首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NKG2D配体的表达直接影响NK细胞对不同发育阶段DC的杀伤   总被引:1,自引:1,他引:1  
目的:探讨NKG2D配体在不同发育阶段树突状细胞(DC)表面的表达及其对自然杀伤(NK)细胞杀伤活性的影响.方法:用细胞因子(rh IL-4、rhGM-CSF、TNF-α)体外诱导培养单核细胞来源的未成熟树突状细胞(iDC)和成熟树突状细胞(mDC)并鉴定形态和表型,免疫磁珠法分离纯化NK细胞.流式细胞术(FCM)检测iDC和mDC表面NKG2D配体MICA/B、ULBP1-3的表达.用LDH释放法检测NK细胞对iDC和mDC的杀伤活性以及抗NKG2D单克隆抗体(mAb)阻断NK细胞后的杀伤活性.结果:培养的iDC和mDC具有典型的细胞形态和免疫表型特征.iDC表面表达MICA、MICB、ULBP1、ULBP3,表达率分别为(32.39±8.30)%、(17.75±3.40)%、(26.71±6.48)%、(38.37±6.89)%;mDC表面表达MICA 、ULBP3,表达率分别为(7.82±2.67)%、(8.36±2.42)%,比iDC表面相应配体表达率低(P<0.01).各效靶比NK细胞对iDC的杀伤活性均比对mDC的杀伤活性高,差异有统计学意义(P<0.01).抗NKG2D mAb阻断NK细胞后对iDC杀伤活性比阻断前减弱(P<0.05);对mDC的杀伤活性与阻断前相比无统计学意义(P>0.05).结论:NKG2D配体在iDC表面表达高,介导了NK细胞对iDC的杀伤,而对mDC的杀伤无影响,是NK细胞对iDC选择性高杀伤的分子机制之一.  相似文献   

2.
目的 观察膜型和分泌型MICA对NK细胞受体表达的影响 ,以探讨NK细胞抗肿瘤活化机制及肿瘤细胞表达MICA分子的意义。方法 用MTT法测定人NK细胞系 (NK92 )的细胞毒活性 ;用RT PCR或FACS检测NK细胞受体 (NKG2D ,NKG2A B ,KIR2DL1,KIR2DS1)及NKG2D的识别配体MICA的表达。结果 肿瘤细胞表面的MICA分子可上调NKG2D的表达 ,下调抑制性受体NKG2A B和KIR2DL1的表达 ;而分泌型MICA (sMICA)分子对NKG2D及抑制性受体的表达均有抑制作用。结论 膜型MICA分子可上调NKG2D的表达 ,激发NK细胞对肿瘤细胞的细胞毒效应 ;分泌型MICA分子则通过降低NKG2D的表达下调机体的抗肿瘤免疫效应 ,肿瘤细胞分泌sMICA分子为肿瘤发生免疫逃逸的机制之一。  相似文献   

3.
The NKG2D activating receptor on human NK cells mediates “altered self” recognition, as its ligands (NKG2DLs) are upregulated on target cells in a variety of stress conditions. Evidence collected in the past years shows that, even though expression of NKG2DLs acts as a danger signal that renders tumor cells susceptible to cytotoxicity, chronic exposure to soluble or membrane‐bound NKG2DLs can lead to down‐modulation of receptor expression and impairment of NKG2D‐mediated cell functions. Here, we evaluated whether different cell‐bound NKG2DLs, namely MICA and ULBP2, are equivalently able to induce NKG2D down‐modulation on human NK cells. We found that although both ligands reduce NKG2D surface expression, MICA promotes a stronger receptor down‐modulation than ULBP2, leading to a severe impairment of NKG2D‐dependent NK‐cell cytotoxicity. We also provide evidence that the ubiquitin pathway and c‐Cbl direct MICA‐induced but not ULBP2‐induced NKG2D internalization and degradation, thus identifying a molecular mechanism to explain the differential effects of MICA and ULBP2 on NKG2D expression. A better understanding of the molecular mechanisms employed by the different NKG2DLs to control NKG2D surface expression could be useful for the development of anti‐tumor strategies to restore a normal level of NKG2D receptors on human NK cells.  相似文献   

4.
The NKG2D receptor is expressed by human NK, gammadelta T and alpha/beta T lymphocytes and its engagement results in the stimulation of effector cells. We evaluated the role of NKG2D receptor in anti-colorectal cancer (CRC) immune response. The cell surface expression of stress-inducible NKG2D ligands MICA/B (MHC class I-related chain molecules A/B) and ULBP (UL16 binding protein) by a panel of CRC lines was evaluated by flow cytometry. MICA and ULBP2/3 were widely expressed by the analyzed lines, with a minority of them being also ULBP-1+, whereas MICB was undetectable. CD8+ and CD4+ HLA-restricted anti-tumor T cell clones of a CRC patient were used to evaluate whether NKG2D engagement could mediate tumor recognition. Three out of four CD8+ T cell clones recognized the autologous tumor with a marginal NKG2D engagement, a finding that was correlated with the weak expression of NKG2D ligands by the autologous tumor. On the contrary, NKG2D triggering of these CD8+ T cell clones induced recognition of allogeneic CRC lines showing high expression of MICA and ULBP. A costimulatory role of NKG2D was observed with one CD4+/NKG2D+ T cell clone when stimulated by tumors sharing the HLA class II alleles and expressing NKG2D ligands. Taken together these data indicate that the engagement of NKG2D, depending on the expression of its ligands by target cells, can influence the pattern of anti-tumor reactivity by T lymphocytes.  相似文献   

5.
The activating natural killer group 2 member D (NKG2D) receptor is expressed on NK cells, cytotoxic T cells and additional T cell subsets. Ligands for human NKG2D comprise two groups of MHC class I‐related molecules, the MHC class I chain‐related proteins A and B (MICA/B) and 6 UL16‐binding proteins (ULBP1‐6). While NKG2D ligands are absent from most normal cells, expression is induced upon stress and malignant transformation. In fact, most solid tumours and leukaemia/lymphomas constitutively express at least one NKG2D ligand and thereby are susceptible to NKG2D‐dependent immunosurveillance. However, soluble NKG2D ligands are released from tumour cells and can down‐modulate NKG2D activation as a means of tumour immune escape. In some tumour entities, levels of soluble NKG2D ligands in the serum correlate with tumour progression. NKG2D ligands can be proteolytically shed from the cell surface or liberated from the membrane by phospholipase C in the case of glycosylphosphatidylinositol (GPI)‐anchored molecules. Moreover, NKG2D ligands can be secreted in exosomal microvesicles together with other tumour‐derived molecules. Depending on the specific tumour/immune cell setting, these various forms of soluble and/or exosome‐bound NKG2D ligands can exert multiple effects on NKG2D/NKG2D ligand interactions. In this review, we focus on the role of various proteases in the shedding of human NKG2D ligands from tumour cells and discuss the not completely unanimous reported functional implications of soluble and exosome‐secreted NKG2D ligands for immunosurveillance.  相似文献   

6.
The human endometrium undergoes cyclical changes regulated by sex hormones. Evidence suggests that sex hormones regulate NK cell recruitment into the uterus in large numbers. NKG2D is an activating receptor expressed on human NK cells, gammadelta and CD8 T cells. NKG2D ligands are known to be sensors of cellular "stress". In this study, we investigated whether sex hormones directly regulate expression of NKG2D ligands in the human uterus. Estradiol increased MICA expression on uterine epithelial cells; regulation was estrogen receptor-dependent. Real-time PCR analysis showed that NKG2D ligands MICA and MICB were expressed in the human endometrium. MICA protein was detected primarily on epithelial cells, and greater expression was observed in immunohistochemical analysis of tissues from patients in the secretory phase of the menstrual cycle. Thus, estrogens regulate expression of MICA. These data suggest hormonal regulation of innate immunity and NKG2D-mediated recognition in other tissues and diseases where estrogen may be involved.  相似文献   

7.
Estrogen is involved in promoting lung cancer cell division and metastasis. MICA and MICB function as ligands for NKG2D, an important immunoreceptor expressed on natural killer (NK) cells. However, whether estrogen regulates MICA/B expression and affects tumor immune escape remains unknown. In this study, we measured the mRNA levels of MICA, MICB and ADAM17in non-small cell lung cancer (NSCLC) cell lines treated with estrogen. Surface expression of MICA/B on LTEP-a2 and A549 was detected using flow cytometry. We demonstrate that both mRNA and secretory protein levels of MICA/B in lung adenocarcinoma cell lines were upregulated by estradiol. Estradiol enhanced the expression of ADAM17, which was associated with the secretion of MICA/B. This secretion of MICA/B downregulated the NKG2D receptor on the surface of NK92 cells and impaired the cytotoxic activity of NK cells. Estradiol enhanced the expression of ADAM17, which was associated with the secretion of MICA/B. Furthermore, a significant correlation between the concentration of estradiol and the expression of MICA was found in tumor tissues of NSCLC patients. Therefore, we conclude that estrogen can regulate the expression and secretion of MICA/B through ADAM17, which helps lung cancer cells escape NKG2D-mediated immune surveillance.  相似文献   

8.
NKG2D is a recently described activating receptor expressed by both NK cells and CTL. In this study we investigated the role of NKG2D in the natural cytolysis mediated by NK cell clones. The role of NKG2D varied depending on the type of target cells analyzed. Lysis of various tumors appeared to be exclusively natural cytotoxicity receptors (NCR) dependent. In contrast, killing of another group of target cells, including not only the epithelial cell lines HELA and IGROV-1, but also the FO-1 melanoma, the JA3 leukemia, the Daudi Burkitt lymphoma and even normal PHA-induced lymphoblasts, involved both NCR and NKG2D. Notably, NK cell clones expressing low surface densities of NCR (NCR(dull)) could lyse these tumors in an exclusively NKG2D-dependent fashion. Remarkably, not all of these targets expressed MICA/B, thus implying the existence of additional ligands recognized by NKG2D, possibly represented by GPI-linked molecules. Finally, we show that the engagement of different HLA class I-specific inhibitory receptors by either specific antibodies or the appropriate HLA class I ligand led to inhibition of NKG2D-mediated NK cell triggering.  相似文献   

9.
NK cells are important innate cytotoxic lymphocytes that have potential in treatment of leukemia. Engagement of NKG2D receptor on NK cells enhances the target cytotoxicity. Here, we produced a fusion protein consisting of the extracellular domain of the NKG2D ligand MICA and the anti‐CD20 single‐chain variable fragment (scfv). This recombinant protein is capable of binding both NK cells and CD20+ tumor cells. Using a human NKG2D reporter cell system we developed, we showed that this fusion protein could decorate CD20+ tumor cells with MICA extracellular domain and activate NK through NKG2D. We further demonstrated that this protein could specifically induce the ability of a NK cell line (NKL) and primary NK cells to lyse CD20+ leukemia cells. Moreover, we found that downregulation of surface HLA class I expression in the target cells improved NKL‐mediated killing. Our results demonstrated that this recombinant protein specifically lyses leukemia cells by NK cells, which may lead to development of a novel strategy for treating leukemia and other tumors.  相似文献   

10.
为了观察同种异体NK细胞对不同肿瘤细胞的体外杀伤活性,并初步探讨其分子机制。以K562细胞为对照,应用LDH释放法检测不同效靶比时同种异体NK细胞杀伤CNE2、KG1a和U251细胞的活性。应用RT-PCR和流式细胞仪分别检测4种细胞MHCI类链相关分子(MICA/B)和人巨细胞病毒糖蛋白UL16结合蛋白(ULBP1~3)基因和分子的表达情况。效靶比20∶1时用AMO-1、BMO-1、M295、M310和M551单抗分别阻断肿瘤细胞表面MICA、MICB、ULBP1、ULBP2和ULBP3分子,观察NK细胞对其杀伤活性的变化。结果:NK细胞对K562、CNE2和KG1a细胞均有杀伤活性,对U251细胞无杀伤活性。在mRNA水平4种细胞均表达MICA/B和ULBP1~3基因。K562细胞表达MICA/B和ULBP1~3全部分子;KG1a和U251细胞均不表达5种分子;CNE2细胞表达MICA/B和ULBP2,不表达ULBP1和ULBP3。CNE2、KG1a和U251细胞均高表达HLAI分子,而K562细胞不表达。用单抗分别阻断靶细胞表面相应的NKG2D配体分子,NK细胞对KG1a和U251细胞的杀伤活性无变化。NK细胞对K562和CNE2细胞的杀伤活性可部分被封闭。同种异体NK细胞在体外对不同肿瘤细胞的杀伤活性不同,其杀伤机制也不完全相同。  相似文献   

11.
Membrane microdomains play an important role in the regulation of natural killer (NK) cell activities. These cholesterol‐rich membrane domains are enriched at the activating immunological synapse and several activating NK‐cell receptors are known to localize to membrane microdomains upon receptor engagement. In contrast, inhibitory receptors do not localize in these specialized membrane domains. In addition, the functional competence of educated NK cells correlates with a confinement of activating receptors in membrane microdomains. However, the molecular basis for this confinement is unknown. Here, we investigate the structural requirements for the recruitment of the human‐activating NK‐cell receptors NKG2D and 2B4 to detergent‐resistant membrane fractions in the murine BA/F3 cell line and in the human NK‐cell line NKL. This stimulation‐dependent recruitment occurred independently of the intracellular domains of the receptors. However, either interfering with the association between NKG2D and DAP10, or mutating the transmembrane region of 2B4 impacted the recruitment of the receptors to detergent‐resistant membrane fractions and modulated the function of 2B4 in NK cells. Our data suggest a potential interaction between the transmembrane region of NK‐cell receptors and membrane lipids as a molecular mechanism involved in determining the membrane confinement of activating NK‐cell receptors.  相似文献   

12.
MICA molecules interact with the NKG2D-activating receptor on human NK and CD8 T cells. We investigated the participation of the MICA/NKG2D pathway in the destruction of intestinal epithelium by intraepithelial T lymphocytes (IEL) in Celiac disease and its premalignant complication, refractory sprue. We show that MICA is strongly expressed at epithelial cell surface in patients with active disease and is induced by gliadin or its p31-49 derived peptide upon in vitro challenge, an effect relayed by IL-15. This triggers direct activation and costimulation of IEL through engagement of NKG2D, leading to an innate-like cytotoxicity toward epithelial targets and enhanced TCR-dependent CD8 T cell-mediated adaptive response. Villous atrophy in Celiac disease might thus be ascribed to an IEL-mediated damage to enterocytes involving NKG2D/MICA interaction after gliadin-induced expression of MICA on gut epithelium. This supports a key role for MIC/NKG2D in the activation of intraepithelial immunity in response to danger.  相似文献   

13.
Human cytomegalovirus (HCMV) has evolved a multitude of molecular mechanisms to evade the antiviral immune defense of the host. Recently, using soluble recombinant molecules, the HCMV UL16 glycoprotein was shown to interact with some ligands of the activating immunoreceptor NKG2D and, therefore, may also function as a viral immunomodulator. However, the role of UL16 during the course of HCMV infection remained unclear. Here, we demonstrate that HCMV infection of fibroblasts induces expression of all known NKG2D ligands (NKG2DL). However, solely MICA and ULBP3 reach the cellular surface to engage NKG2D, whereas MICB, ULBP1 and ULBP2 are selectively retained in the endoplasmic reticulum by UL16. UL16-mediated reduction of NKG2DL cell surface density diminished NK cytotoxicity. Thus, UL16 functions by capturing activating ligands for cytotoxic lymphocytes that are synthesized in response to HCMV infection.  相似文献   

14.
15.
The NKG2D is an activating immunoreceptor expressed by NK cells and CD8+ T cells. Engagement of NKG2D by its ligands is critical for both innate and adoptive immunity. While the overexpression of NKG2D ligands on certain tumour cells has previously been demonstrated, little is known about NKG2D ligand expression on human laryngeal tumour cells. In this study, we first verified that the interaction between NKG2D and its ligands was critical for NK cell-based immune response to human laryngeal squamous carcinoma cells Hep-2. This NKG2D-mediated effect was observed by transfecting the recombinant eukaryotic expression vector pEGFP-N1/NKG2D as well as the NKG2D blockade. The mRNA and protein expression of NKG2D ligands, MHC class I-related chain molecules A (MICA) and UL16-binding proteins (ULBPs), in human laryngeal carcinoma cell line Hep-2 and fresh tumour tissues were evaluated. Compared with non-tumour tissues of vocal cords polyps, MICA and ULBP-3 were strongly overexpressed on both the human laryngeal carcinoma cell line Hep-2 and fresh human laryngeal carcinoma tissues. The mechanism and impact of NKG2D ligands overexpression on NK cell-mediated anti-laryngeal cancer immune response would require further investigation.  相似文献   

16.
17.
18.
19.
The human NKG2D killer lectin-like receptor (KLR) is coupled by the DAP10 adapter to phosphoinositide 3-kinase (PI3 K) and specifically interacts with different stress-inducible molecules (i.e. MICA, MICB, ULBP) displayed by some tumour and virus-infected cells. This KLR is commonly expressed by human NK cells as well as TCRgammadelta(+) and TCRalphabeta(+)CD8(+) T lymphocytes, but it has been also detected in CD4(+) T cells from rheumatoid arthritis and cancer patients. In the present study, we analysed NKG2D expression in human cytomegalovirus (HCMV)-specific CD4(+) T lymphocytes. In vitro stimulation of peripheral blood mononuclear cells (PBMC) from healthy seropositive individuals with HCMV promoted variable expansion of CD4(+)NKG2D(+) T lymphocytes that coexpressed perforin. NKG2D was detected in CD28(-) and CD28(dull )subsets and was not systematically associated with the expression of other NK cell receptors (i.e. KIR, CD94/NKG2 and ILT2). Engagement of NKG2D with specific mAb synergized with TCR-dependent activation of CD4(+) T cells, triggering proliferation and cytokine production (i.e. IFN-gamma and TNF-alpha). Altogether, the data support the notion that NKG2D functions as a prototypic costimulatory receptor in a subset of HCMV-specific CD4(+) T lymphocytes and thus may have a role in the response against infected HLA class II(+) cells displaying NKG2D ligands.  相似文献   

20.
After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor–ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re‐transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning‐down of the immune response or be used as marker of interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号