首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The IL-23/IL-17 and IL-12/IFN-γ cytokine pathways have a role in chronic autoimmunity, which is considered mainly a dysfunction of adaptive immunity. The extent to which they contribute to innate immunity is, however, unknown. We used a mouse model of acute kidney ischemia-reperfusion injury (IRI) to test the hypothesis that early production of IL-23 and IL-12 following IRI activates downstream IL-17 and IFN-γ signaling pathways and promotes kidney inflammation. Deficiency in IL-23, IL-17A, or IL-17 receptor (IL-17R) and mAb neutralization of CXCR2, the p19 subunit of IL-23, or IL-17A attenuated neutrophil infiltration in acute kidney IRI in mice. We further demonstrate that IL-17A produced by GR-1+ neutrophils was critical for kidney IRI in mice. Activation of the IL-12/IFN-γ pathway and NKT cells by administering α-galactosylceramide–primed bone marrow–derived DCs increased IFN-γ production following moderate IRI in WT mice but did not exacerbate injury or enhance IFN-γ production in either Il17a–/– or Il17r–/– mice, which suggested that IL-17 signaling was proximal to IFN-γ signaling. This was confirmed by the finding that IFN-γ administration reversed the protection seen in Il17a–/– mice subjected to IRI, whereas IL-17A failed to reverse protection in Ifng–/– mice. These results demonstrate that the innate immune component of kidney IRI requires dual activation of the IL-12/IFN-γ and IL-23/IL-17 signaling pathways and that neutrophil production of IL-17A is upstream of IL-12/IFN-γ. These mechanisms might contribute to reperfusion injury in other organs.  相似文献   

2.
Dendritic cell (DC) vaccines have shown antitumor activity in experimental glioma models and in human glioma patients. The typical approach has been to generate the vaccine ex vivo, by pulsing DCs with tumor lysate or peptides, then administering the DCs back into the patient. This process requires significant expertise and expenses in DC generation. Immature DCs which present antigens to T cells in the absence of appropriate costimulatory signals can lead to induction of immune tolerance. Recent studies have shown that coadministration of toll-like receptor 9 agonists, CpG oligodeoxynucleotides, can promote DC vaccines to break immune tolerance to tumor antigens. We investigated the therapeutic efficacy of in vivo DC activation, by directly administering glioma cell lysate with CpG oligodeoxynucleotides (CpG/lysate), in glioma-bearing mice. Subcutaneous vaccination with CpG/lysate induced a significant increase (P<0.05) in the number of total T cells and activated DCs in lymph nodes draining the vaccination site as compared to mice treated with CpG or tumor lysate alone. Mice vaccinated with CpG/lysate exhibited over 2 times greater median survival than mice in the control groups (P<0.05). Up to 55% of mice vaccinated with CpG/lysate were rendered tumor-free as assessed by survival and bioluminescent imaging. Splenocytes taken from mice vaccinated with CpG/lysate elaborated significantly more IFN-gamma production and displayed greater tumor cell lysis activity compared with the control groups (P<0.05). These results suggest direct vaccination with CpG/lysate provides an alternative and effective approach to induce host antitumor immunity and warrants clinical investigation in the immunotherapy of cancer.  相似文献   

3.
The exceptional immunostimulatory capacity of DCs makes them potential targets for investigation of cancer immunotherapeutics. We show here in mice that TNF-alpha-stimulated DC maturation was accompanied by increased expression of OX40 ligand (OX40L), the lack of which resulted in an inability of mature DCs to generate cellular antitumor immunity. Furthermore, intratumoral administration of DCs modified to express OX40L suppressed tumor growth through the generation of tumor-specific cytolytic T cell responses, which were mediated by CD4+ T cells and NKT cells. In the tumors treated with OX40L-expressing DCs, the NKT cell population significantly increased and exhibited a substantial level of IFN-gamma production essential for antitumor immunity. Additional studies evaluating NKT cell activation status, in terms of IFN-gamma production and CD69 expression, indicated that NKT cell activation by DCs presenting alpha-galactosylceramide in the context of CD1d was potentiated by OX40 expression on NKT cells. These results show a critical role for OX40L on DCs, via binding to OX40 on NKT cells and CD4+ T cells, in the induction of antitumor immunity in tumor-bearing mice.  相似文献   

4.
Dendritic cells (DCs) are much more potent antigen (Ag)-presenting cells than resting B cells for the activation of naive T cells. The mechanisms underlying this difference have been analyzed under conditions where ex vivo DCs or B cells presented known numbers of specific Ag–major histocompatibility complex (MHC) complexes to naive CD4+ T cells from T cell antigen receptor (TCR) transgenic mice. Several hundred Ag–MHC complexes presented by B cells were necessary to elicit the formation of a few T–B conjugates with small contact zones, and the resulting individual T cell Ca2+ responses were all-or-none. In contrast, Ag-specific T cell Ca2+ responses can be triggered by DCs bearing an average of 30 Ag–MHC complexes per cell. Formation of T–DC conjugates is Ag-independent, but in the presence of the Ag, the surface of the contact zone increases and so does the amplitude of the T cell Ca2+ responses. These results suggest that Ag is better recognized by T cells on DCs essentially because T–DC adhesion precedes Ag recognition, whereas T–B adhesion requires Ag recognition. Surprisingly, we also recorded small Ca2+ responses in T cells interacting with unpulsed DCs. Using DCs purified from MHC class II knockout mice, we provide evidence that this signal is mostly due to MHC–TCR interactions. Such an Ag-independent, MHC-triggered calcium response could be a survival signal that DCs but not B cells are able to deliver to naive T cells.  相似文献   

5.
The progression of kidney disease to renal failure correlates with infiltration of mononuclear immune cells into the tubulointerstitium. These infiltrates contain macrophages, DCs, and T cells, but the role of each cell type in disease progression is unclear. To investigate the underlying immune mechanisms, we generated transgenic mice that selectively expressed the model antigens ovalbumin and hen egg lysozyme in glomerular podocytes (NOH mice). Coinjection of ovalbumin-specific transgenic CD8+ CTLs and CD4+ Th cells into NOH mice resulted in periglomerular mononuclear infiltrates and inflammation of parietal epithelial cells, similar to lesions frequently observed in human chronic glomerulonephritis. Repetitive T cell injections aggravated infiltration and caused progression to structural and functional kidney damage after 4 weeks. Mechanistic analysis revealed that DCs in renal lymph nodes constitutively cross-presented ovalbumin and activated CTLs. These CTLs released further ovalbumin for CTL activation in the lymph nodes and for simultaneous presentation to Th cells by distinct DC subsets residing in the kidney tubulointerstitium. Crosstalk between tubulointerstitial DCs and Th cells resulted in intrarenal cytokine and chemokine production and in recruitment of more CTLs, monocyte-derived DCs, and macrophages. The importance of DCs was established by the fact that DC depletion rapidly resolved established kidney immunopathology. These findings demonstrate that glomerular antigen–specific CTLs and Th cells can jointly induce renal immunopathology and identify kidney DCs as a mechanistic link between glomerular injury and the progression of kidney disease.  相似文献   

6.
p21对缺血-再灌注损伤后肾小管上皮细胞演变的影响   总被引:2,自引:0,他引:2  
目的 探讨p21对缺血-再灌注损伤(IRI)后肾小管上皮细胞演变的影响。方法 选择低龄(2个月龄)和高龄(12个月龄)p21(+/+)和p21(-/-)鼠,建立左肾IRI模型。于IRI后0、1、3、7d及1、3、6个月光镜下观察肾小管组织学变化,采用免疫组化法检测肾小管上皮细胞增殖细胞核抗原(PCNA)表达,组织化学染色观察肾小管上皮细胞衰老相关β-半乳糖苷酶(SA-β-gal)活力,末端脱氧核糖转移酶介导的生物素化脱氧尿嘧啶缺刻标记技术(TUNEL)检测肾小管上皮细胞凋亡。结果 IRI后0d,肾小管以坏死为主,高龄鼠比低龄鼠严重、p21(-/-)鼠比p21(+/+)鼠严重(P均〈0.05)。肾小管上皮细胞凋亡在IRI 1d后出现,7d达高峰,且高龄鼠比低龄鼠明显、p21(-/-)鼠比p21(+/+)鼠明显(P均d0.05)。低龄鼠IRI后1个月出现SA—β-gal染色阳性的肾小管上皮细胞,而对侧肾此时未见衰老细胞,3和6个月时衰老的肾小管上皮细胞显著增多,且p21(+/+)鼠比p21(-/-)鼠明显(P〈0.05);p21(+/+)高龄鼠IRI后0d双肾即可见大量的SA-β-gal染色阳性肾小管上皮细胞,且较p21(-/-)鼠显著增多(P〈O.05),但1d后,p21(+/+)和p21(-/-)鼠IRI肾衰老细胞均明显减少(P均〈0.05),1个月后又呈进行性增加,且p21(+/+)鼠始终比p21(-/-)鼠严重。高龄和低龄p21(+/+)鼠PCNA阳性染色细胞出现的几率差异无显著性(P〉0.05),但低龄鼠细胞增殖能力要强于高龄鼠;而p21(-/-)鼠的细胞增殖能力明显强于p21(+/+)鼠,低龄鼠更为显著(P均〈0.05)。对高龄鼠IRI后1d细胞衰老和凋亡进行相关分析显示,二者呈显著负相关Cp21(+/+)鼠:r=-0.82,P〈0.001,p21(-/-)鼠:r=-0.76,P〈0.0013。结论 ①IRI可促进正常肾小管上皮细胞衰老的进程;②已经进入衰老状态的肾小管上皮细胞在遭受IRI刺激后,更易走向死亡[坏死和(或)凋亡];③p21在IRI所致肾小管上皮细胞演变过程中发挥重要的调控作用。  相似文献   

7.
B7-DC molecules are known to function as ligands on antigen-presenting cells (APCs), enhancing T cell activation. In this study, cross-linking B7-DC with the monoclonal antibody sHIgM12 directly potentiates dendritic cell (DC) function by enhancing DC presentation of major histocompatibility complex-peptide complexes, promoting DC survival; and increasing secretion of interleukin (IL)-12p70, a key T helper cell type 1 promoting cytokine. Furthermore, ex vivo treatment of DCs or systemic treatment of mice with sHIgM12 increases the number of transplanted DCs that reach draining lymph nodes and increases the ability of lymph node APCs to activate naive T cells. Systemic administration of the antibody has an equivalent effect on DCs transferred at a distant site. These findings implicate B7-DC expressed on DCs in bidirectional communication. In addition to the established costimulatory and inhibitory functions associated with B7-DC, this molecule can also function as a conduit for extracellular signals to DCs modifying DC functions.  相似文献   

8.
The natural killer T (NKT) cell ligand alpha-galactosylceramide (alpha-GalCer) exhibits profound antitumor activities in vivo that resemble interleukin (IL)-12-mediated antitumor activities. Because of these similarities between the activities of alpha-GalCer and IL-12, we investigated the involvement of IL-12 in the activation of NKT cells by alpha-GalCer. We first established, using purified subsets of various lymphocyte populations, that alpha-GalCer selectively activates NKT cells for production of interferon (IFN)-gamma. Production of IFN-gamma by NKT cells in response to alpha-GalCer required IL-12 produced by dendritic cells (DCs) and direct contact between NKT cells and DCs through CD40/CD40 ligand interactions. Moreover, alpha-GalCer strongly induced the expression of IL-12 receptor on NKT cells from wild-type but not CD1(-/-) or Valpha14(-/-) mice. This effect of alpha-GalCer required the production of IFN-gamma by NKT cells and production of IL-12 by DCs. Finally, we showed that treatment of mice with suboptimal doses of alpha-GalCer together with suboptimal doses of IL-12 resulted in strongly enhanced natural killing activity and IFN-gamma production. Collectively, these findings indicate an important role for DC-produced IL-12 in the activation of NKT cells by alpha-GalCer and suggest that NKT cells may be able to condition DCs for subsequent immune responses. Our results also suggest a novel approach for immunotherapy of cancer.  相似文献   

9.
Natural killer T (NKT) cells are distinct glycolipid reactive innate lymphocytes that are implicated in the resistance to pathogens and tumors. Earlier attempts to mobilize NKT cells, specifically, in vivo in humans met with limited success. Here, we evaluated intravenous injection of monocyte-derived mature DCs that were loaded with a synthetic NKT cell ligand, alpha-galactosyl-ceramide (alpha-GalCer; KRN-7000) in five patients who had advanced cancer. Injection of alpha-GalCer-pulsed, but not unpulsed, dendritic cells (DCs) led to >100-fold expansion of several subsets of NKT cells in all patients; these could be detected for up to 6 mo after vaccination. NKT activation was associated with an increase in serum levels of interleukin-12 p40 and IFN-gamma inducible protein-10. In addition, there was an increase in memory CD8+ T cells specific for cytomegalovirus in vivo in response to alpha-GalCer-loaded DCs, but not unpulsed DCs. These data demonstrate the feasibility of sustained expansion of NKT cells in vivo in humans, including patients who have advanced cancer, and suggest that NKT activation might help to boost adaptive T cell immunity in vivo.  相似文献   

10.
Activation of A2A adenosine receptors (A2ARs) protects kidneys from ischemia-reperfusion injury (IRI). A2ARs are expressed on bone marrow-derived (BM-derived) cells and renal smooth muscle, epithelial, and endothelial cells. To measure the contribution of A2ARs on BM-derived cells in suppressing renal IRI, we examined the effects of a selective agonist of A2ARs, ATL146e, in chimeric mice in which BM was ablated by lethal radiation and reconstituted with donor BM cells derived from GFP, A2AR-KO, or WT mice to produce GFP-->WT, A2A-KO-->WT, or WT-->WT mouse chimera. We found little or no repopulation of renal vascular endothelial cells by donor BM with or without renal IRI. ATL146e had no effect on IRI in A2A-KO mice or A2A-KO-->WT chimera, but reduced the rise in plasma creatinine from IRI by 75% in WT mice and by 60% in WT-->WT chimera. ATL146e reduced the induction of IL-6, IL-1beta, IL-1ra, and TGF-alpha mRNA in WT-->WT mice but not in A2A-KO-->WT mice. Plasma creatinine was significantly greater in A2A-KO than in WT mice after IRI, suggesting some renal protection by endogenous adenosine. We conclude that protection from renal IRI by A2AR agonists or endogenous adenosine requires activation of receptors expressed on BM-derived cells.  相似文献   

11.
The human IgM B7-DC XAb protects mice from tumors in both therapeutic and prophylactic settings. Its mechanism of action is mediated by its binding to B7-DC/PD-L2 molecules on the surface of dendritic cells (DCs) to induce a multimolecular cap and subsequent activation of signaling cascades that determine a unique combination of DC phenotypes. One such phenotype, the B7-DC XAb-induced antigen accumulation in mTLR-matured DCs, has been linked to signaling through TREM-2, but the signals required for other DC phenotypes critical for the therapeutic effects in animal models remain unclear. Here, FRET and co-immunoprecipitation studies show that CD40 is recruited to the multi-molecular complex by B7-DC XAb. Signals emanating from CD40 are important, as CD40−/− DCs treated with B7-DC XAb (DCXAb) activated DAP12, but failed to activate NFκB, and were not protected from cell death upon cytokine withdrawal or treatment with Vitamin D3. CD40−/− DCXAb also failed to secrete IL-6 and were unable to support the conversion of T regulatory cells into IL-17+ effector T cells in vitro. Importantly, the expression of CD40 was required for the overall ability of B7-DC XAb to induce anti-tumor CTL, to provide protection from a number of tumor types, and for DCXAb to be effective anti-tumor vaccines in vivo. These results indicate that B7-DC XAb modulation of DC phenotypes is through its ability to indirectly recruit common signaling molecules and elements of their endogenous signaling pathways through targeted binding to a cell-specific surface determinant.  相似文献   

12.
Lupus nephritis is a severe organ manifestation in systemic lupus erythematosus leading to kidney failure in a subset of patients. In lupus-prone mice, controlled infection with Plasmodium parasites protects against the progression of autoimmune pathology including lethal glomerulonephritis. Here, we demonstrate that parasite-induced protection was not due to a systemic effect of infection on autoimmunity as previously assumed, but rather to specific alterations in immune cell infiltrates into kidneys and renal draining lymph nodes. Infection of lupus-prone mice with a Plasmodium parasite did not reduce the levels or specificities of autoreactive antibodies, vasculitis, immune complex–induced innate activation, or hypoxia. Instead, infection uniquely reduced kidney-infiltrating CCL17-producing bone marrow–derived type 2 inflammatory dendritic cells (iDC2s). Bone marrow reconstitution experiments revealed that infection with Plasmodium caused alterations in bone marrow cells that hindered the ability of DC2s to infiltrate the kidneys. The essential role for CCL17 in lupus nephritis was confirmed by in vivo depletion with a blocking antibody, which reduced kidney pathology and immune infiltrates, while bypassing the need for parasitic infection. Therefore, infiltration into the kidneys of iDC2s, with the potential to prime local adaptive responses, is an essential regulated event in the transition from manageable glomerulonephritis to lethal tubular injury.  相似文献   

13.
Studies in humans and animal models indicate a key contribution of angiotensin II to the pathogenesis of glomerular diseases. To examine the role of type 1 angiotensin (AT1) receptors in glomerular inflammation associated with autoimmune disease, we generated MRL-Faslpr/lpr (lpr) mice lacking the major murine type 1 angiotensin receptor (AT1A); lpr mice develop a generalized autoimmune disease with glomerulonephritis that resembles SLE. Surprisingly, AT1A deficiency was not protective against disease but instead substantially accelerated mortality, proteinuria, and kidney pathology. Increased disease severity was not a direct effect of immune cells, since transplantation of AT1A-deficient bone marrow did not affect survival. Moreover, autoimmune injury in extrarenal tissues, including skin, heart, and joints, was unaffected by AT1A deficiency. In murine systems, there is a second type 1 angiotensin receptor isoform, AT1B, and its expression is especially prominent in the renal glomerulus within podocytes. Further, expression of renin was enhanced in kidneys of AT1A-deficient lpr mice, and they showed evidence of exaggerated AT1B receptor activation, including substantially increased podocyte injury and expression of inflammatory mediators. Administration of losartan, which blocks all type 1 angiotensin receptors, reduced markers of kidney disease, including proteinuria, glomerular pathology, and cytokine mRNA expression. Since AT1A-deficient lpr mice had low blood pressure, these findings suggest that activation of type 1 angiotensin receptors in the glomerulus is sufficient to accelerate renal injury and inflammation in the absence of hypertension.  相似文献   

14.
DCs and macrophages both express the chemokine receptor CX3CR1. Here we demonstrate that its ligand, CX3CL1, is highly expressed in the murine kidney and intestine. CX3CR1 deficiency markedly reduced DC numbers in the healthy and inflamed kidney cortex, and to a lesser degree in the kidney medulla and intestine, but not in other organs. CX3CR1 also promoted influx of DC precursors in crescentic glomerulonephritis, a DC-dependent aggressive type of nephritis. Disease severity was strongly attenuated in CX3CR1-deficient mice. Primarily CX3CR1-dependent DCs in the kidney cortex processed antigen for the intrarenal stimulation of T helper cells, a function important for glomerulonephritis progression. In contrast, medullary DCs played a specialized role in inducing innate immunity against bacterial pyelonephritis by recruiting neutrophils through rapid chemokine production. CX3CR1 deficiency had little effect on the immune defense against pyelonephritis, as medullary DCs were less CX3CR1 dependent than cortical DCs and because recruited neutrophils produced chemokines to compensate for the DC paucity. These findings demonstrate that cortical and medullary DCs play specialized roles in their respective kidney compartments. We identify CX3CR1 as a potential therapeutic target in glomerulonephritis that may involve fewer adverse side effects, such as impaired anti-infectious defense or compromised DC functions in other organs.  相似文献   

15.
The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown. The present study discovered that Rag-KO mice lacking T and B cells, as compared with WT mice, are insensitive to the anti-allodynic effects of A3AR agonists. Similar findings were observed in interleukin-10 and interleukin-10 receptor knockout mice. Adoptive transfer of CD4+ T cells from WT mice infiltrated the dorsal root ganglion (DRG) and restored A3AR agonist-mediated anti-allodynia in Rag-KO mice. CD4+ T cells from Adora3-KO or Il10-KO mice did not. Transfer of CD4+ T cells from WT mice, but not Il10-KO mice, into Il10-KO mice or Adora3-KO mice fully reinstated the anti-allodynic effects of A3AR activation. Notably, A3AR agonism reduced DRG neuron excitability when cocultured with CD4+ T cells in an IL-10–dependent manner. A3AR action on CD4+ T cells infiltrated in the DRG decreased phosphorylation of GluN2B-containing N-methyl-D-aspartate receptors at Tyr1472, a modification associated with regulating neuronal hypersensitivity. Our findings establish that activation of A3AR on CD4+ T cells to release IL-10 is required and sufficient evidence for the use of A3AR agonists as therapeutics.  相似文献   

16.
Ischemia reperfusion injury results from tissue damage during ischemia and ongoing inflammation and injury during reperfusion. Liver reperfusion injury is reduced by lymphocyte depletion or activation of adenosine A2A receptors (A2ARs) with the selective agonist 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]- prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL146e). We show that NKT cells are stimulated to produce interferon (IFN)-gamma by 2 h after the initiation of reperfusion, and the use of antibodies to deplete NK1.1-positive cells (NK and NKT) or to block CD1d-mediated glycolipid presentation to NKT cells replicates, but is not additive to, the protection afforded by ATL146e, as assessed by serum alanine aminotransferase elevation, histological necrosis, neutrophil accumulation, and serum IFN-gamma elevation. Reduced reperfusion injury observed in RAG-1 knockout (KO) mice is restored to the wild-type (WT) level by adoptive transfer of NKT cells purified from WT or A2AR KO mice but not IFN-gamma KO mice. Additionally, animals with transferred A2AR-/- NKT cells are not protected from hepatic reperfusion injury by ATL146e. In vitro, ATL146e potently inhibits both anti-CD3 and alpha-galactosylceramide-triggered production of IFN-gamma by NKT cells. These findings suggest that hepatic reperfusion injury is initiated by the CD1d-dependent activation of NKT cells, and the activation of these cells is inhibited by A2AR activation.  相似文献   

17.
Naive antiviral CD8(+) T cells are activated in the draining LN (DLN) by dendritic cells (DCs) presenting viral antigens. However, many viruses infect LN macrophages, which participate in initiation of innate immunity and B cell activation. To better understand how and why T cells select infected DCs rather than macrophages, we performed intravital microscopy and ex vivo analyses after infecting mice with vaccinia virus (VV), a large DNA virus that infects both LN macrophages and DCs. Although CD8(+) T cells interact with both infected macrophages and DCs in the LN peripheral interfollicular region (PIR), DCs generate more frequent and stable interactions with T cells. VV infection induces rapid release of CCR5-binding chemokines in the LN, and administration of chemokine-neutralizing antibodies diminishes T cell activation by increasing T cell localization to macrophages in the macrophage-rich region (MRR) at the expense of PIR DCs. Similarly, DC ablation increases both T cell localization to the MRR and the duration of T cell-macrophage contacts, resulting in suboptimal T cell activation. Thus, virus-induced chemokines in DLNs enable antiviral CD8(+) T cells to distinguish DCs from macrophages to optimize T cell priming.  相似文献   

18.
19.
Because of the paucity of known self lipid-reactive ligands for NKT cells, interactions among distinct NKT cell subsets as well as immune consequences following recognition of self glycolipids have not previously been investigated. Here we examined cellular interactions and subsequent immune regulatory mechanism following recognition of sulfatide, a self-glycolipid ligand for a subset of CD1d-restricted type II NKT cells. Using glycolipid/CD1d tetramers and cytokine responses, we showed that activation of sulfatide-reactive type II NKT cells and plasmacytoid DCs caused IL-12- and MIP-2-dependent recruitment of type I, or invariant, NKT (iNKT) cells into mouse livers. These recruited iNKT cells were anergic and prevented concanavalin A-induced (ConA-induced) hepatitis by specifically blocking effector pathways, including the cytokine burst and neutrophil recruitment that follow ConA injection. Hepatic DCs from IL-12(+/+) mice, but not IL-12(-/-) mice, adoptively transferred anergy in recipients; thus, IL-12 secretion by DCs enables them to induce anergy in iNKT cells. Our data reveal what we believe to be a novel mechanism in which interactions among type II NKT cells and hepatic DCs result in regulation of iNKT cell activity that can be exploited for intervention in inflammatory diseases, including autoimmunity and asthma.  相似文献   

20.
Macrophage-derived chemokine (MDC) is a potent chemoattractant for antigen-specific T lymphocytes. We hypothesized that Adenovirus- (Ad-) transduced dendritic cells (DCs) overexpressing MDC would enhance the T cell-mediated humoral immune response specific for antigens presented by the DC. We challenged two strains of mice with lethal Pseudomonas aeruginosa infection 3 weeks after immunization with AdMDC-modified DCs pulsed with heat-killed P. aeruginosa. MDC-expressing DCs specifically attracted T lymphocytes and preserved typical DC surface phenotypes without growth factors in vitro. Mice immunized with AdMDC/Pseudomonas/DCs developed high levels of serum anti-Pseudomonas Ab's and were protected from a lethal respiratory challenge with Pseudomonas. The in vivo protective immunity required CD4(+) T cells, B cells, and IL-4, but not CD8(+) T cells and IL-12. AdMDC/DCs pulsed with Pseudomonas yielded significant but not absolute cross-protection against different strains of P. aeruginosa. Pseudomonas-pulsed AdMDC/DCs protected mice from Pseudomonas but not Escherichia coli and vice versa; this microbe-specific protection correlated with microbe-specific induction of CD4(+) T cell proliferation and IL-4 secretion. Based on these observations, AdMDC-modified DCs pulsed with a killed bacteria may be a useful approach to vaccination against infectious disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号