首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The distribution of neuropeptide Y immunoreactive cell bodies in relation to various types of catecholamine-containing cell bodies in the rat brain was analyzed immunohistochemically using antisera to tyrosine hydroxylase, dopamine β-hydroxylase and phenylethanolamine N-methyltransferase. Coexistence of the peptide in catecholamine cell bodies was established by using an elution-restaining procedure.Neuropeptide Y-like immunoreactivity was observed in most noradrenergic cell bodies of the Al/Cl cell groups in the ventro lateral medulla oblongata. Similarly this peptide immunoreactivity was also observed in the majority of the adrenergic cell bodies of the C2 group. In the dorsal and dorsal-lateral part of the nucleus of the solitary tract, where a group of small adrenergic cells is present, several small neuropeptide Y immunoreactive cells were also observed. The possibility of coexistence of adrenaline and neuropeptide Y in these cells remains to be established. The majority of the noradrenergic cell bodies of the A2 group, as well as the presumptive dopaminergic cells within its ventromedial part, seemed to lack neuropeptide Y-like immunoreactivity. Many noradrenergic cell bodies of the A6 group in the locus coeruleus proper were neuropeptide Y-immunoreactive, whereas the peptide could not be observed in the subcoeruleus group. Neither the A5 and A7 noradrenergic cells in the pons, nor any of the dopaminergic cell groups in the mesencephalon and forebrain (A8–A15) seemed to contain a neuropeptide Y-like peptide.The findings indicate that central catecholamine neurons can be subdivided into distinct sub-groups based upon the coexistence of a specific peptide.  相似文献   

3.
The inhibitory effects of gamma‐aminobutyric acid (GABA) in the central and peripheral nervous systems and the endocrine system are mediated by two different GABA receptors: GABAA‐receptor (GABAA‐R) and GABAB‐receptor (GABAB‐R). GABAA‐R, but not GABAB‐R, has been observed in the rat adrenal gland, where GABA is known to be released. This study sought to determine whether both GABA and GABAB‐R are present in the endocrine and neuronal elements of the rat adrenal gland, and to investigate whether GABAB‐R may play a role in mediating the effects of GABA in secretory activity of these cells. GABA‐immunoreactive nerve fibers were observed in the superficial cortex. Some GABA‐immunoreactive nerve fibers were found to be associated with blood vessels. Double‐immunostaining revealed GABA‐immunoreactive nerve fibers in the cortex were choline acetyltransferase (ChAT)‐immunonegative. Some GABA‐immunoreactive nerve fibers ran through the cortex toward the medulla. In the medulla, GABA‐immunoreactivity was seen in some large ganglion cells, but not in the chromaffin cells. Double‐immunostaining also showed GABA‐immunoreactive ganglion cells were nitric oxide synthase (NOS)‐immunopositive. However, neither immunohistochemistry combined with fluorescent microscopy nor double‐immunostaining revealed GABA‐immunoreactivity in the noradrenaline cells with blue‐white fluorescence or in the adrenaline cells with phenylethanolamine N‐methyltransferase (PNMT)‐immunoreactivity. Furthermore, GABA‐immunoreactive nerve fibers were observed in close contact with ganglion cells, but not chromaffin cells. Double‐immunostaining also showed that the GABA‐immunoreactive nerve fibers were in close contact with NOS‐ or neuropeptide tyrosine (NPY)‐immunoreactive ganglion cells. A few of the GABA‐immunoreactive nerve fibers were ChAT‐immunopositive, while most of the GABA‐immunoreactive nerve fibers were ChAT‐immunonegative. Numerous ChAT‐immunoreactive nerve fibers were observed in close contact with the ganglion cells and chromaffin cells in the medulla. The GABAB‐R‐immunoreactivity was found only in ganglion cells in the medulla and not at all in the cortex. Immunohistochemistry combined with fluorescent microscopy and double‐immunostaining showed no GABAB‐R‐immunoreactivity in noradrenaline cells with blue‐white fluorescence or in adrenaline cells with PNMT‐immunoreactivity. These immunoreactive ganglion cells were NOS‐ or NPY‐immunopositive on double‐immunostaining. These findings suggest that GABA from the intra‐adrenal nerve fibers may have an inhibitory effect on the secretory activity of ganglion cells and cortical cells, and on the motility of blood vessels in the rat adrenal gland, mediated by GABA‐Rs.  相似文献   

4.
The present study examined gamma‐aminobutyric acid B (GABAB) receptor, GABA, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) immunoreactivities in the mouse adrenal medulla. GABAB receptor immunoreactivity was seen in numerous chromaffin cells and in a few ganglion cells of the adrenal medulla. By using a formaldehyde‐induced fluorescence (FIF) method, GABAB receptor immunoreactivity was observed in numerous adrenaline (A) cells, but not in noradrenaline (NA) cells showing blue‐white fluorescence. This suggests that GABAB receptors may be present in the A cells and be related to the secretory activity of A cells but not NA cells in the mouse adrenal medulla. GABAB receptor immunoreactive ganglion cells were shown to be nNOS immunopositive by using a double immunostaining method. Weak GABA immunoreactivity was visible in some chromaffin cells and in the numerous nerve fibers of the medulla. By using the FIF method, weak GABA‐immunoreactive chromaffin cells were shown to be in the NA cells showing blue‐white fluorescence. GABA‐immunoreactive nerve fibers were in dense contact in A cells, but not NA cells. GABA‐immunoreactive nerve fibers closely contacted a few ganglion cells. Numerous GABA‐immunoreactive nerve fibers in the medulla showed ChAT immunoreactive. This result suggests that GABA and acetylcholine may be released from the same nerve fibers and may have a secretory effect on the A cells of the medulla. Anat Rec, 296:971–978, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The topographical distribution of catecholaminergic nerve fibres and their anatomical relationship to cholinergic elements in the rat globus pallidus were studied. Peroxidase–antiperoxidase and two-colour immunoperoxidase staining procedures were used to demonstrate tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT) and choline acetyltransferase (ChAT) immunoreactivities, combined with acetylcholinesterase (AChE) pharmacohistochemistry. TH immunoreactive nerve fibres were seen to enter the globus pallidus from the medial forebrain bundle. The greatest density of such fibres was found in the ventral region of the globus pallidus, which was also characterized by the greatest density of ChAT immunoreactive neurons. TH immunoreactive nerve fibres showed varicose arborizations and sparse boutons, which were occasionally seen in close opposition to cholinergic structures. In all regions of the globus pallidus, there were also larger, smooth TH immunoreactive nerve fibres of passage to the caudate putamen. A smaller number of DBH immunoreactive nerve fibres and terminal arborizations were found in the substantia innominata, internal capsule and in the globus pallidus bordering these structures. A few PNMT immunoreactive nerve fibres in the substantia innominata and internal capsule did not enter the globus pallidus. Electron microscopy revealed TH immunoreactive synaptic profiles in the ventromedial area of the globus pallidus corresponding to the nucleus basalis magnocellularis of Meynert (nBM). These made mainly symmetrical and only a few asymmetrical synaptic contacts with dendrites containing AChE reaction product. The results indicate that cholinergic structures in the nBM are innervated by dopaminergic fibres and terminals, with only a very small input from noradrenergic fibres.  相似文献   

6.
The distribution of substance P (SP) immunoreactivity and the colocalization of SP with other bioactive substances in chromaffin cells and nerve fibers were investigated in the rat adrenal gland at the light microscopic level. In the capsule and cortex, SP immunoreactivity was seen in some nerve fibers around blood vessels and in thick nerve bundles passing through the cortex directly into the medulla. In the medulla, the SP immunoreactivity was observed in a small number of chromaffin cells; these SP-immunoreactive chromaffin cells were either phenylethanolamine N-methyltransferase (PNMT) immunoreactive or immunonegative, indicating that they were either adrenaline cells or noradrenaline (NA) cells. SP-immunoreactive varicose nerve fibers were also found in the medulla and were in contact with a cluster of the NA cells showing catecholamine fluorescence, which suggests that SP from medullary nerve fibers may regulate the secretory activity of the NA cells. Because no SP-immunoreactive ganglion cell was present in the rat adrenal gland, the intra-adrenal nerve fibers were considered to be extrinsic in origin. The double-immunostaining method further revealed that the SP-immunoreactive chromaffin cells also exhibit immunoreactivities for calcitonin gene-related peptide (CGRP), and neuropeptide tyrosine (NPY), suggesting that these peptides can also be released from the chromaffin cells by certain stimuli. The intra-adrenal nerve fibers in the medulla were composed of SP-single immunoreactive, and SP/CGRP-, SP/choline acetyltransferase (ChAT)-, SP/nitric oxide synthase (NOS)-, SP/pituitary adenylate cyclase activating polypeptide (PACAP)-, ChAT/NOS-, and ChAT/PACAP-immunoreactive nerve fibers, which may affect the secretory activity of the NA cells. In the adrenal capsule, the nerve fibers were present around blood vessels and showed immunoreactivities for SP/ CGRP, SP/NPY, SP/NOS, and SP/vasoactive intestinal polypeptide, suggesting that the origin of nerve fibers in the capsule may differ from those in the medulla.  相似文献   

7.
Using immunocytochemistry of phenylethanolamine N-methyltransferase for light and electron microscopy, investigations were carried out to document the morphology of adrenergic afferents innervating the rat central amygdaloid nucleus and to analyse the manner in which contacts with neurons of the nucleus are formed. With the light microscope, dense terminal plexus of phenylethanolamine N-methyltransferase-immunoreactive axons with typical large boutons (diameter>1 m) were found in the medial central nucleus, extending into its ventral subdivision and the adjacent intra-amygdaloid portion of the bed nucleus of the stria terminalis. Electron microscopy of the medial central nucleus showed phenylethanolamine N-methyltransferase-immunoreaction product in the cytoplasm of intervaricose axons and boutons. Large adrenergic boutons contained numerous small clear vesicles and, occasionally, large dense-cored vesicles. In serial sections, most boutons formed synaptic contacts. Synapses of immunoreactive terminals were mainly of the asymmetric type and localized preferentially on medium sized to small dendrites and dendritic spines. Structures postsynaptic to adrenergic boutons were often additionally contacted by non-labelled terminals. The study gives evidence that adrenergic afferents exert a direct synaptic influence on medial central nucleus neurons. The peripheral localization of the majority of adrenergic synapses, their asymmetric configuration, and the presence of non-adrenergic synapsing terminals in their immediate vicinity indicate that the major component of the adrenergic input is of an excitatory nature, and is integrated with innervation from other sources.Abbreviations BNST i Intra-amygdaloid portion of the bed nucleus of the stria terminalis - CL lateral central amygdaloid nucleus - CLc lateral capsular central amygdaloid nucleus - CM medial central amygdaloid nucleus - CN central amygdaloid nucleus - CV ventral central amygdaloid nucleus - DAB diaminobenzidine - EM electron microscopy - ir immunoreactive - LM light microscopy - NPY neuropeptide tyrosine - PBS phosphate buffered saline - PFA paraformaldehyde - PNMT phenylethanolamine N-methyltransferase  相似文献   

8.
9.
1. By means of a microfluorimetric technique, the intensity of the catecholamine fluorescence was measured in nerve cells of the arcuate and periventricular hypothalamic nuclei of ovariectomized rats pre-treated with oestrogen and progesterone. In such animals the fluorescence intensity is in the range of the lowest intensities that were observed during the oestrous cycle.2. Unilateral intermittent electrical stimulation of the arcuate nucleus or of the medial preoptic area induced an acute increase of the fluorescence intensity in the cell bodies of the tuberal catecholamine-containing nerve cell group. The change was already manifest 5 min after the onset of stimulation and within 10 min the mean fluorescence intensity reached levels that are among the highest so far observed in this cell group. Prolonged stimulation of the medial preoptic area led to a biphasic response, as shown by a decrease in intensity between 30 and 60 min of stimulation.3. The increase in fluorescence intensity caused by stimulation of the arcuate nucleus was completely prevented by pre-treatment with the tyrosine hydroxylase inhibitor alpha-methyl-tyrosine. Thus, the effect appears to be due to an enhancement of amine synthesis.4. The intensity values found after synthesis inhibition were used for a preliminary estimation of the catecholamine turnover time in the nerve cell bodies of the arcuate nucleus.5. In conclusion, electrical stimulation appears to induce a characteristic type of concentration change in the nerve cell body, at least under certain experimental conditions. It is compared with similar responses to physiological changes such as the reaction to acute cold exposure.  相似文献   

10.
Summary The distribution of monoamine neurons in the human fetal brain was studied by Falck-Hillarp fluorescence histochemistry. Catecholamine (CA)- and 5-hydroxytryptamine (5-HT)-neuron systems were found in the smallest brain studied, obtained from an embryo having a total length of 2.1 cm and a gestational age of 7 weeks. A marked proliferation and differentiation of the monoamine neuron systems took place between the 7th and 23rd week of gestation (the range covered in the present investigation) permitting a mapping of major cell groups, as well as several axon pathways and terminal innervation patterns.The basic cytoarchitectonic features of the central monoamine neurons in human fetuses were strikingly similar to those of the fetal rat. Thus, a large complex of cell bodies was found in the developing substantia nigra area, in all probability the CA neurons of the nigro-striatal dopamine system. Axons projected towards the corpus striatum. Here, the putamen and, somewhat later, the caudate nucleus became richly innervated by CA nerve terminals. Small clusters of CA nerve cells were found in the hypothalamus, e. g. in the ventral periventricular area.5-hydroxytryptamine nerve cell bodies were distributed throughout the raphe areas from the medulla oblongata to the mesencephalon forming several well delineated groups, e.g. a large group in the area of nuc. raphe dorsalis. 5-HT axons projected caudally in the ventral parts of the medulla oblongata and into the spinal cord and rostrally through the mesencephalon and into the forebrain.CA cell bodies were also found in several large complexes of the medulla oblongata and pons, where such cell bodies are of the noradrenaline type in animals. The principal locus coeruleus consisted of densely packed fluorescent cells and several loosely packed groups extended laterally, medially, dorsally and rostrally from this area. Several axon bundles ascended dorsally from this complex. Ventrally and dorsally located CA cell groups were found in the medulla oblongata, and green fluorescent axons descended into the spinal cord.Varicose nerve terminals of the CA type were found, e.g. in the spinal cord, around the third ventricle and, using brain smears, also in the developing cerebral and cerebellar cortices.There seemed to be an outflow of CA axons in ventral nerve roots of cranial and spinal nerves. The developing pineal gland showed scattered 5-HT-containing parenchymal cells. Area postrema contained a number of strongly fluorescent CA cells and some weaker fluorescent 5-HT cells.  相似文献   

11.
12.
Sixteen per cent of the substantia nigra cell bodies normally labeled from the injection of a fluorescent retrograde tracer in the caudate-putamen complex could still be labeled by the same procedure after multiple intracisternal 6-hydroxydopamine treatments that depleted dopamine levels in the caudate-putamen complex to 1.0% of control. However, the demonstration of glyoxylic-acid-induced catecholamine histofluorescence in tissue from these lesioned rats revealed that many of the surviving retrogradely-labeled substantia nigra cell bodies still contained dopamine. The persistence of some dopamine in the substantia nigra of the lesioned animals was confirmed biochemically. Therefore, retrograde tracing in 6-hydroxydopamine lesioned rats overestimated the extent of the non-dopaminergic nigrostriatal tract.The simultaneous combination of retrograde fluorescent tracing and catecholamine histofluorescence in unlesioned animals revealed that only 5% or less of the substantia nigra cell bodies retrogradelylabeled from the caudate-putamen complex were without catecholamine fluorescence. These apparently non-dopaminergic nigrostriatal cells were located primarily in the ventral tegmental area, substantia nigra pars reticulata and extreme medial edge of the substantia nigra pars compacta.  相似文献   

13.
14.
The morphology, number and distribution of catecholaminergic neurons, as visualized either with the aluminum-catalysed formaldehyde method for catecholamines or with the immunohistochemical method for the catecholamine-synthesizing enzymes tyrosine hydroxylase and aromatic L-amino acid decarboxylase, respectively, were analysed within the rat dorsal hypothalamus, ventral thalamus and adjoining regions (A11 and A13 cell groups). Both polyclonal rabbit and monoclonal mouse tyrosine hydroxylase antibodies were used in elution-restaining and double-staining experiments, respectively. Some of the animals also received spinal injections of the fluorescent tracer True Blue in order to retrogradely label cells projecting to the spinal cord. With respect to the number and distribution of catecholaminergic neurons in the A11 and medial A13 cell groups, including the spinal-projecting subpopulation, the results obtained with the two methods were very similar, indicating that within these regions of the CNS the two methods in principle visualize identical cell populations. However, the catecholaminergic cells were distinctly larger and their processes appeared more extensive with the immunohistochemical method. Animals processed for immunohistochemistry exhibited a lower total number of retrogradely labelled cells in the A11 area than those analysed with aldehyde-induced fluorescence despite the fact that both methods revealed similar numbers of retrogradely labelled tyrosine hydroxylase-positive and catecholamine-containing cells, respectively. The reason for these discrepancies, which are probably of methodological nature, are discussed. While this study shows that the results obtained with the two methods within the A11 and medial A13 cell group are very similar and thus strengthens the earlier proposed concept of the organization of the diencephalospinal dopaminergic system, it also documents that in intermingling and nearby CNS regions there are cell bodies which cannot be demonstrated with the aldehyde fluorescence method, but which still contain tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase-like immunoreactivity. One explanation is low levels of enzyme and/or dopamine combined with a comparatively low sensitivity of the histochemical method. Thus, neurons containing both enzymes are probably dopaminergic, even if catecholamine fluorescence cannot be demonstrated. Neurons containing tyrosine hydroxylase, but lacking both aldehyde induced fluorescence and aromatic L-amino acid decarboxylase, may also still be dopaminergic.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Fluorescence histochemical and immunohistochemical techniques have been used to examine the distribution of catecholamine-containing and enkephalin-containing cells in sections of adult bovine adrenal medulla. Noradrenaline-containing cells were identified by fluorescence microscopy following perfusion fixation with 4% paraformaldehyde (formaldehyde-induced fluorescence, technique of Era¨nko¨8). Adrenaline-containing cells did not fluoresce under these conditions. Adrenaline-synthesizing cells were identified by immunofluorescence with an antiserum to bovinephenyl-N-methyl transferase. An antiserum to bovine dopamine-β-hydroxylase was used to identify noradrenaline plus adrenaline cells in the same section. Leu- and met-enkephalin-containing cells were identified immunohistochemically with their respective antisera. To determine whether there was a preferential association of leu- or met-enkephalin with adrenaline or noradrenaline cells, these various antisera were used singly or sequentially on sections treated with formaldehyde in which the localization of endogenous noradrenaline fluorescence had been recorded and then the fluorescence removed by washing overnight.Immunoreactive leu- and met-enkephalin were found to be associated exclusively with adrenaline-synthesizing cells. The finding that both enkephalins are localized in the one cell type (adrenaline cells) in the bovine adrenal medulla is consistent with the proposed common precursor model for synthesis of the two opioid pentapeptides. These findings on co-storage of enkephalins with adrenaline in the adrenal medulla may have implications for other areas of the peripheral and central nervous system where co-storage of catecholamines and enkephalins is known to occur.  相似文献   

16.
Summary The localization of monoaminergic neurones in the medulla oblongata and the pons, and the distribution of catecholaminergic fibres in the spinal cord of the cat were investigated by means of formaldehyde-induced (FIF) or glyoxylic-acid-induced (GIF) fluorescence. Four groups of catecholamine (CA)-containing neurones were found in the following regions: (1) in the ventrolateral medulla oblongata within and adjacent to the lateral reticular nucleus, beginning slightly rostral to the medullo-spinal junction and extending rostrally to the cranial third of the inferior olive; (2) in the commissural, medial and lateral nucleus of the solitary tract; (3) cranial to the first group, closely adjacent to the facial nucleus and the superior olive; and (4) in the dorsolateral pons distributed to different nuclei, namely the nucleus coeruleus and subcoeruleus, the Koelliker-Fuse nucleus, and the medial and lateral parabrachial nuclei. The indoleamine (IA)-containing cell bodies were in general confined to the raphe nuclei, namely the nucleus raphe pallidus, nucleus raphe obscurus, nucleus raphe magnus, nucleus raphe pontis, nucleus raphe dorsalis and the central superior nucleus. A few IA-neurones were located more laterally, especially dorsal and lateral of the cranial half of the inferior olive, around the root of the hypoglossal nerve, in the lateral tegmental field and the pontine central gray. In the spinal cord most CA-fibres were found in the intermediolateral cell column. Another dense accumulation of CA-fibres was located dorsally and laterally of the central canal. The ventral and dorsal horns also contained CA-nervefibres which were slightly more numerous in the sacral spinal cord than in the more rostral parts of the spinal cord.  相似文献   

17.
Summary The indirect immunofluorescence technique was used to analyze the catecholaminergic neurons in the medulla oblongata of the rat for the presence of enkephalin (ENK) — and neuropeptide Y (NPY)-like immunoreactivity (LI). In colchicine pretreated animals, using a double staining technique with mouse and rabbit antibodies against ENK and tyrosine hydroxylase (TH) or phenylethanolamine N-methyltransferase (PNMT), it was demonstrated that both TH-and ENK-LI occurred in the same neurons, particularly in many neurons of the A1 noradrenaline cell group. In the transition zone to the C1 adrenaline cell group, a proportion of PNMT-positive cells also contained ENK-LI. In the rostral and mid portion of the C1 group only few TH/PNMT-positive cells were found to be ENK-positive. In the noradrenergic A2 region, a moderate number of cell bodies also contained TH plus ENK-LI, whereas only a few of the adrenaline cells of the C2 and C3 groups showed ENK-LI. In addition, with an elution restaining technique it was possible to demonstrate that several of the cells containing TH-and ENK-LI were also positive for NPY-LI. The present findings demonstrate that a subpopulation of the catecholaminergic neurons in the medulla oblongata of the rat is ENK positive, thereby indicating a possible co-release of the two compounds in their projection areas, for example the paraventricular nucleus and the spinal cord.  相似文献   

18.
Stimulation of carotid body chemoreceptors activates putative vasopressin neurons in the supraoptic nucleus, an effect which has been abolished by lesions in the caudal ventrolateral medulla. Stimulation within the A1 catecholamine cell group in the ventrolateral medulla also activates supraoptic neurons and releases vasopressin. Therefore the A1 catecholamine neurons may be the means by which carotid body chemoreceptors influence the supraoptic nucleus and other parts of the forebrain. To test this possibility the influence of carotid body chemoreceptors on the discharge of rostrally-projecting neurons in the A1 region of the caudal ventrolateral medulla has been assessed in rats anaesthetized with a mixture of urethane and sodium pentobarbitone. Tests were performed on 131 neurons, 23 of which were antidromically invaded following electrical stimulation within the supraoptic nucleus, the medial forebrain bundle or the ventral noradrenergic bundle. The positions of all antidromically invaded neurons were marked with dye and in six animals subsequent fluorescence histochemistry showed that the blue spots were in the proximity of one or more catecholamine-containing cell bodies in the ventrolateral medulla. The recorded neurons were therefore presumed to be part of the A1 group of catecholamine-containing neurons. All neurons located were tested for their responses to specific stimulation of ipsilateral carotid body chemoreceptors and also to general baroreflex activation. Not one of the antidromically invaded neurons was affected by chemoreceptor stimulation and only one was activated by baroreflex activation. Of the non-antidromically invaded neurons, seven were activated and 13 were depressed following chemoreceptor stimulation but in many cases the latency to onset was very long.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
By means of a new photographic method to quantitate catecholamine fluorescence in tissue sections it has been possible to demonstrate a high dopamine (DA) turnover within the DA cell bodies of the midbrain. The medially located small-sized DA cell bodies of the A10 DA cell group has a very high DA turnover which was significantly different from that found in the laterally located medium-sized DA cell bodies of the A10 cell group. Thus, the mesolimbic DA pathways may be divided into two systems, the medial system having a very high DA turnover in their cell bodies which may reflect a high functional activity in this system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号