首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune mechanisms involved in control of cytomegalovirus (CMV) infection in the allogeneic stem cell transplantation setting have not been fully disclosed. CMV pp65 and IE-1-specific CD8(+) T cells expressing IFN-γ, TNF-α, and CD107a, alone or in combination, and NKG2C(+) NK cells were prospectively enumerated during 13 episodes of CMV DNAemia. The expansion of monofunctional and polyfunctional CD8(+) T cells was associated with CMV DNAemia clearance. The size and functional diversity of the expanding CD8(+) T-cell population was greater in self-resolved episodes than in episodes treated with antivirals. These differences were related to the magnitude of expansion of cognate antigen IFN-γ CD4(+) T cells. The resolution of CMV DNAemia was associated frequently with a marked expansion of both CD56(dim) /CD16(+) NK cells and NKG2C(+) CD56(bright) /CD16(-) NK cells. The data lend support to the role of polyfunctional CD8(+) T cells in controlling CMV replication in the allogeneic stem cell transplantation setting, and suggest that NKG2C(+) NK cells may be involved critically in the resolution of CMV DNAemia episodes.  相似文献   

2.
Nonselective T-cell depletion reduces the incidence of severe graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, but the cost is delayed and disordered antigen-specific immune reconstitution and increased infection. We use a method of selective depletion of alloreactive T cells expressing the activation marker CD69 after coculture with stimulator cells in a modified or standard mixed lymphocyte reaction. The technique has been shown to reduce alloreactivity while retaining third-party responses in vitro and, in a mismatched murine model, led to donor T-cell engraftment with a virtual absence of graft-versus-host disease and increased survival. We show in a human HLA-mismatched and unrelated HLA-identical setting that this technique retains >80% of specific cellular antiviral activity by cytomegalovirus-tetramer analysis and cytomegalovirus/Epstein-Barr virus peptide-stimulated interferon-gamma ELISpot assay. Furthermore, CD4(+) CD25(+) T-regulatory cells are not removed by this method of selective allodepletion and retain their function in suppressing allogeneic proliferative responses. Preservation of antiviral cytotoxic T lymphocytes in selectively allodepleted stem cell grafts would lead to improved antiviral immunity after transplantation. The retention of immunosuppressive CD4(+) CD25(+) T-regulatory cells could lead to more ordered immune reconstitution and further suppress alloreactive responses after transplantation.  相似文献   

3.
A major problem after clinical hematopoietic stem cell transplantations is poor T-cell reconstitution. Studying the mechanisms underlying this concern is hampered, because experimental transplantation of human stem and progenitor cells into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice usually results in low T-lymphocyte reconstitution. Because tumor necrosis factor alpha (TNFalpha) has been proposed to play a role in T-lineage commitment and differentiation in vitro, we investigated its potential to augment human T-cell development in vivo. Administration of TNF to irradiated NOD/SCID mice before transplantation of human mononuclear cells from either cord blood or adult G-CSF-mobilized peripheral blood (MPBL) led 2-3 weeks after transplantation to the emergence of human immature CD4(+)CD8(+) double-positive T-cells in the bone marrow (BM), spleen, and thymus, and in this organ, the human cells also express CD1a marker. One to 2 weeks later, single-positive CD4(+) and CD8(+) cells expressing heterogenous T-cell receptor alpha beta were detected in all three organs. These cells were also capable of migrating through the blood circulation. Interestingly, human T-cell development in these mice was associated with a significant reduction in immature lymphoid human CD19(+) B cells and natural killer progenitors in the murine BM. The human T cells were mostly derived from the transplanted immature CD34(+) cells. This study demonstrates the potential of TNF to rapidly augment human T lymphopoiesis in vivo and also provides clinically relevant evidence for this process with adult MPBL progenitors.  相似文献   

4.
Expansion of multipotent, undifferentiated and proliferating cord blood (CB)-hematopoietic stem cells (HSC) in?vitro is limited and insufficient. Bone marrow (BM) engineering in?vitro allows mimicking the main components of the hematopoietic niche compared to conventional expansion strategies. In this study, four different 3D biomaterial scaffolds (PCL, PLGA, fibrin and collagen) were tested for freshly isolated cord blood (CB)-CD34(+) cell expansion in presence of (i) efficient exogenous cytokine supplementation and (ii) umbilical cord (UC)-mesenchymal stem cells (MSC). Cell morphology, growth and proliferation were analyzed in?vitro as well as multi-organ engraftment and multilineage differentiation in a murine transplantation model. All scaffolds, except 3D PLGA meshes, supported CB-CD34(+) cell expansion, which was additionally stimulated by UC-MSC support. CB-CD34(+) cells cultured on human-derived 3D fibrin scaffolds with UC-MSC support i) reached the highest overall growth (5?×?10(8)-fold expansion of total nuclear cells after fourteen days and 3?×?10(7)-fold expansion of CD34(+) cells after seven days, p?相似文献   

5.
We applied a single-cell method to detect mitochondrial DNA (mtDNA) mutations to evaluate the reconstitution of hematopoietic stem cells (HSCs) and committed progenitor cells after nonmyeloablative allogeneic stem cell transplantation in humans. In a total of 1,958 single CD34(+) cells from six human leukocyte antigen-matched sibling donor and recipient pairs, individual CD34(+) clones were recognized based on the observed donor- or recipient-specific mtDNA sequence somatic alteration. There was no overall reduction of mtDNA heterogeneity among CD34(+) cells from the recipient after transplantation. Samples collected from two donors over time showed the persistence of certain CD34(+) clones marked by specific mutations. Our results demonstrate the feasibility of distinguishing donor and recipient individual CD34(+) clones based on mtDNA mutations during engraftment. HSCs were not limited in number, and similar mtDNA heterogeneity levels suggested representation of the total stem cell compartment during rapid hematopoietic reconstitution in the recipient. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

6.
There is increasing evidence that human hematopoietic stem cells can develop into lymphocytes expressing T cell surface markers in the organ culture of murine embryonic thymic lobes. If human T cells with functional maturity are inducible from human stem cells in the mouse, it may be a useful model to investigate human T cell development and the human immune response in vivo. To approach this, we produced a hybrid cluster of murine fetal thymic epithelial cells and human cord blood-derived CD34(+) cells (hu/m cluster) using reaggregate thymic organ culture, and subsequently implanted it under the kidney capsule of NOD/SCID mice. The implanted hu/m cluster grew in volume under the kidney capsule and contained increased numbers of CD4(+)CD8(+)cells as well as CD4 or CD8 single-positive cells with low CD1a expression. These lymphocytes were also shown to possess activity for producing IL-2 and IL-4. Characteristics similar to human T cells also developed in the thymus of newly established mice lacking NK activity from NOD/SCID mice. These results indicate that functionally mature T cells can develop in vivo from human hematopoietic progenitors in the murine environment composed of thymic epithelial cells.  相似文献   

7.
The biology of hematopoietic stem cell (HSC) is a current topic of interest which has important implications for clinical HSC transplantation as well as for the basic research of HSC. The most primitive HSCs in mammals, including mice and humans, have long been believed to be CD34 antigen (Ag)-positive (CD34(+)) cells. In fact, bone marrow (BM), peripheral blood (PB), and cord blood (CB) stem cell transplantation studies indicate that a CD34(+) subpopulation in the BM, PB, or CB can provide durable long-term donor-derived lymphohematopoietic reconstitution. Therefore, CD34 Ag was used to identify/purify immature HSCs. However, Osawa et al. reported that murine long-term lymphohematopoietic reconstituting HSCs are lineage marker-negative (Lin(-)) c-kit(+)Sca-1(+)CD34-low/negative (CD34(low/-)), which are called CD34(low/-) KSL cells. Recently, human CB-derived CD34(-) HSCs, a counterpart of murine CD34(low/-) KSL cells, were successfully identified using an intra-bone marrow injection (IBMI) method. This review will update the concept of the immunophenotype and the functional characteristics of human primitive CD34(-) HSCs. In addition, the significance of the application of the IBMI technique in clinical HSC transplantation is also discussed. Recent rapid advances in understanding the biological nature of HSCs may make it possible to fully characterize the most primitive class of human HSCs in the near future.  相似文献   

8.
The CD34 surface antigen has been recognized as a marker of hematopoietic stem cells (HSCs) and is widely used for HSC selection as well as for quality control in HSC transplantation. CD34 has been implicated in cytoadhesion signaling, and its expression has been suggested to reflect the activation state of hematopoietic progenitor cells. However, the function of CD34 remains essentially unknown. Here we analyzed the effects of ectopic CD34 expression in vivo in a bone marrow transplantation model. We transduced murine bone marrow stem cells with retroviral vectors encoding either murine full-length or the alternative splice product truncated CD34. Transduced cells were transplanted into syngeneic, marrow ablated hosts. For comparison, "control" animals received either enhanced green fluorescent protein (eGFP)-transduced or mock-transduced cells. Six months post-transplantation, transduced differentiated blood cells ectopically expressing murine CD34 showed decreased migration from peripheral blood to both bone marrow and thymus, an effect that was more pronounced with full-length CD34 than with the truncated variant. In contrast, no influence of transgene expression on trafficking of differentiated blood cells was seen in the eGFP control group. Our data indicate that CD34 expression in mature blood cells has a suppressive effect on cellular trafficking to hematopoietic stroma organs, thereby supporting a modulating role of the CD34 molecule in cytoadhesion.  相似文献   

9.
Allo-reactive memory T cells are a major barrier for induction of immunological tolerance to allografts in humans. Here, we report that stimulation of unfractionated human T cells with TLR-stimulated allogeneic plasmacytoid dendritic cells (pDCs) induces CD8(+) regulatory T cells (Tregs) that inhibit T-cell allo-responses, including those of memory T cells. CD3(+) T cells were primed for 7 days with allogeneic pDCs that had been pre-stimulated with TLR-7 or TLR-9 ligands. While the T cells proliferated and produced cytokines during the priming culture, they were profoundly hypo-responsive to re-stimulation with the same allo-antigen in a second culture. Moreover, T cells primed by pDCs exerted donor-specific suppression on allo-responses of both unfractionated and memory CD3(+) T cells. The regulatory capacity of pDC-primed T cells was confined to CD8(+) LAG-3(+) Foxp3(+) CTLA-4(+) T cells, which suppressed allogeneic T-cell responses through a CTLA-4-dependent mechanism. Induction of CD8(+) Tregs by pDCs could be partially prevented by 1-methyl tryptophan, an inhibitor of indoleamine 2,3-dioxygenase. In conclusion, stimulation of human T cells by TLR-stimulated allogeneic pDCs induces CD8(+) Tregs that inhibit allogeneic T-cell responses, including memory T cells. Donor-derived pDCs may be considered as an immunotherapeutic tool to prevent activation of the recipient allo-reactive (memory) T-cell repertoire after allogeneic transplantation.  相似文献   

10.
Numerous studies have been performed in vitro and in various animal models to modulate the interaction of dendritic cells (DC) and T cells by Fas (CD95/Apo-1) signalling to delete activated T cells via induction of activation-induced cell death (AICD). Previously, we could demonstrate that Fas ligand (FasL/CD95L)-expressing 'killer-antigen-presenting cells' can be generated from human monocyte-derived mature DC (mDC) using adenoviral gene transfer. To evaluate whether these FasL-expressing mDC (mDC-FasL) could eliminate alloreactive primary human T cells in vitro, co-culture experiments were performed. Proliferation of human T cells was markedly reduced in primary co-cultures with allogeneic mDC-FasL, whereas a strong proliferative T-cell response could be observed in co-cultures with enhanced green fluorescent protein-transduced mDC. Inhibition of T-cell proliferation was related to the transduction efficiency, and the numbers of mDC-FasL present in co-cultures. In addition, proliferation of pre-activated alloreactive CD4(+) and CD8(+) T cells could be almost completely inhibited in secondary co-cultures using mDC-FasL as stimulatory cells, which was the result of induction of apoptosis in the majority of preactivated T cells. The specific deletion of alloreactive T cells by mDC-FasL was confirmed by an unaffected proliferative response of surviving T cells towards allogeneic 'third-party' peripheral blood mononuclear cells in a third stimulation, or upon unspecific stimulation with anti-CD3/CD28 beads. The results of this study demonstrate that allospecifically activated T cells are efficiently eliminated by mDC-FasL, supporting further investigations to apply FasL-expressing 'killer-DC' as a novel strategy for the treatment of allograft rejection.  相似文献   

11.
Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.  相似文献   

12.
Slow T-cell reconstitution is a major clinical concern after transplantation of cord blood (CB)-derived hematopoietic stem cells. Adoptive transfer of in vitro-generated T-cell progenitors has emerged as a promising strategy for promoting de novo thymopoiesis and thus accelerating T-cell reconstitution. Here, we describe the development of a new culture system based on the immobilized Notch ligand Delta-like-4 (DL-4). Culture of human CD34(+) CB cells in this new DL-4 system enabled the in vitro generation of large amounts of T-cell progenitor cells that (a) displayed the phenotypic and molecular signatures of early thymic progenitors and (b) had high T lymphopoietic potential. When transferred into NOD/SCID/γc(-/-) (NSG) mice, DL-4 primed T-cell progenitors migrated to the thymus and developed into functional, mature, polyclonal αβ T cells that subsequently left the thymus and accelerated T-cell reconstitution. T-cell reconstitution was even faster and more robust when ex vivo-manipulated and nonmanipulated CB samples were simultaneously injected into NSG mice (i.e., a situation reminiscent of the double CB transplant setting). This work provides further evidence of the ability of in vitro-generated human T-cell progenitors to accelerate T-cell reconstitution and also introduces a feeder-cell-free culture technique with the potential for rapid, safe transfer to a clinical setting.  相似文献   

13.
Expansion of hematopoietic stem cells (HSCs) from cord blood is highly desired for treatment and transplantation of adult patients for hematologic diseases. For efficient proliferation of HSCs, CD34(+) cells from cord blood were co-cultured with microencapsulated murine stromal cells (HESS-5) or immortalized human mesenchymal stem cells (MSCs) in their conditioned media (CM). Bioactive substances for HSC proliferation in CM at the onset of culture are likely consumed by HSCs with time, and co-culturing with microencapsulated feeder cells ensures a continuous supply. The cell number of CD34(+) cell progeny efficiently increased under these culture conditions, and progeny were analyzed by flow cytometry, the colony assay and the cobblestone area-forming cell (CAFC) assay. Total nucleated cells and CD34(+) cell number increased 194- and 7.4-fold, respectively, in the presence of microencapsulated HESS-5 in CM. Colony forming cells and CAFCs were well maintained. The effective expansion of total cells and maintenance of primitive progenitor cells suggest that transfusion of the progeny obtained from CD34(+) cell culture with microencapsulated HESS-5 in CM could shorten the time to engraftment by bridging the pancytopenic period and support functional hematopoietic repopulation.  相似文献   

14.
Ex vivo expansion of hematopoietic stem cells (HSCs) has been explored in the fields of stem cell biology, gene therapy, and clinical transplantation. Here, we demonstrate efficient ex vivo expansion of HSCs measured by long-term severe combined immunodeficient (SCID) repopulating cells (SRCs) from human cord blood CD133-sorted cells using a soluble form of Delta1. After a 3-week culture on immobilized Delta1 supplemented with stem cell factor, thrombopoietin, Flt-3 ligand, interleukin (IL)-3, and IL-6/soluble IL-6 receptor chimeric protein (FP6) in a serum- and stromal cell-free condition, we achieved approximately sixfold expansion of SRCs when evaluated by limiting dilution/transplantation assays. The maintenance of full multipotency and self-renewal capacity during culture was confirmed by transplantation to nonobese diabetic/SCID/gammac(null) mice, which showed myeloid, B, T, and natural killer cells as well as CD133(+)CD34(+) cells, and hematopoietic reconstitution in the secondary recipients. Interestingly, the CD133-sorted cells contained approximately 4.5 times more SRCs than the CD34-sorted cells. The present study provides a promising method to expand HSCs and encourages future trials on clinical transplantation.  相似文献   

15.
The adoptive transfer of donor-type CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) protects from graft-versus-host disease in murine bone marrow transplantation models. Results from first clinical trials exploring such strategies have recently been presented and seem to confirm the efficacy of Treg for the prevention of this severe complication after allogeneic stem cell transplantation. Further improvements in Treg isolation and in vitro expansion technologies will facilitate the broader exploration of Treg therapies, for example, for the treatment of ongoing graft-versus-host disease or the prevention of graft rejection after solid organ transplantation.  相似文献   

16.
Clinical and preclinical applications of human hematopoietic stem cells (HSCs) are often limited by scarcity of cells. Expanding human HSCs to increase their numbers while maintaining their stem cell properties has therefore become an important area of research. Here, we report a robust HSC coculture system wherein cord blood CD34(+) CD133(+) cells were cocultured with mesenchymal stem cells engineered to express angiopoietin-like-5 in a defined medium. After 11 days of culture, SCID repopulating cells were expanded ~60-fold by limiting dilution assay in NOD-scid Il2rg(-/-) (NSG) mice. The cultured CD34(+) CD133(+) cells had similar engraftment potential to uncultured CD34(+) CD133(+) cells in competitive repopulation assays and were capable of efficient secondary reconstitution. Further, the expanded cells supported a robust multilineage reconstitution of human blood cells in NSG recipient mice, including a more efficient T-cell reconstitution. These results demonstrate that the expanded CD34(+) CD133(+) cells maintain both short-term and long-term HSC activities. To our knowledge, this ~60-fold expansion of SCID repopulating cells is the best expansion of human HSCs reported to date. Further development of this coculture method for expanding human HSCs for clinical and preclinical applications is therefore warranted.  相似文献   

17.
Young donors are reported to be associated with better transplant outcomes than older donors in allogeneic hematopoietic stem cell transplantation (allo‐HSCT), but the mechanism is still unclear. The current study compared the different subsets of haematopoietic stem cells (HSCs) and their progenitors as well as immune cells in bone marrow (BM) between young and older donors. The frequencies of HSCs, multipotent progenitors (MPPs) and myeloid progenitors, including common myeloid progenitors (CMPs) and megakaryocyte–erythroid progenitors (MEPs), were decreased, whereas those of lymphoid progenitors, including multi‐potent lymphoid progenitors (MLPs) and common lymphoid progenitors (CLPs), were increased in the BM of young donors compared with in that of older donors. Lower reactive oxygen species (ROS) levels were observed in BM HSCs and six progenitor lines in young donors. Furthermore, young donors demonstrated higher frequencies of naive T cells and immune suppressor cells, such as alternative macrophages (M2) and lower frequencies of memory T cells and immune effectors, including T helper‐1 and T cytotoxic‐1 cells, in BM than older donors. Multivariate analysis demonstrated that donor age was independently correlated with BM HSC frequency. Although further validation is required, our results suggest that the differences in the frequency and immune differentiation potential of HSCs in BM between young donors and older donors may partly explain the different outcomes of allo‐HSCT.  相似文献   

18.
Cytomegalovirus (CMV) infection and reactivation pose a serious threat for patients after haematopoietic stem cell transplantation. We have previously shown that CD8(+) T cells targeting different CMV epitopes correlate with protection at different threshold frequencies in those patients. To investigate if this may relate to a different quality of these cells here we analyse the T-cell receptor diversity of pp50 (245-253)/HLA-A*0101 specific CD8(+) T cells with that of CD8(+) T cells targeting various pp65 peptides. The results from this pilot study show differences in the breadth of the T-cell receptor usage of the different cell populations. We observe for the first time that the T-cell receptor Vβ CDR3 spectratypes used by CMV pp50 (245-253)/HLA-A*0101-specific CD8(+) T cells can reach higher numbers than those used by CD8(+) T cells targeting various pp65 peptides in our patient cohort. This merits further investigation into the effectiveness of the different CMV-specific T cells and their impact on immunosenescence, which is important to eventually define the most useful source of adoptive therapy and monitoring protocols for cytomegalovirus-specific immune responses.  相似文献   

19.
Cellular interactions promoting the in vivo expansion of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells for maintenance of immune tolerance remain poorly defined. Here we report that mobilized Lin(-)Sca-1(+)c-kit(+) (LSK) hematopoietic progenitor cells (HPCs), unlike medullary hematopoietic stem cells (HSCs), selectively drove the direct, immediate expansion of functional host-derived Treg cells, thereby preventing the progression to overt spontaneous autoimmune diabetes in nonobese diabetic mice. Treg cell expansion required cell-to-cell contact and Notch3 signaling, which was mediated selectively through the Notch ligand Jagged2 expressed by the multipotent HPC subset, as assessed by small interfering RNA (siRNA) silencing. Conversely, notwithstanding their similar multilineage microchimerism, neither sorted Jagged2(-) HPCs nor Jagged2(lo) medullary HSCs were able to expand Treg cells. These data provide evidence for a productive Notch-mediated interaction between a unique subset of mobilized hematopoietic progenitors and Treg cells. They open therapeutic perspectives for autologous transplantation of Jagged2(+) LSK progenitors to promote Treg cell expansion in T cell-mediated diseases.  相似文献   

20.
CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号