultures of CD8+ T cells with either hepatocytes or splenocytes. Both APC populations induced expression of early T cell activation markers and specific cytotoxic T lymphocyte (CTL) activity. However, in contrast to T cells activated by splenocytes, T cells activated by hepatocytes lost their cytolytic function after 3 days of co-culture. This correlated with death of activated T cells, suggesting that despite efficient activation, proliferation and transient CTL function, T cells activated by hepatocytes did not survive. Death could be prevented by adding antigen-expressing splenocytes or exogenous IL-2 to the co-culture, indicating that hepatocytes are not involved in direct killing of CD8+ T cells but rather fail to promote survival. Dying cells acquired a CD8low TCRlow B220+ phenotype similar to the one described for apoptotic intrahepatic T cells, suggesting an alternative model to account for the origin of these cells in the liver. The importance of these findings for the understanding of peripheral tolerance and the ability of liver grafts to be accepted is discussed.  相似文献   

12.
Heat shock proteins (HSP) like Hsp60, Hsp70 and gp96 act directly on antigen-presenting cells (APC), e.g. by inducing the secretion of cytokines. Here we analyzed the impact of Hsp60 on the antigen-specific activation of CD8(+) T cells in a TCR transgenic system. Hsp60 induced low amounts of IFN-gamma in the absence of antigenic peptide; however, the release of IFN-gamma is increased by a factor of 3-10 following the addition of Hsp60 to purified populations of OT-1 [ovalbumin (OVA)257-264/H2-K(b)-restricted] T cells and antigen-pulsed peritoneal exudate cells (PEC) as APC. This effect is strictly correlated with the PEC ability to produce IL-12. In contrast, antigen-specific IL-2 secretion and T cell proliferation was not changed in the presence of Hsp60. Hsp60-containing OT-1 T cell cultures produced IFN-gamma even when the number of antigenic MHC class I complexes was too low to be stimulatory and could not be detected with specific mAb. Hsp60, thus, acts as a catalyzing molecule to initiate both innate and adaptive immune responses, and its presence (e.g. during an infection with cellular destruction) has direct consequences for the activation of otherwise 'ignorant' antigen-specific T cells.  相似文献   

13.
It is unknown to what extent the heterogeneity of antigen presenting cells (APC) influences the IFN-gamma response of CD4 memory cells. We re-stimulated DO11.10 T cell receptor (TCR)-transgenic cells and wild-type CD4 memory cells with OVA-peptide 323-339 presented on purified dendritic cells (DC), macrophages, and B cells. Using IFN-gamma ELISPOT assays, we measured the number of cytokine producing T cells and the amount of cytokine produced by individual T cells at different time points after antigen encounter. The data showed that, when CD4 cells recognized antigen on DC, the induction of cytokine production was accelerated compared to macrophages and B cells. In contrast, the per-cell cytokine productivity was independent of the type of APC by which the T cells were re-stimulated. Moreover, the peptide concentration required for CD4 cell activation was comparable for the different APC. The data suggest that DC induce cytokine production in memory cells with accelerated activation kinetics, whereas 24 h of antigen stimulation on DC, macrophages, and B cells results in comparable levels of T cell activation. These data have implications for the understanding of T cell memory responses when T cells re-encounter antigen on different APC as well as for the monitoring of memory T cell responses ex vivo.  相似文献   

14.
Direct exosome stimulation of peripheral human T cells detected by ELISPOT   总被引:5,自引:0,他引:5  
Exosomes from APC are nano-vesicles that can induce antigen-specific T cell responses and are presently explored as therapeutic tools in different clinical settings. Investigations of the capacity of exosomes to stimulate T cells in vitro have mostly been performed on T cell hybridomas, clones or lines. Whether exosomes can stimulate T cells directly or need the presence of dendritic cells (DC) is debated. We could detect exosome-induced antigen-specific CD8(+) T cell responses in peripheral blood from humans. Exosomes from monocyte-derived DC (MDDC) were loaded with a mix of 23 immunogenic peptides from EBV, CMV and influenza virus, and added to autologous peripheral CD8(+) T cells. IFN-gamma-producing cells were detected by enzyme-linked immunospot assay (ELISPOT). MDDC-exosomes induced IFN-gamma production in CD8(+) T cells without addition of DC. The response was exosome dose dependent, and dependent on exosomal MHC class I. Furthermore, we detected an enhanced T cell stimulatory capacity by exosomes from lipopolysaccharide-matured MDDC compared to exosomes from immature MDDC. Exosomes could also induce TNF-alpha production. These results show, for the first time, that exosomes can directly stimulate human peripheral CD8(+) T cells in an antigen-specific manner and that ELISPOT is a suitable method for detecting exosome-induced peripheral T cell responses. This system may provide a useful tool when developing exosomes as therapeutic agents.  相似文献   

15.
Freshly isolated quiescent splenic dendritic cell (DC) subtypes differ in their capacity to activate naive CD4 T cells in culture. The CD8+ DC showed a reduced capacity to stimulate T cell proliferation compared to either of the CD8- DC subsets, regardless of antigen and DC dose. In contrast to CD8- DC, the quiescent CD8+ DC did not induce IFN-gamma production from CD4 T cells. The difference between the DC subtypes appeared to be at the level of initial surface molecule interactions, but could not be attributed to differences in expression of MHC class II or B7 family molecules, or to the expression of Fas ligand on DC. However, when activated by inclusion of the Toll-like receptor 9 ligand CpG in culture, CD8+ DC became potent stimulators of both CD4 T cell proliferation and IFN-gamma production. In contrast, similar activation of CD8- DC produced a more modest increase in capacity to stimulate CD4 T cell proliferation and no increase in capacity to stimulate IFN-gamma production. The difference between a quiescent and an activated state is therefore more extreme for CD8+ than for CD8- DC. The especially tight regulation of the activity of CD8+ DC may be essential for the maintenance of self tolerance.  相似文献   

16.
Dendritic cells (DC), in their role in initiation of the adaptive immune response, have been extensively studied for their capacity to interact and stimulate naive T cells. Subsets of mature murine DC isolated directly from the spleen have been shown to differ in their ability to induce proliferative responses in both primary CD4(+) and primary CD8(+) T cells; the myeloid-related CD8alpha(-) DC induce a more intense or prolonged proliferation of naive T cells than do the lymphoid-related DC bearing CD8alpha despite similar expression of MHC and co-stimulatory molecules. Here we examine the interaction of these DC subpopulations with T cells already in the activated or memory state which are known to have greater sensitivity to antigen stimulation and bear receptors with increased capacity for signal transduction. We show that influenza virus-specific CD4(+) T cell clones and splenic T cells from peptide-primed animals proliferated in response to antigen presented by separated splenic CD8(-) DC. In contrast, these T cells showed only weak, if any, proliferation in response to CD8(+) DC despite observable cluster formation in the cultures. The differential between the two DC types in inducing proliferation was even more pronounced than previously seen with primary T cells and did not reflect differential longevity of the DC in culture, altered response kinetics or deviation from IL-2 to IL-4 induction with CD8(+) DC, but was related to the levels of IL-2 induced. The deficiency in the CD8(+) DC was not overcome by using infectious virus rather than synthetic peptide as the antigen source. These results show that lymphoid-related CD8(+) splenic DC, despite their mature phenotype, fail to provide appropriate signals to secondary CD4(+) T cells to sustain their proliferation.  相似文献   

17.
Transforming growth factor beta (TGF beta)-treated antigen-presenting cells (APC) pulsed with antigen induce tolerance in mice, i.e. inhibition of IFN-gamma production and delayed type hypersensitivity response. Although evidence suggests that regulatory T cells are involved, their mechanism of action is currently unknown and is the subject of the present study. Both CD4 and CD8 splenic T cells from mice injected i.v. with adherent thioglycolate-elicited peritoneal exudate cells cultured with TGF beta(2) and antigen (TGF beta-treated APC) transferred tolerance to naive recipients. Interestingly, TGF beta-treated APC from class II knockout mice were unable to induce tolerance in wild-type mice, whereas wild-type TGF beta-treated APC could induce tolerance in CD8 knockout mice. TGF beta was detected in cultures of lymphoid cells from mice injected with TGF beta-treated APC, and treatment with anti-TGF beta antibody in vivo impaired tolerance induction. TGF beta appeared to be involved in both the development of CD4 regulatory T cells and the effector function of the CD4 regulatory T cells. In summary, the important findings in this study are that CD4, and not CD8, regulatory T cells are required for tolerance induced by TGF beta-treated APC in naive mice, and tolerance appears to be mediated by a mechanism involving TGF beta.  相似文献   

18.
Bacterial DNA and immunostimulatory (i.s.) synthetic CpG-oligodeoxynucleotides (ODN) act as adjuvants for Th1 responses and cytotoxic T cell responses to proteinaceous antigens. Dendritic cells (DC) can be referred to as “nature's adjuvant” since they display the unique capacity to sensitize naive T cells. Here, we demonstrate that bacterial DNA or i.s. CpG-ODN cause simultaneous maturation of immature DC and activation of mature DC to produce cytokines. These events are associated with the acquisition of professional antigen-presenting cell (APC) function. Unfractionated murine bone marrow-derived DC and FACS®-fractionated MHC class IIlow (termed immature DC) or MHC class IIhigh populations (termed mature DC) were stimulated with bacterial DNA or i.s. CpG-ODN. Similar to lipopolysaccharide, i.s. CpG-ODN caused up-regulation of MHC class II, CD40 and CD86, but not CD80 on immature and mature DC. In parallel both DC subsets were activated to produce large amounts of IL-12, IL-6 and TNF-α. CpG-ODN-activated DC displayed professional APC function in allogeneic mixed lymphocyte reaction and in staphylococcal enterotoxin B-driven naive T cell responses. We interpret these findings to mean that bacterial DNA and i.s. CpG-ODN cause maturation (first step) and activation (second step) of DC to bring about conversion of immature DC into professional APC.  相似文献   

19.
We showed in a previous study that the intranasal (i.n) delivery of bacille Calmette-Guérin (BCG) to BP2 mice (H-2q) inhibits eosinophilia and bronchial hyperreactivity in a mouse model of asthma. The present work has been performed to characterize the leucocyte lineages recruited to the lungs of mice after i.n. delivery of BCG and potentially involved in the polarization of T lymphocytes. The different antigen-presenting cells (APC) recruited to bronchoalveolar lavage (BAL) and to lung tissue of mice shortly after the delivery of BCG were analysed in parallel as well as their capacity to drive the immune response towards a T helper type 1 cytokine production. Alveolar macrophages (AM) from the BAL were CD11c+, F4/80+ and CD11b-, and in the lung tissue two major populations of potential APC were detected: one CD11c-, F4/80+, CD11b+ and I-Aq- was identified as interstitial macrophages (IM) and a second expressing CD11c+ and I-Aq+ antigens, negative for CD11b and F4/80 markers as leucocytic dendritic cells (DC). Freshly isolated DC up-regulated CD11b and CD40 antigens after overnight culture, but remained negative for CD8alpha antigen, suggesting a myeloid origin. Lung DC which produced high amount of interleukin (IL)-12 were potent inducers of naive CD4+ T lymphocyte priming, as assessed by interferon-gamma (IFN-gamma) production by these naive CD4+ T cells. Lung explants recovered long term after BCG delivery produced sustained levels of IFN-gamma. Our results suggest that AM and particularly DC by secreting IL-12 shortly after BCG delivery induce the long-term persistence of IFN-gamma-secreting T cells percolating in BCG-loaded lung tissue.  相似文献   

20.
The influence of GM+IL-4 and Flt3 ligand (FL) on phenotype and function of BM-derived DC from Lewis rats was investigated. GM+IL-4-induced DC, despite expression of CD80/CD86, were less stimulatory than FL-induced DC that expressed low CD80/CD86 and were efficient stimulators of allogeneic T cells. GM+IL-4 DC were CD11b+ OX62lo, whereas FL DC were CD11blo OX62+. Following activation, GM+IL-4 DC produced IL-10 and IL-6, but no IL-12p70, and were resistant to further maturation. FL DC produced IL-12p70, IFN-alpha/beta, IL-10 and IL-6 and underwent maturation. Repeated stimulation of T cells with GM+IL-4 DC inhibited proliferation, cytokine production and induced early T cell apoptosis. FL DC-activated T cells produced large amounts of IFN-gamma/IL-10 and exhibited late T cell apoptosis/necrosis. In vivo, GM+IL-4 DC induced alloAg-specific hyporesponsiveness following T cell restimulation. These results demonstrate that GM+IL-4 DC display intrinsic regulatory properties, inducing passive-cell-death in T cells with potential for inactivation/regulation of alloreactive T cells in transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号