首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dehydro-peptide Boc-L-Ile-ΔPhe-L-Trp-OCH3 was synthesized by the azlactone method in the solution phase. The peptide was crystallized from methanol in an orthorhombic space group P212121 with a = 10.777(2), b= 11.224(2), c= 26.627(10) Å. The structure was determined by direct methods and refined to an R value of 0.069 for 3093 observed reflections [l≥ 2σ(l)].The peptide failed to adopt a folded conformation with backbone torsion angles: φ1, = 90.8(8)°, ψ1= -151.6(6)°, φ2= 89.0(8)°, ψ2= 15.9(9)°, φ3= 165.7(7)°, ψT3= -166.0(7)°. A general rule derived from earlier studies indicates that a three-peptide unit sequence with a ΔPhe at the (i+ 2) position adopts a β-turn II conformation. Because the branched β-carbon residues such as valine and isoleucine have strong conformational preferences, they combine with the ΔPhe residue differently to generate a unique set of conformations in such peptides. The presence of β-branched residues simultaneously at both (i+ 1) and (i+ 3) positions induces unfolded conformations in tetrapeptides, but a β-branched residue substituted only at (i+ 3) positron can not prevent the formation of a folded β-turn II conformation. On the other hand, the present structure shows that a β-branched residue substituted at the (i+ 1) position prevents the formation of a β-turn II conformation. These observations indicate that a β-branched residue at the (i+ 1) position prevents a folded conformation whereas it cannot generate the same degree of effect from the (i+ 3) position. This may be because of the trans disposition of the planar ΔPhe side-chain with respect to the C=O group in the residue. The molecules are packed in an anti-parallel manner to generate N2-H2…O2 (-x,y-1/2, -z+ 3/2) and Nε13-Hε13…O1(-x,y -1/2, -z+ 3/2) hydrogen bonds.  相似文献   

2.
Using a data set of 250 non-homologous high-resolution globular proteins, a systematic analysis of the conformations that precede and succeed (positions i and i+3) the various classical β-turn types has been carried out. The collective conformation of a specific β-turn type, including the flanking positions, termed motif, has been studied. In all the four turn types, the majority of examples are preceded and succeeded by extended conformation. Some of the other observations are: (1) In a type I β-turn, Gly at position i+ 3 has a higher favorability to occur with positive ø and does not prefer the major motif βαRR-β. (2) The left-handed alpha;-helical conformation (alpha;L) is not preferred at both the flanking positions for type I'and II β-turns, (3) The β–β motif is favourable for all the turn types and the motif β–αL very highly favourable for type I. © Munksgaard 1996.  相似文献   

3.
Synthesis and conformational analysis of the S-glycosylated cyclic hexapeptide cyclo(-d -Pro1-Phe2-Cys3(tetra-O-acetyl-β-d -galactopyranosyl)-Trp4-Lys(Z)5-Phe6-) I was carried out to examine the influence of a saccharide residue in position i of a standard β-turn on the formation of reverse turns and on the biological activity. Synthesis was carried out in the liquid phase employing a galactosylated cysteine building block. The cyclization reagents DPPA/NaHCO3 avoided high dilution conditions. Spectroscopic data were extracted from homo- and heteronuclear 2D-NMR techniques (TOCSY, NOESY, HMQC, HMQC-TOCSY, HMBCS-270). For structural refinement restrained molecular dynamics (MD) simulations in vacuo and with explicit DMSO as solvent were performed. Finally, simulations in DMSO without experimental restraints provided insight in stability and dynamics of the structural model. A comparison of the S-glycosylated Cys3 peptide with the analogous Thr3 peptide exhibits a similar overall conformation of the hexapeptide [βII’d -Pro-Phe and another β-turn about Trp4-Lys5(Z)]. However, the latter shows a distinct dynamic flip βI, βII in the glycopeptide, whereas the Thr-analogue only populates βI. This influence is attributed to a βI stabilizing effect of a hydrogen bridge of Thr-O, in position i to the NH of the amino acid in position i+ 2, which is lacking in the glycosylated compound.  相似文献   

4.
Abstract: A spontaneously folding β‐hairpin peptide (Lys‐Lys‐Tyr‐Thr‐Val‐Ser‐Ile‐Asn‐Gly‐Lys‐Lys‐Ile‐Thr‐Val‐Ser‐Ile) and related cyclic (cyclo‐Gly‐Lys‐Tyr‐Ile‐Asn‐Gly‐Lys‐Ile‐Ile‐Asn) and linear (Ser‐Ile‐Asn‐Gly‐Lys) controls were studied to determine the effects of various factors on secondary structure. Secondary structure was evaluated using circular dichroism (CD) and 1D and 2D 1H nuclear magnetic resonance (NMR). The effects of chemical modifications in the peptide and various solution conditions were investigated to determine their impact on peptide structure. The β‐hairpin peptide displayed a CD minimum at 216 nm and a TOCSY i + 1 ? i + 2 and i + 2 ?i + 3 interaction, confirming the expected structure. Using NMR α‐proton (H) chemical shifts, the extents of folding of the β‐hairpin and linear control were estimated to be 51 and 25% of the cyclic control (pH 4, 37 °C), which was taken to be maximally folded. Substitution of iso‐aspartic acid for Asn reduced the secondary structure dramatically; substitution of aspartic acid for Asn also disrupted the structure. This result suggests that deamidation in unconstrained β‐turns may have adverse effects on secondary structure. N‐terminal acetylation and extreme pH conditions also reduced structure, while the addition of methanol increased structure.  相似文献   

5.
Circular dichroism (CD) and1 H-{1H}NOE spectra were obtained for Piv-Pro-Ser-NHCH3(1),[Piv-(CH3)3-C-CO], Boc-Pro-Ser-NHCH3 (2) and Boc-Val-Ser-NHCH3 (3), to determine the solution conformation of these p-turn models. In the crystal, 1 and 3 adopt an ideal type I β-turn, while 2 is characterized by a semifolded backbone geometry incorporating a cis Boc-Pro tert-amide bond. The predominance of a β-turn conformation in solution was suggested for models 1-3 on the basis of 1H-{1H}NOE data. In a nonpolar solvent the prevailing trans rotamer form (>80%) of 2 has a β-turn conformation according to heteronuclear NOE measurement. Positive 1H-{1H} NOEs were detected between the Hα(Pro)/NH(Ser), Hα(Ser)/NH(Ser) and NH(NHCH33)/HN(Ser) protons in the trans Boc-Pro rotamer form of 2 at -20° in CDCl3. Similar positive homonuclear NOE enhancements were also observed on the appropriate proton signals in other models, such as Boc-Val-Ser-NHCH3 (3). Boc-Val-D-Ser-NHCH3 (4) and Boc-Pro-D-Ser-NHCH3 (5), in various solvents. The 1H- {1H)NOE experiments carried out in CD3CN clearly showed that besides the type I (or III) β-turn structure, one of the main conformations of models 1-5 is close to the type II β-turn backbone geometry in a nonpolar solvent. Unexpectedly, the conformational mixture of models 1-3 were characterized by class C (helix-like) CD spectra, although class C spectra are generally only correlated with the type I β-turn conformation. These acyclic models are the first carefully investigated examples of -L-L- triamide systems, containing a significant amount of a type II β-turn, as well as the type I p-turn and, however, yielding a class C circular dichroism spectra. The CD spectra recorded for 3 and 4 in acetonitrile were ‘calibrated’ using the 1H-{1H}NOE data. Such a “calibration”, as well as the semi-quantitative CD and NMR comprehensive analyses, demonstrated that class C, class B, as well as class C’ CD spectra may be obtained from the linear combination of the same two-component spectra, with different conformational weights. Therefore, it is suggested that the extraction of the conformational components of such models, simply on the basis of their CD spectra, must be made with caution.  相似文献   

6.
The crystal structure of Ac-Pro-ΔVal-NHCH3 was examined to determine the influence of the α,β-dehydrovaline residue on the nature of peptide conformation. The peptide crystallizes from methanol-diethyl ether solution at 4° in needle-shaped form in orthorhombic space group P212121 with a= 11.384(2) Å, b = 13.277(2) Å, c = 9.942(1) Å. V = 1502.7(4) Å3 Z = 4, Dm= 1.17 g cm?3 and Dc=1.18 g cm?3 The structure was solved by direct methods using SHELXS-86 and refined to an R value of 0.057 for 1922 observed reflections. The peptide is found to adopt a β-bend between the type I and the type III conformation with φ1=?68.3(4)°, ψ1=? 20.1(4)°, φ2=?73.5(4)°= and Ψ2=?14.1(4)°=. An intramolecular hydrogen bond between the carbonyl oxygen of ith residue and the NH of (i+ 3)th residue stabilizes the β-bend. An additional intermolecular N.,.O hydrogen bond joins molecules into infinite chains. In the literature described crystal structures of peptides having a single α,β-dehydroamino acid residue in the (i+ 2) position and forming a β-bend reveal a type II conformation.  相似文献   

7.
Abstract: This investigation describes the design, synthesis and evaluation of chimeric peptides related to the bovine thyrotropin β-subunit, bTSHβ. The structures of these chimeric peptides were derived from investigations with linear peptides and sequence alignment studies, in association with a homology model of TSHβ developed from the hCG X-ray crystallographic structure. The structures of these chimeric peptides comprised β-turn regions of loop L1[bTSHβ(14-20)] and loop L3[bTSHβ(65-72)] held in close proximity by a bis-β-alanine linker and the disulfide bond bTSHβ[Cys16-Cys67]. Linear and cyclic chimeric peptides were evaluated in immunochemical assays for their ability to inhibit the binding of radio-iodinated bTSHβ[125I-bTSHβ] to the monoclonal antibodies, mAb279 and mAb299. Previously, mAb279 and mAb299 have been shown to recognize epitopes accessible on the surface of TSHβ that lie in close proximity to the TSH receptor-binding site. The results indicate that these chimeric peptides can specifically inhibit in a dose-dependent manner the binding of 125I-bTSHβ to mAb299, while having a lesser effect on the binding with mAb279. Based on these results, it can be concluded that the bTSHβ-epitope recognized by mAb299 involves contributions from amino residues from the β-turn regions of the L1 and L3 loops of TSHβ, and that these loop regions flank part of the receptor binding site of the bTSH β-subunit.  相似文献   

8.
NMR spectroscopy has been employed for the conformational analysis of the cyclic hexapeptide cycle(-d -Pro1-Ala2-Ser3(Bzl)-Trp4-Orn5(Z)-Tyr6-) with and without protecting groups on Ser3 and Orn5. This peptide sequence was derived from the active loop sequence of the α-amylase inhibitor Tendamistat (HOE 467). The aim was to investigate the role of serine in position i of a standard β-turn on the conformation and stabilization of this turn. Based on distance and torsion constraints from 2D NMR spectroscopic measurements in DMSO-d6 solution, structure refinement was accomplished by restrained molecular dynamics (MD) simulations in vacuo and in DMSO. The analysis of both structures in solution reveals a considerable effect of the unprotected serine sidechain on the adjacent β-turn conformation. While in the protected peptide with Ser3(Bzl) a βII-turn is observed between Trp4 and Orn5, the deprotected compound reveals a βI-turn in this region. The βI-turn is stabilized by a backbone-sidechain hydrogen bond from Orn5NαH to Ser3Oγ. Comparisons with other NMR-derived solution structures of cyclic model peptides and in some protein structures from literature reveal a general structural motif in the stabilization of βI-turns by serine in the i position through backbone-sidechain interactions. © Munksgaard 1995.  相似文献   

9.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

10.
The crystal structures of four peptides incorporating l-aminocycloheptane-l-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt β-turn conformations stabilized by an intramolecular 4 × 1 hydrogen bond, the former folding into a type-I/III β-turn and the latter into a type-II β-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3, suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the β-turn conformations in solution.  相似文献   

11.
A solid-state and solution conformation analyses of the cyclopentapeptide cyclo(Phe-Phe-Aib-Leu-Pro) has been carried out by X-ray diffraction and nuclear magnetic resonance techniques. The structure of the hexagonal crystals, grown from a methanol solution [a=b= 16.530(4) Å, c= 21.356(9) Å, space group P65, Z = 6], shows the presence of one intramolecular N-H?O=C hydrogen bond with the formation of a γ-turn (C7). The Aib3 residue, at the center of the γ-turn, presents unexpected values of the torsion angles [φ= 70.5° and ψ= -73.8°], which have been observed only once before for this helicogenic residue. A cis peptide bond occurs between Leu4 and Pro5; all other peptide bonds are trans. The overall conformation for the cyclopentapeptide with one cis-peptide bond on one side and an intramolecular γ-turn on the opposite side results in an equatorial topology of the side-chains of the Phe1, Phe2 and Leu4 residues. Indeed, the Cα-Cβand Cβ-Cγ bonds of these residues lie approximately in the mean plane of the cyclic ring system. The structure is compared with data in the literature on cyclic pentapeptides. In addition the Pro-Phe-Phe moiety shows a conformation similar to that observed in other larger cyclic bioactive peptides, which indicates a reduced number of conformations for this sequence. The solution study was carried out in three different solvent systems: chloroform, acetonitrile and methanol in the temperature interval 220–300 K. In all three solvents the room temperature spectra show that the peptide is conformationally nonhomogeneous. In acetonitrile at low temperatures it is possible to reduce the conformational equilibrium to two predominant conformers which differ for the cis-trans isomerism of the Leu4-Pro5 peptide bond.  相似文献   

12.
Nicotine–methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non‐competitive antagonist at rat α3β4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4β2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [3H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and 86Rb+ efflux and changes in intracellular calcium [Ca2+]i were used to assess changes in the functional activity of the receptors. Methadone displaced [3H]epibatidine from nicotinic agonist‐binding sites in SH‐EP1‐hα7 and SH‐SY5Y cells, but not in SH‐EP1‐hα4β2 cells. The Ki values for methadone were 6.3 μM in SH‐EP1‐hα7 cells and 19.4 μM and 1008 μM in SH‐SY5Y cells. Methadone increased [Ca2+]i in all cell lines in a concentration‐dependent manner, and in SH‐EP1‐hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH‐EP1‐hα4β2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre‐treatment abolished the nicotine‐induced response in [Ca2+]i in all cell lines expressing nAChRs. In SH‐EP1‐hα4β2 and SH‐SY5Y cells, methadone had no effect on the 86Rb+ efflux, but it antagonized the nicotine‐induced 86Rb+ ion efflux in a non‐competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non‐competitive antagonist at human α4β2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co‐administration in human beings and might be of interest to the field of drug discovery.  相似文献   

13.
NMR and X-ray crystallographic studies have shown that cyclic pentapeptides of the general structure cyclo(D-Xxx-Pro-Gly-Pro-Gly) possess β- and γ-turn intramolecular hydrogen bonds. As part of our continuing series surveying the compatibility of various amide bond replacements on peptide structure, we have synthesized cyclo(D-Phe-Proψ [CH2S]Gly-Pro-Gly). The pseudopeptide was prepared by solid phase methods and cleaved from the resin by a new procedure involving phase transfer catalysis using K2CO3 and tetrabutylammonium hydrogen sulfate. Cyclization was carried out with the use of DPPA, HOBt, and DMAP to afford the product in 69% yield. The conformational behavior of the pseudopeptide was analyzed by 1H and 13C (1D and 2D) NMR techniques. The backbone modification replaced the amide bond that is involved in a γ-turn intramolecular hydrogen bond in the all-amide structure. In CDCl3, the pseudopeptide adopted the same all-trans conformation as its parent, although the remaining β-turn hydrogen bond was weaker according to Δδ/ΔTNH measurements. In DMSO-d6, the all-trans conformer and a second conformer were observed in a ratio of 55:45. These conformers, which slowly inter converted on the NMR time scale, could be separately assigned; peaks due to chemical exchange were readily distinguishable by the ROESY technique as reported earlier by others. 13C and ROESY experiments suggested the minor conformer contained one cis amide bond at the Gly1-Pro2 position. Thus, both the location and type of amide surrogate are important determinants affecting the compatibility of the replacement with a particular conformational feature.  相似文献   

14.
The effect of replacing one of the proline residues in either unsubstituted homochiral or heterochiral diproline segments with either a 2- or a 3-substituted prolyl residue on the allowed conformation of the diproline template has been examined. In heterochiral (l-d ) diprolines, placement of a 2-methyl-d -proline residue in the i+ 2 position and placement of either a cis- or trans-3-methyl-l -proline residue in the i+ 1 position results in substituted diproline peptides that adopt the same type II β-turn conformation as that identified experimentally for the unsubstituted diproline peptides. In contrast, placement of a cis-3-methyl-d -proline residue in the i+ 1 position of a homochiral (d-d ) diproline peptide seems to promote a different conformation than that seen in the unsubstituted case, whereas the trans-3-methyl-d -proline residue seems to provide a stabilizing influence for the predicted type VI'β-turn. The demonstrated ability of certain substituted diproline templates to adopt predictable conformations coupled with the development of asymmetric synthetic routes to both 2- and 3-substituted prolyl residues capable of mimicking a variety of side chains should make these templates useful tools in designing specific turn mimics of biologically active molecules.  相似文献   

15.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (Δz-Phe) at position 2 or 3, Boc-Leu-Ala-Δz-Phe-Leu-OMe (1) and Boc-Leu-Δz-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (CαjH ? Ni+1H and NiH ? Ni+1H) between backbone protons. The simultaneous observation of “mutually exclusive” n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-Δz-Phe- Type II β-turn structure and a second species with Δz-Phe adopting a partially extended conformation with Ψ values of ± 100° to ± 150°. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive β-turn structure for the -Leu-Δz-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

16.
Abstract: The NMR structural analysis of two fertilinβ mimics cyclo(EC2DC1)YNH2, 1 , and cyclo(D2EC2D1C1)YNH2, 2 is described. Both of these mimics are moderate inhibitors of sperm?egg binding with IC50 values of 500 µm in a mouse in vitro fertilization assay. For peptide 1 , the optimized conformations that best match the NMR data have a pseudo‐type II′β‐turn with the linker and Glu at the i+1 and i+2 positions, respectively. The EC2D1C1 sequence is in a nonclassical (type IV) β‐turn. For peptide 2 , the conformation that best matches the NMR data has two turns: a pseudo‐type II′β‐turn in the D2EC2D1 sequence followed by a nonclassical β‐turn in the EC2D1C1 sequence. The Cβ?Cβ distance between E and D1 in peptide 1 is 9.1 Å, in peptide 2 , it is 7.7 Å. Thus, one possibility for the high IC50 values of these cyclic peptides is that the acidic residues are not constrained to a sufficiently tight turn, and thus much entropy must still be lost upon binding to the α6β1 integrin. This explains why the cyclic peptides are the same as linear peptides at inhibiting sperm?egg binding.  相似文献   

17.
Synthesis and conformational analysis of three cyclic hexapeptides cyclo(-Gly1-Pro2-Phe3-Val4-Xra5-Phe6), Xaa= Phe (I), D-Phe (II) and D-Pro (III), were carried out to examine the influence of proline on the formation of reverse turns and the dynamics of hydrophobic peptide regions. Assignment of all 1H and 13C resonances was achieved by homo- and heteronuclear 2D-NMR techniques (TOCSY, ROESY, HMQC, HMQC-TOCSY and HMBCS-270). The conformational analysis is based on interproton distances derived from ROESY spectra and homo- and heteronuclear coupling constants (E.COSY, HETLOC and HMBCS-270). For structural refinements restrained molecular dynamics (MD) simulations in vacuo and in DMSO were performed. Each peptide exhibits two conformations in DMSO solution due to cis-trans isomerism about the Gly-Pro peptide bond. Surprisingly the cis-Gly-Pro segment in the minor isomers is not involved in a βVI-turn, but forms a turn structure with cis-Gly-Pro in the i and i+ 1 positions. Although no stabilizing hydrogen bond is found in this turn, the φ and ψ-angles closely correspond to a βI-turn [Pro2:φ(i+ 1) -60°, ψ(i+ 1) -30° Phe3: φ(i+ 2) -100°, ψ(i+ 2) -50°]. Hence we call this structural element a pseudo-βI-turn. As expected, in the dominating all-trans isomers proline occupies the i+ 1 position of a standard βI-turn. Therefore, cis-trans isomerization of the Gly1-Pro2 amide bond only induces a local conformational rearrangement, with minor structural changes in other parts of the molecule. However, the geometry of the other regions is affected by the chirality of the i+ 1 amino acid for both isomers (βI for Phe5, βII′ for D-Phe5 or D-Prp5).  相似文献   

18.
19.
The dependence of the 13C shift difference of proline carbons Cβ and Cγ on the dihedral angle ø has been studied using the model peptide acetyl-d -proline N-methylamide. The shift difference Δβγ is shown to be correlated with the percent cis isomer about the acetylproline bond, both factors depending strongly on the degree of intermolecular hydrogen bonding. Both the fraction of trans peptide bond and the fractional γ-turn conformation increase as the sample concentration is decreased in CDCl3. Δβγ values have been used to evaluate the fractional γ-turn probabilities in a number of cyclic and linear peptides including thyrotropin releasing factor and bradykinin. Using this parameter, it is concluded that in bradykinin the γ-turn probability is low in D2O and not strongly temperature dependent. In contrast, studies of a model peptide for the portion of bradykinin believed to adopt a γ-turn conformation are consistent with an increased γ-turn probability in less polar solvents. Data for X-Pro-Y peptides (Y = imino acid) indicate significantly reduced values of Δβγ, and this appears to be a useful basis for assigning the Pro Cβ resonances corresponding to this sequence.  相似文献   

20.
One carbonyl oxygen of the cyclic hexapeptide cycle(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=O of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro62-Phe3-Va14-Phe5ψ[CS-NH]Phe6-) (B)was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a CIS Gly1-Pro2 bond in a βVIa-turn (minor) and a trans Gly-Pro bond in a βII′-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOES, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a βI- and βII-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1p) were measured to verify the assumption of this fast βI/βII equilibrium within each isomer. Significant contributions to R1p-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号