首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that all-trans retinoic acid (RA) preserves fibroblast viability and stimulates their proliferation, in part, by reducing the extracellular Ca2+ requirement (Am J Pathol 1990, 130:1275). Based on this observation, we have in the present study examined the effects of RA on Ca2+ mobilization in human dermal fibroblasts. For these studies we used the Ca(2+)-binding dyes, Fluo-3 and Indo-1. Using fluorescence of Fluo-3-loaded cells or Indo-1-loaded cells as indicators of intracellular free Ca2+, we observed that treatment of the cells with RA did no, by itself, alter the concentration of intracellular Ca2+. Nor did it interfere with the rapid, transient rise in intracellular Ca2+ induced by treatment with ionomycin. However, treatment of the cells with RA prevented re-equilibration of intracellular Ca2+ when the cells were initially equilibrated in low Ca2+ (0.15 mmol/L) culture medium and then switched to high Ca2+ (1.4 mmol/L) medium or when cells were first equilibrated in high Ca2+ medium and then switched to low Ca2+ medium. This effect of RA could be seen within seconds after treatment and the effect was observed 1 day after treatment (longest time point examined). The effect was concentration dependent and concentrations of RA that modulated Ca2+ re-equilibration (0.3 to 3.0 mumol/L) were the same as those that have previously been shown to promote fibroblast survival and growth. A biologically inactive retinoid did not have this effect. Specificity of the response was suggested by the finding that concentrations of RA that modulated Ca2+ movement had no effect on Ba2+ transport. These data suggest that RA prevents re-equilibration of intracellular Ca2+ in human dermal fibroblasts by interfering with Ca2+ movement across the plasma membrane.  相似文献   

2.
Human squamous epithelial cells maintained in growth factor-deficient medium were examined for sensitivity to all-trans retinoic acid (retinoic acid). Under conditions of low external Ca2+ (0.15 mmol/l [millimolar]), or high external Ca2+ (1.4 mmol/l), retinoic acid stimulated proliferation. Concomitantly, cell-substrate adhesion was decreased. Enzyme-linked immunosorbent assays were used to assess production of two extracellular matrix components, ie, fibronectin and thrombospondin. In the presence of retinoic acid, production of both was decreased. Because both fibronectin and thrombospondin serve as epithelial cell adhesion factors, the decreased production of these moieties could contribute to reduced adhesion. Using 45Ca2+ to measure total cell-associated Ca2+ and the Ca2(+)-sensitive dye Indo-1 to measure intracellular free Ca2+, it was found that concentrations of retinoic acid that altered cell-substrate adhesion in the squamous epithelial cells had no effect on total, cell-associated Ca2+, but reduced intracellular free Ca2+ by 50% to 60%. Because Ca2+ is a regulator of adhesion, the ability of retinoic acid to modulate Ca2+ levels in the squamous epithelial cells may explain, in part, how retinoic acid influences their adhesiveness.  相似文献   

3.
Two-mm full-thickness punch biopsies of human skin were placed in organ culture in a serum-free, growth factor-free basal medium. Under conditions of low extracellular Ca2+ (0.15 mmol/L), the tissue quickly degenerated. However, degeneration was prevented when the extracellular Ca2+ concentration was increased to 1.4 mmol/L. The tissue remained histologically normal in appearance and biochemically active for up to 12 days. The addition of 3 mumol/L all-trans retinoic acid (RA) to the low-Ca2+ culture medium also prevented tissue degeneration. However, in contrast to what was seen in the presence of 1.4 mmol/L Ca2+, epidermal differentiation did not occur normally in the presence of RA. Rather, the upper layers of the epidermis routinely separated from the underlying basal cells. Fibronectin production by the organ cultured skin was examined. Biosynthetic labeling/immunoprecipitation studies demonstrated that incubation of the tissue in basal medium containing 1.4 mmol/L Ca2+ resulted in a high level of fibronectin production relative to the amount produced in basal medium containing 0.15 mmol/L Ca2+. In contrast, the addition of 3 mumol/L RA to the low Ca2+ basal medium did not stimulate fibronectin production. Similar results were observed in enzyme-linked immunosorbent assays where the addition of Ca2+ to a final concentration of 1.4 mmol/L stimulated fibronectin and thrombospondin production whereas RA (3 mumol/L) did not. Although RA by itself failed to stimulate extracellular matrix production, the addition of 3 mumol/L RA to basal medium containing 1.4 mmol/L Ca2+ led to a further increase in fibronectin production over that seen in the presence of 1.4 mmol/L Ca2+ alone. Taken together, these data indicate that although either 1.4 mmol/L Ca2+ or 3 mumol/L RA facilitates survival of organ-cultured skin in basal medium, they have very different effects on extracellular matrix production. This supports the view, based on histological appearance, that the two treatments work through different mechanisms. The data further support the suggestion that the two treatments may have additive or even synergistic effects.  相似文献   

4.
The fluorescent Ca2+ indicator FURA-2 was used to characterize the depolarization-related intracellular Ca2+ signalling process in bovine adrenal chromaffin cells. Depolarization with high K+ (10-65 mM) gave rise to a very rapid increase in intracellular free Ca2+ concentration, which subsequently decayed slowly towards a "plateau". The size of this initial increase varied sigmoidally with the calculated membrane potential, the relationship being described well by a Boltzmann distribution function for a transition between two states (transition potential, -23 mV). A dihydropyridine calcium channel agonist [(+)202-791, 1 microM] raised intracellular free Ca2+ concentration further in the presence of 30 mM K+, and it enhanced the initial intracellular Ca2+ response to depolarization. Voltage-sensitive calcium channels in chromaffin cells are believed to include the L-type. Several dihydropyridine calcium channel antagonists [(-)202-791, nifedipine, nitrendipine; 1-5 microM], known to be active on L-type channels, caused only modest inhibition of K+ -induced increase in intracellular free Ca2+ concentration: c. 50% (at 30 mM K+) and 25% (at 40-70 mM K+). In addition, omega-conotoxin GVIA (1-10 microM), a blocker of neuronal N- and L-type calcium channels, reduced the initial increase in intracellular free Ca2+ concentration only slightly at 55 mM K+. Further, the dihydropyridine-insensitive component of the intracellular Ca2+ signal was also insensitive to omega-conotoxin, which was otherwise quite active in a central nervous rat in vivo preparation Gd3+ (40 microM), a potent calcium antagonist in the chromaffin cell, blocked the intracellular Ca2+ response to depolarization. When added at different times after K+ stimulation, however, Gd3+ reduced intracellular free Ca2+ concentration to control levels along a slow time course of several minutes. Similar results were obtained when EGTA was added to reduce extracellular Ca2+ concentration to sub-nanomolar levels, in the presence of high K+. We conclude that bovine chromaffin cells are equipped with at least two different classes of voltage-dependent calcium channels, only one of which is likely to be the L-type channel. We also propose that depolarization, in addition to stimulating Ca2+ influx, may also lead to enhancement of Ca2+ release from an intracellular store.  相似文献   

5.
Thapsigargin (TG), a sesquiterpene lactone and non-phorbol 12-myristate 13-acetate tumor promoter, stimulates a rapid increase in intracellular free Ca2+ [( Ca2+]i) in human T lymphocytes clone P28. The [Ca2+]i response to TG is sustained in the presence of 1 mM extracellular Ca2+, while it becomes transient in Ca2(+)-free medium suggesting that TG activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from extracellular spaces. TG-induced Ca2+ influx is completely abolished after cell depolarization caused by increased extracellular concentrations of K+. The rise in [Ca2+]i stimulated by TG occurs in the absence of detectable production of inositol phosphates. Moreover, TG does not alter the early biochemical events of T cell activation triggered through the CD2 or the CD3 T cell antigens. Indeed, both inositol phosphate production and intracellular pH increase induced by specific monoclonal antibodies (mAb) remain unchanged after TG treatment. These data suggest that in human T lymphocytes TG releases Ca2+ from an intracellular pool by a mechanism which is independent of the phospholipase C metabolic pathway. Preincubation with TG of T cell clone P28 empties both the CD2 and the CD3-sensitive intracellular Ca2+ pool(s). Conversely, prestimulation of T cell clone P28 by CD3 or CD2-specific mAb inhibits the Ca2(+)-mobilizing effect of TG. Thus it appears that TG and CD2- or CD3-specific mAb mobilize Ca2+ from common Ca2+ pool(s). Taken together, these results demonstrate that Ca2+ influx in human T cells may be linked to mobilization of intracellular Ca2+ pools and by a mechanism independent of phosphoinositide hydrolysis. They further indicate that the release of intracellular Ca2+ pool(s) may play a major role in the opening of cell membrane Ca2+ channels observed during the CD2- or CD3-induced stimulation of human T lymphocytes.  相似文献   

6.
The ability of the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (FMLP) to stimulate beta-glucuronidase release and 45Ca2+ release from rabbit neutrophils was studied. FMLP stimulated enzyme release from cytochalasin B-treated cells either in the presence or the absence of extracellular calcium. Depletion of cell calcium, by exposure to either ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid or the calcium ionophore A23187, blocked the ability of FMLP to stimulate enzyme release and 45Ca2+ release in the absence of extracellular calcium. The ability of A23187 to lower the 45Ca2+ content of neutrophils, to block FMLP-stimulated 45Ca2+ release, and to inhibit FMLP-stimulated enzyme release in the absence of calcium was dose dependent over the same concentration range (10(-8) to 10(-6) M A23187) for all three actions. In contrast, FMLP stimulated enzyme release from A23187-treated cells, provided that extracellular calcium was present. This secretory response was normal as judged by cell ultrastructure and FMLP dose-response relationships. It is concluded that A23187 depletes a pool of intracellular calcium usually released by FMLP and that release of calcium from this pool is necessary for initiation of enzyme secretion in the absence of extracellular calcium.  相似文献   

7.
All-trans retinoic acid (RA) preserves human dermal fibroblast viability and stimulates proliferation in vitro. These effects are mediated, at least in part, by reducing the extracellular Ca2+ requirement. The same concentrations of RA that reduce the extracellular Ca2+ requirement also interrupt movement of Ca 2+ across the fibroblast plasma membrane. Based on these observations, we have examined the effects of RA on membrane properties that could influence Ca2+ movement. Fibroblasts were labeled with 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3 diazole)-amino-caproyl phosphatidyl-choline (a fluorescent phospholipid analogue) and examined for fluorescence redistribution after photobleaching (FRAP) with a pulse of intense light as a measure of membrane fluidity. Using this approach, we observed that membrane fluidity was higher when the cells were incubated in medium containing a low (sub-optimal) level of extracellular Ca2+ (0.15 mmol/L) than in a medium containing an optimal concentration (1.4 mmol/L). Treatment of the cells with 3 micromol/L RA reduced membrane fluidity of the cells under both high- and low-Ca2+ conditions. These findings demonstrate that RA has a direct effect on the plasma membrane of human dermal fibroblasts. This provides a possible mechanism for the previously identified inhibition of Ca2+ movement across the membrane of the same cells and for the previously identified protective effects against lysis under low-Ca2+ conditions.  相似文献   

8.
In isolated guinea pig adrenal chromaffin cells, not only nicotine, but also muscarine stimulated catecholamine (CA) secretion, the stimulation by muscarine being the greater. The secretions of CA by muscarine and nicotine were both dependent on the presence of Ca2+ in the medium, but only the latter was associated with a rapid increase in 45Ca2+ uptake. Experiments with the fluorescent Ca2+ indicator quin 2, showed that muscarine caused an increase in cytoplasmic free Ca2+ concentration [( Ca2+]i). Moreover, the intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) inhibited both CA secretion and increase in [Ca2+]i induced by muscarine. These results indicate that in isolated guinea pig adrenal chromaffin cells, nicotine stimulated CA secretion by increasing Ca2+ uptake by the cells, whereas muscarine stimulated CA secretion by mobilizing Ca2+ from the intracellular pool.  相似文献   

9.
Recent electrophysiological data have provided the evidences that background currents such as Na(+)-Ca2+ exchange can significantly modulate cardiac pacemaker activity. In this study, the effects of extracellular Na+ and Ca2+ concentrations on the pacemaker activity were investigated by measuring the intracellular Na+ activity (aiNa) with Na(+)-selective microelectrodes and the results are summarized as follows. 1) In the rabbit SA node, aiNa was 3.2 +/- 0.3 mM and mean MDP (maximal diastolic potential) was -63.3 +/- 1.4 mV. 2) Graded decreases of external Na+ concentration resulted in the loss of spontaneous beating, hyperpolarization and the decrease of aiNa. 3) An increase in extracellular Ca2+ concentration in low Na+ solution augmented the transient decrease of aiNa, about 3 minutes in low Na+ solution, until aiNa started to increase. 4) In low Na+ solution, which had extracellular Ca2+ concentration according to the calculation based on the equilibrium state of Na(+)-Ca2+ exchange, aiNa was continuously decreased. It was concluded that intracellular Na+ activity modulated by Na(+)-Ca2+ exchange could play an important role in the initiation of pacemaker potential.  相似文献   

10.
The high potassium-induced potentiation of spontaneous glycine release in extracellular Ca2+-free conditions was studied in mechanically dissociated rat spinal dorsal horn neurons using whole-cell patch-clamp technique. Elevating extracellular K+ concentration reversibly increased the frequency of spontaneous glycinergic inhibitory postsynaptic currents (IPSCs) in the absence of extracellular Ca2+. Blocking voltage-dependent Na+ channels (tetrodotoxin) and Ca2+ channels (nifedipine and omega-grammotoxin-SIA) had no effect on this potassium-induced potentiation of glycine-release. The high potassium-induced increase in IPSC frequency was also observed in the absence of extracellular Na+, although the recovery back to baseline levels of release was prolonged under these conditions. The action of high potassium solution on glycine release was prevented by BAPTA-AM, by depletion of intracellular Ca2+ stores by thapsigargin and by the phospholipase C inhibitor U-73122. The results suggest that the elevated extracellular K+ concentration causes Ca2+ release from internal stores which is independent of extracellular Na+- and Ca2+-influx, and may reveal a novel mechanism by which the potassium-induced depolarization of presynaptic nerve terminals can regulate intracellular Ca2+ concentration and exocytosis.  相似文献   

11.
The inositol phospholipid metabolism and the increase in cytosolic free Ca2+ concentration ([Ca2+]i) into the cell are recognized as two important events in the anti-mu-induced B cell activation. The anti-mu stimulation caused the [3H]inositol incorporation and also a rapid increase in [Ca2+]i from 85 nM to 285 nM. This signal returned to baseline a few minutes after stimulation. By using the fluorescent indicator quin-2 we demonstrated that this [Ca2+]i uptake was derived part from extracellular medium and part from intracellular stores. Both EGTA (a calcium chelator) and TMB.8 (a drug which interferes with Ca2+ sequestration by smooth endoplasmic reticulum) partially suppressed the intracellular Ca2+ uptake and were fully inhibitory when added together. The role of Ca2+ from intracellular stores may also be evidenced in calcium-free experiments, or in permeabilized experiments using exogenous inositol 1,4,5-trisphosphate (IP3, the putative mobilizer of intracellular Ca2+). Preventing the increase in [Ca2+]i also prevents the apparition of early activation makers. These results are consistent with the hypothesis that the Ca2+ increase in B cells stimulated by anti-mu is caused by the generation of IP3 during the phosphatidyl-inositol metabolism and also by the entry of extracellular Ca2+ through the plasma membrane.  相似文献   

12.
Elevated intracellular Ca2+ appears to play an important role in the mechanism of cell killing in certain pathologic states such as ischemia. The authors have examined aspects of the biochemical mechanism of cell killing by elevated intracellular Ca2+ using as a model system cultured fibroblasts treated with ionophore A23187 in Ca2+-containing medium. Evidence has been obtained for two Ca2+-mediated steps and a Na+-mediated step in the cell killing process. The first Ca2+-mediated step occurs in low extracellular Ca2+ concentrations (1-100 microM) and exhibits a variety of characteristics in common with the arachidonic acid release response stimulated under the same conditions. These results are consistent with the arachidonic acid release response constituting or closely monitoring the initial injury process. The second Ca2+-mediated process is achieved at near physiologic extracellular Ca2+ concentrations in the absence of A23187. Killing of cells injured by the two Ca2+-dependent steps requires extracellular Na+ ions at half or more the physiologic concentration.  相似文献   

13.
Stimulation of the vanilloid (capsaicin) receptor (VR1), currently viewed as a molecular integrator of chemical and physical noxious stimuli, evoked intracellular Ca2+ transients in a capsaicin-sensitive subpopulation of rat dorsal root ganglion neurons. These were comprised of an initial fast rise (seconds) followed by a long-lasting intracellular Ca2+ recovery (tens of minutes). The rate of intracellular Ca2+ recovery was dependent on the magnitude of intracellular Ca2+ transients. Opening of voltage-operated Ca2+ channels in the same neurons by K+ depolarization evoked intracellular Ca2+ elevation of a similar amplitude and rate of rise; however, the recovery of intracellular Ca2+ to the prestimulated level was significantly faster. A mitochondrial uncoupler (10 microM carbonyl cyanide m-chlorophenylhydrasone) was used to reveal the role of mitochondria in intracellular Ca2+ buffering. Carbonyl cyanide m-chlorophenylhydrasone-evoked elevation in intracellular Ca2+ was greater in neurons previously stimulated with capsaicin compared with KCl. Neither extracellular Ca2+ nor ATP depletion influenced significantly the carbonyl cyanide m-chlorophenylhydrasone-sensitive intracellular Ca2+ elevation in neurons loaded with Ca2+ via vanilloid 1 receptor stimulation. The effects of carbonyl cyanide m-chlorophenylhydrasone suggest that the amount of Ca2+ buffered by mitochondria is greater when extracellular Ca2+ enters the neuron via the vanilloid 1 receptor channel than via voltage-operated Ca2+ channels. The long duration of intracellular Ca2+ decline in neurons stimulated with capsaicin, which depends on the amount of Ca2+ buffered by mitochondria, may reflect a specific mechanism of Ca2+ buffering following activation the pain receptor VR1.  相似文献   

14.
The crucial role of free cytosolic Ca2+ in ischemic neuronal damage has been studied in recent years. In the present report, changes in the intracellular Ca2+ concentration in the hippocampal CA1 area during transient global ischemia and reperfusion were measured using in vivo Ca2+ fluorometry with fura-2 in the four-vessel occlusion and reperfusion model in halothane-anesthetized rats. Marked changes were seen during 10-min global ischemia, with the intracellular Ca2+ concentration increasing gradually following application of the ischemic insult and rapidly about 2 min after the beginning of ischemia, and continuing to increase until reperfusion. On reperfusion, the intracellular Ca2+ concentration began to decrease and returned to the pre-ischemic level within 15 min. Induction of severe global ischemia was confirmed by the complete suppression of synaptic activity and the decrease in hippocampal temperature in the CA1 area. After seven days, CA1 pyramidal cell loss was observed histopathologically in the same rats which had undergone measurement of the intracellular Ca2+ concentration changes. In the present study, a temporal profile of the free cytosolic Ca2+ dynamics during ischemic and early post-ischemic period was determined in vivo. The results demonstrate that the intracellular Ca2+ concentration in the hippocampal CA1 area is transiently and markedly increased during a brief ischemia-inducing delayed neuronal death, implying that Ca2+ overload during cerebral ischemia is a possible cause of the delayed cell death of CA1 pyramidal neurons.  相似文献   

15.
The patch-clamp technique was used to study the effect of intracellularly added inactivating "ball" peptide (BP) of the Shaker B K+ channel upon Ca(2+)-dependent inwardly rectifying K+ channels of the intermediate conductance type expressed in HeLa cells. Intracellular BP caused only moderate inhibition of outward K+ currents when assayed at an intracellular Ca2+ concentration of 100 nmol/l. Increasing intracellular Ca2+ levels led in itself to some voltage-dependent blockade of K+ currents, which was absent when high extracellular K+ was used. An additional strong blockade by intracellular BP was nevertheless observed both in Na(+)- and K(+)-rich extracellular solutions. A non-inactivating BP analogue had no effect. At this higher intracellular Ca2+ concentration the inhibition of these intermediate conductance Ca(2+)-dependent channels by BP was voltage-dependent, being absent at hyperpolarizing potentials, and could be relieved by increasing extracellular K+. These data suggest that BP acts at an internal pore site in Ca(2+)-dependent intermediate conductance K+ channels of HeLa cells, and that these might possess a receptor site for the peptide similar to that of other K+ channels such as Ca(2+)-activated maxi-K+ channels.  相似文献   

16.
OBJECTIVE AND DESIGN: This study was aimed to investigate effects of extracellular Na+ and Ca2+ ions on nerve growth factor (NGF) induced histamine release from mast cells. MATERIAL: Isolated peritoneal mast cells were obtained from male Wistar rats. METHODS: Cells were suspended in solution with different concentration of Na+ and Ca2+ ions and stimulated with NGF. Histamine release was assayed spectrofluorometrically. RESULTS: NGF (0.001-1 microg/ml) dose-dependently releases histamine from mast cell at physiological extracellular Na+ (134 mM) and Ca2+ (1 mM) conditions. Lowering extracellular Ca2+ ions to 0.1 mM reduced histamine response to nearly basal level. However, the removal of extracellular Na+ ions significantly enhanced the secretion provoked by NGF (0.6 microg/ml) in low Ca2+ medium. Amiloride, an inhibitor of Na+/Ca2+ and Na/H+ exchangers inhibited the potentiating effect of sodium free conditions. CONCLUSIONS: Our results suggest that the activity of Na+/Ca2+ and/or Na+/H+ exchange mechanisms could be of particular importance in the secretory process of mast cells induced by NGF.  相似文献   

17.
Increase of intracellular ionized or free Ca2+ is thought to play a central role in cell death due to ATP depletion. However, concurrently operative mechanisms of injury that do not require intracellular Ca2+ increases have made it difficult to test this hypothesis or to determine the concentrations at which intracellular Ca2+ becomes lethal. The predominant Ca2+-independent mechanism of injury during ATP depletion involves the loss of cellular glycine. This type of damage can be fully inhibited by adding the amino acid exogenously. Using glycine to suppress Ca2+-independent plasma membrane damage, we have examined the effect of intracellular Ca2+ elevations on cell viability during ATP depletion. Madin-Darby canine kidney (MDCK) cells were depleted of ATP by incubation with a mitochondrial uncoupler in glucose-free medium. Free Ca2+ concentration in the medium was varied between 26 nmol/L and 1.25 mmol/L in the presence of a Ca2+ ionophore. Measurements with the Ca2+ probes fura-2, furaptra, and fura-2FF showed that intracellular Ca2+ was clamped at extracellular levels under these conditions. Cell survival during ATP depletion was indicated by viable cells recovered 24 hours later. The results show that ATP-depleted cells can sustain high levels of intracellular Ca2+ (100 micromol/L) for prolonged periods and remain viable if plasma membrane damage is prevented by glycine. Cell death was observed only when intracellular free Ca2+ was allowed to increase beyond 100 micromol/L, and this was associated with dramatic nuclear alterations: chromatin condensation, loss of nuclear lamins, and breakdown of DNA into large 50- to 150-kb fragments. Our studies demonstrate unexpectedly high resistance of cells to calcium cytotoxicity if glycine that is lost during ATP depletion is restored. In addition, they provide insights into novel mechanisms of nuclear disintegration and DNA damage that are triggered when the high thresholds of intracellular Ca2+ required for cell death are exceeded.  相似文献   

18.
We have investigated intracellular Ca2+ mobilization in oscillations of cytoplasmic Ca2+ in response to glucagon-like peptide 1 (GLP-1) and glucose in clonal HIT insulinoma cells with a confocal laser-scanning microscope (CLSM). We also used electron probe X-ray microanalysis to determine the GLP-1- and glucose-induced changes in electrolyte levels in the cytoplasm and insulin granules of the cells. GLP-1 produced 10- to 35-s duration oscillations in cytoplasmic Ca2+ concentration ([Ca2+]i), both with and without Ca2+ in the extracellular solution, suggesting that Ca2+ is mobilized from intracellular Ca2+ stores, namely secretory granules. Glucose caused 1- to 3-min duration oscillatory increases in [Ca2+]i when the extracellular solution contained Ca2+. When the cells were cultured without Ca2+ (no Ca2+ added, 1 mM EGTA), an oscillatory [Ca2+]i increase of amplitude and short duration (12-35 s) was produced by 11 mM glucose, and the oscillation was inhibited by ruthenium red. X-ray microanalysis showed that stimulation with glucose increased the total Ca concentration in the cytoplasm and decreased it in the insulin granules with and without Ca2+ in the extracellular solution. The application of glucose significantly decreased K, and increased Na and C1 in the cytoplasm when the extracellular solution contained Ca2+. Our result also suggests that the [Ca2+]i oscillation induced by glucose is involved in the release of Ca2+ from intracellular Ca2+ stores through the ryanodine receptor, which is blocked by ruthenium red, and/or through the inositol trisphosphate receptor that may be present in the membrane of insulin granules.  相似文献   

19.
The Na+-Ca2+ exchanger current was measured in single guinea pig ventricular myocytes, using the whole-cell voltage-clamp technique, and intracellular free calcium concentration ([Ca2+](i)) was monitored simultaneously with the fluorescent probe Indo-1 applied intracellularly through a perfused patch pipette. In external solutions, which have levels of Ca2+ (approximately 66 microM Ca2+) thought low enough to inhibit exchanger turnover, the removal of external Na+ (by replacement with Li+) induced both an outward shift of the holding current and an increase in [Ca2+](i), even though the recording pipette contained 30 mM bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), sufficient to completely block phasic contractions. The effects of Na+ removal were blocked either by the extracellular application of 2 mM Ni2+ or by chelating extracellular Ca2+ with 1 mM EGTA. In the presence of 10 microM Ryanodine, the effects of external Na+ substitution with Li(+) on both membrane current and [Ca2+](i) were attenuated markedly in amplitude and at a much slower time course. Reversal potentials were estimated by using ramp pulses and by defining exchange currents as the Ni2+-sensitive components. The experimental values of the reversal potential and [Ca2+](i) were used to calculate cytosolic Na+ ([Na+](i)) by assuming an exchanger stoichiometry of 3Na+ : 1Ca2+. These calculations suggested that in the nominal absence of external Ca2+ ( approximately 66 microM under our experimental conditions), the exchanger operates at -40 mV as though approximately 40 mM Na+ had accumulated in the vicinity of the intracellular binding sites. We conclude that under the conditions of low extracellular Ca2+ and high intracellular Ca2+ buffering, the Na+-Ca2+ exchanger can still generate sufficient Ca2+ influx on the removal of external Na+ to markedly increase cytosolic free Ca2+.  相似文献   

20.
Addition of lectin or antibody to the T cell receptor complex of human T cells results in a rapid increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This response is biphasic and results from contributions of Ca2+ from internal stores, uptake of Ca2+ across the plasma membrane and possibly a decrease in Ca2+ efflux. These responses have been linked through the activity of inositol 1,4,5-trisphosphate in releasing Ca2+ from internal stores and potentially mediating Ca2+ uptake across the plasma membrane. Following addition of phytohemagglutinin or anti-CD3 antibody to resting T cells or Jurkat cells, we have been able to dissociate the [Ca2+]i responses by loading cells with the Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA). In BAPTA-loaded T cells, we have shown that Ca2+ mobilized from intracellular stores following activation is effectively buffered, while stimulated Ca2+ uptake and associated changes in [Ca2+]i were relatively unaffected. In this report, we show that the sustained increase in [Ca2+]i is due to increased unidirectional influx of external Ca2+ without changes in efflux and that it is the entry of extracellular Ca2+ which is sensitive to the transmembrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号