首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antioxidant status and lipid peroxidation in colorectal cancer   总被引:4,自引:0,他引:4  
Colon carcinogenesis is a multistep process where oxygen radicals were found to enhance carcinogenesis at all stages: initiation, promotion, and progression. Since insufficient capacity of protective antioxidant system can result in cancer, the aim of this study was to examine the activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and the levels of reduced glutathione, vitamin C, and vitamin E. The lipid peroxidation products were also determined by measuring malondialdehyde and 4-hydroxynonenal levels in colorectal cancer tissue collected from 55 patients. In these cases the activity of superoxide dismutase, glutathione peroxidase, and glutathione reductase was significantly increased while the activity of catalase was significantly decreased in cancer tissue. However, the level of nonenzymatic antioxidant parameters (glutathione, vitamin C, and vitamin E) was significantly decreased in cancer tissue. Further lipid peroxidation was enhanced during cancer development, manifested by a significant increase in malondialdehyde and 4-hydroxynonenal levels. The obtained results indicate significant changes in antioxidant capacity of colorectal cancer tissues, which lead to enhanced action of oxygen radicals, resulting in lipid peroxidation.  相似文献   

2.
In vitro effect of methanol on folate-deficient rat hepatocytes   总被引:1,自引:0,他引:1  
Methanol is primarily metabolized by oxidation to formaldehyde and then to formic acid. These processes are accompanied by formation of superoxide anion and hydrogen peroxide. This paper reports the in vitro antioxidant effect of vitamin E on isolated hepatocytes of folic acid deficient rats rendered so as to emulate a human hepatocyte model. These hepatocytes were treated with 320 microM of methanol per million cells and incubated for 30 min. The microsomal fraction of these hepatocytes showed a decreased level of superoxide dismutase (SOD), with increase in lipid peroxidation (LPO) shown by increase in recorded levels of malondialdehyde (MDA). Catalase activity was shown to be increased. Levels of reduced glutathione (GSH) were decreased and the activity of glutathione peroxidase (GSH-Px) and of glutathione reductase (GSSG-R) were not altered. The hepatocytes of folate deficient rats pretreated with vitamin E, when subjected to methanol treatment, showed no significant change in SOD levels and a significant decrease in MDA levels. The catalase activity in this group of animals showed a highly significant decrease. These animals had normal levels of GSH, while a significant fall in GSH-Px and GSSG-R levels were observed. These results suggest that Vitamin E exerts a protective effect on hepatocytes by acting as a free radical scavenger, proving its usefulness in treating methanol toxicity.  相似文献   

3.
Naringenin is a naturally occurring citrus flavanone, which has been reported to have a wide range of pharmacological properties. The present work was carried out to evaluate the effect of naringenin on antioxidant and lipid peroxidation status in liver of oxytetracycline-intoxicated rats. Intraperitonial administration of oxytetracycline 200 mg/kg for 15 days resulted a significant elevation in serum hepatospecific markers such as aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and bilirubin and the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides) in liver. Oxytetracycline also caused a significant reduction in the activities of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione (GSH), vitamin C and vitamin E in liver. Oral administration of naringenin (50 mg/kg b.w.t.) with oxytetracycline significantly decreased the activities of serum aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and the levels of bilirubin along with significant decrease in the levels of lipid peroxidation markers in the liver. In addition, naringenin significantly increased the activities of superoxide dismutase, catalase and GSH peroxidase as well as the level of GSH, vitamin C and vitamin E in liver of the oxytetracycline-treated rats. Our results demonstrate that naringenin exhibited antioxidant property and decrease the lipid peroxidation against oxytetracycline-induced oxidative stress in liver.  相似文献   

4.
The exact pro-oxidant and antioxidant status in pregnancy--induced hypertension patients is still not clear. To add a new insight to the question, changes in the erythrocyte lipid peroxidation products (malondialdehyde; MDA), levels of glutathione (GSH), ascorbic acid and plasma vitamin E (non enzymatic antioxidant parameters) and activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase in erythrocytes were studied in thirty five patients with pregnancy--induced hypertension and thirty five healthy pregnant normotensive cases. It was observed that there was a significant increase in erythrocyte MDA levels, activities of SOD, GPx and a significant decrease in erythrocyte GSH, ascorbic acid, plasma vitamin E levels and catalase activity in patients with pregnancy--induced hypertension when compared to controls. The results of our study have shown higher oxygen free radical production, evidenced by increased levels of MDA and decreased levels of GSH, ascorbic acid, vitamin E and Catalase activity supports the oxidative stress in pregnancy--induced hypertension. The increased activities of antioxidant enzymes may be a compensatory regulation in response to increased oxidative stress. The decreased concentrations of glutathione and antioxidant vitamin status supports the hypothesis that lipid peroxidation is an important causative factor in the pathogenesis of preeclampsia.  相似文献   

5.
Objectives To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol‐induced hepatotoxicity in rats. Methods Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide. Key findings The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non‐enzymic antioxidant activity of superoxide dismutase, catalase and glutathione‐related enzymes such as glutathione peroxidase, glutathione reductase, glutathione‐S‐transferase, reduced glutathione, vitamin C and vitamin E in ethanol‐treated rats compared with the control. Chrysin administration to rats with ethanol‐induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione‐S‐transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol‐treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings. Conclusions Chrysin offers protection against free radical‐mediated oxidative stress in rats with ethanol‐induced liver injury.  相似文献   

6.
The present study was designed to evaluate the protective potential of vitamin E, if any, in attenuating the toxic effects induced by acute methomyl treatment in rats. Male Wistar rats, weighing between 230 and 250 g, received either a single oral dose of 9 mg/kg of methomyl, vitamin E alone injected intraperitoneally on alternate days (4 injections) at 50 mg/kg body for 1 week prior to methomyl treatment, or both methomyl plus vitamin E given in a similar manner. The effects of different treatments were studied on lipid peroxidation (LPO), reduced glutathione (GSH) and antioxidant enzymes, which included superoxide dismutase (SOD), glutathione-s-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GSHPx) and catalase and various hematological parameters, including total leucocytes count (TLC), differential leukocyte count (DLC), hemoglobin, platelets counts, red cell counts, and scanning electron microscopy (SEM). Acute 24-h treatment to rats resulted in a significant increase in the LPO. GSH levels and the activities of catalase, GST, and GSHPx were found to be significantly decreased following methomyl treatment. A significant elevation in the activity of SOD and in TLC was also observed after 24 h of methomyl treatment. Further, a significant increase in the neutrophils and eosinophil counts was also observed. However, lymphocytes showed a significant decrease following methomyl treatment. SEMs showed significant morphological changes following methomyl treatment. Vitamin E pretreatment to methomyl-treated rats effectively normalized the levels of LPO and GSH. Vitamin E could also significantly elevate the activity of catalase, increase platelets counts and TLC, and normalized the activities of SOD and GSHPx. Vitamin E pretreatment improved the morphology of the red blood cells. The study concludes that vitamin E affords protection in methomyl-induced toxicity in the rat.  相似文献   

7.
The present study was designed to evaluate the protective potential of vitamin E, if any, in attenuating the toxic effects induced by acute methomyl treatment in rats. Male Wistar rats, weighing between 230 and 250 g, received either a single oral dose of 9 mg/kg of methomyl, vitamin E alone injected intraperitoneally on alternate days (4 injections) at 50 mg/kg body for 1 week prior to methomyl treatment, or both methomyl plus vitamin E given in a similar manner. The effects of different treatments were studied on lipid peroxidation (LPO), reduced glutathione (GSH) and antioxidant enzymes, which included superoxide dismutase (SOD), glutathione-s-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GSHPx) and catalase and various hematological parameters, including total leucocytes count (TLC), differential leukocyte count (DLC), hemoglobin, platelets counts, red cell counts, and scanning electron microscopy (SEM). Acute 24-h treatment to rats resulted in a significant increase in the LPO. GSH levels and the activities of catalase, GST, and GSHPx were found to be significantly decreased following methomyl treatment. A significant elevation in the activity of SOD and in TLC was also observed after 24 h of methomyl treatment. Further, a significant increase in the neutrophils and eosinophil counts was also observed. However, lymphocytes showed a significant decrease following methomyl treatment. SEMs showed significant morphological changes following methomyl treatment. Vitamin E pretreatment to methomyl-treated rats effectively normalized the levels of LPO and GSH. Vitamin E could also significantly elevate the activity of catalase, increase platelets counts and TLC, and normalized the activities of SOD and GSHPx. Vitamin E pretreatment improved the morphology of the red blood cells. The study concludes that vitamin E affords protection in methomyl-induced toxicity in the rat.  相似文献   

8.
Carlson GP  Turner M  Mantick NA 《Toxicology》2006,227(3):217-226
Styrene is both hepatotoxic and pneumotoxic in mice. Its mode of action is not clear, but it may be related to oxidative stress including a very large decrease in reduced glutathione (GSH). The current studies evaluated if: (1) the more toxic R-styrene oxide had a greater effect on reduced GSH levels than the less toxic S-styrene oxide, (2) the ratio of reduced to oxidized forms of glutathione was altered by styrene or styrene oxide, (3) other enzymes involved in the oxidant status of the cell, namely glutathione reductase, glutathione peroxidase and gamma-glutamylcysteine synthetase were altered, and (4) lipid peroxidation, as measured by the determination of malondialdehyde, increased. R-Styrene oxide (300mg/kg, ip) caused greater decreases in mouse liver and lung GSH than did S-styrene oxide (300mg/kg, ip). Styrene (600mg/kg, ip) caused decreases in both GSH and GSSG in both liver and lung. Styrene and styrene oxide did not cause significant increases in lipid peroxidation in either liver or lung. Styrene and styrene oxide had minimal effects on glutathione reductase and glutathione peroxidase in liver and lung. Styrene increased gamma-glutamylcysteine synthetase activity. The results suggest that while styrene and its metabolite styrene oxide cause significant decreases in GSH levels, they have little effect on the enzymes glutathione reductase and glutathione peroxidase and that in response to decreased glutathione levels there is an increase in its synthesis via induction of gamma-glutamylcysteine synthetase activity.  相似文献   

9.
The effect of hydroalcoholic (80% ethanol, 20% water) extract of leaves of Aegle marmelos was examined on carcinogen-metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation, using two doses of dried extract (50 and 100 mg kg(-1) daily for 14 days), in the liver of mice. The modulatory effect of the extract was also examined on extrahepatic organs (lung, kidney and fore-stomach) for effects on the activity of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Extract treatment significantly increased the basal levels of acid-soluble sulphydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase, DT-diaphorase, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in the liver. Aegle acted as a bifunctional inducer since it induced both phase-I and phase-II enzyme systems. Both doses significantly decreased the activity of lactate dehydrogenase and formation of malondialdehyde in liver, suggesting a role in cytoprotection as well as protection against pro-oxidant-induced membrane damage. Butylated hydroxyanisole (positive control) induced almost all the antioxidative parameters measured in this study. The extract was effective in inducing glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in lung, glutathione S-transferase, DT-diaphorase and superoxide dismutase in fore-stomach, and DT-diaphorase and superoxide dismutase in lung. These significant changes in the levels of drug-metabolizing enzymes and antioxidative profiles are strongly indicative of the chemopreventive potential of this plant, especially against chemical carcinogenesis.  相似文献   

10.
《Pharmaceutical biology》2013,51(5):488-493
The effects of vitamin E and Hippophae rhamnoides L. (Elaeagnaceae) extract (HRe-1) on nicotine-induced oxidative stress in rat liver were investigated. Four groups, eight rats each, were used in this study, and the supplementation period was 3 weeks. The groups were: nicotine (0.5?mg/kg/day, intraperitoneal (i.p.)); nicotine plus vitamin E (75?mg/kg/day, intragastric (i.g.)); nicotine plus HRe-1 (250?mg/kg/day, i.g.); and the control group. The malondialdehyde and nitric oxide levels, glutathione peroxidase, glutathione S-transferase, glutathione reductase, superoxide dismutase, and total and non-enzymatic superoxide scavenger activities were measured spectrophotometrically in supernatants of the tissue homogenates. Nicotine increased the malondialdehyde level in liver tissue compared with control. This nicotine-induced increase in lipid peroxidation was prevented by both vitamin E and HRe-1. Superoxide dismutase activity was higher in the nicotine plus vitamin E-supplemented group compared with nicotine and control groups. Glutathione reductase activity was higher in the nicotine group compared with the control group. However, glutathione peroxidase activity in the control group was higher than the levels in the nicotine, and the nicotine plus HRe-1 supplemented groups. The nitric oxide level was higher in the nicotine group compared with all other groups. Total and non-enzymatic superoxide scavenger activities and glutathione S-transferase activity were not affected by any of the treatments. Our results suggest that Hippophae rhamnoides extract as well as vitamin E can protect the liver against nicotine-induced oxidative stress.  相似文献   

11.
Persons afflicted with protein malnutrition are generally deficient in a variety of essential micronutrients like zinc, copper, iron, and selenium, which in turn affects number of metabolic processes in the body. To evaluate the protective effects of zinc on the enzymes involved in oxidative stress induced in liver of protein-deficient rats, the current study was designed. Zinc sulfate at a dose level of 227mg/L zinc in drinking water was administered to female Sprague–Dawley normal control as well as protein-deficient rats for a total duration of 8 weeks. The effects of zinc treatment in conditions of protein deficiency were studied on rat liver antioxidant enzymes, which included catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), glutathione reduced (GSH), and glutathione-S-transferase (GST). Protein deficiency in normal rats resulted in a significant increase in hepatic activities of catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and the levels of lipid peroxidation. A significant inhibition in the levels of reduced glutathione and the enzyme activity of superoxide dismutase has been observed after protein deficiency in normal rats. Interestingly, Zn treatment to protein-deficient animals lowered already raised activity catalase, glutathione peroxidase, and glutathione-S-transferase and levels of lipid peroxidation to significant levels when compared to protein-deficient animals. Also, Zn treatment to the protein-deficient animals resulted in a significant elevation in the levels of GSH and SOD activity as compared to their respective controls, thereby indicating its effectiveness in regulating their levels in adverse conditions. It has also been observed that concentrations of zinc, copper, iron, and selenium were found to be decreased significantly in protein-deficient animals. However, the levels of these elements came back to within normal limits when zinc was administrated to protein-deficient rats. This study concludes that zinc has thepotential to regulate the activities of oxidative stress enzymes as well as essential hepatic elements.  相似文献   

12.
Persons afflicted with protein malnutrition are generally deficient in a variety of essential micronutrients like zinc, copper, iron, and selenium, which in turn affects number of metabolic processes in the body. To evaluate the protective effects of zinc on the enzymes involved in oxidative stress induced in liver of protein-deficient rats, the current study was designed. Zinc sulfate at a dose level of 227 mg/L zinc in drinking water was administered to female Sprague-Dawley normal control as well as protein-deficient rats for a total duration of 8 weeks. The effects of zinc treatment in conditions of protein deficiency were studied on rat liver antioxidant enzymes, which included catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), glutathione reduced (GSH), and glutathione-S-transferase (GST). Protein deficiency in normal rats resulted in a significant increase in hepatic activities of catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and the levels of lipid peroxidation. A significant inhibition in the levels of reduced glutathione and the enzyme activity of superoxide dismutase has been observed after protein deficiency in normal rats. Interestingly, Zn treatment to protein-deficient animals lowered already raised activity catalase, glutathione peroxidase, and glutathione-S-transferase and levels of lipid peroxidation to significant levels when compared to protein-deficient animals. Also, Zn treatment to the protein-deficient animals resulted in a significant elevation in the levels of GSH and SOD activity as compared to their respective controls, thereby indicating its effectiveness in regulating their levels in adverse conditions. It has also been observed that concentrations of zinc, copper, iron, and selenium were found to be decreased significantly in protein-deficient animals. However, the levels of these elements came back to within normal limits when zinc was administrated to protein-deficient rats. This study concludes that zinc has the potential to regulate the activities of oxidative stress enzymes as well as essential hepatic elements.  相似文献   

13.
AIM: To assess the effects of L-arginine (L-Arg) supplementation on pulmonary oxidative stress and antioxidant defenses in rats after exhaustive exercise. METHODS: Rats were randomly divided into four groups: sedentary control (SC), sedentary control with L-Arg treatment (SC+Arg), exhaustive exercise with control diet (E) and exhaustive exercise with L-Arg treatment (E+Arg). Rats in groups SC+Arg and E+Arg received a 2% L-Arg diet. Rats in groups E and E+Arg underwent an exhaustive running test on a motorized treadmill. Pulmonary oxidative stress indices [xanthine oxidase (XO), myeloperoxidase (MPO), and malondialdehyde (MDA)] and antioxidant defense systems [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione (GSH)] were investigated in this study. RESULTS: L-Arg supplementation significantly reduced exercise-induced elevations of XO and MPO activities in lung. L-Arg reversed the exercise-induced increase in SOD and GR activities, but increased CAT and GPX activities. L-Arg administration also significantly increased the GSH levels in plasma. CONCLUSION: L-Arg supplementation can prevent elevations of XO and MPO activities in the lung and favorably influence pulmonary antioxidant defense systems after exhaustive exercise.  相似文献   

14.
The aim of this study was to examine the efficacy of vitamin B6 against chromium (Cr)-induced oxidative stress. Adult male albino Wistar rats (100-120 g) were used in this study. Potassium dichromate, a Cr VI compound, was administered at a dose of 127 mg kg(-1) p.o. Vitamin B6 (pyridoxine hydrochloride) was administered at a dose of 100 mg kg(-1) p.o. either alone or 12 h prior to Cr or simultaneously with Cr. Chromium treatment induced oxidative stress in the liver as measured by increased lipid peroxidation (LPO) and decreased vitamin C, vitamin E, glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione reductase (GR). Both pre- and simultaneous treatments countered Cr-induced oxidative stress; pre-treatment was more effective than concurrent administration. The results demonstrate the antioxidant potential of vitamin B6.  相似文献   

15.
Antioxidants are one of the key players in tumourigenesis, and several natural and synthetic antioxidants have been shown to have anticancer effects. In the present investigation, the efficacy of mangiferin on the antioxidant status of benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice was assessed. The animals were divided into five groups. The animals in groups I and V were normal control and mangiferin control, respectively. Groups II, III and IV were administered with benzo(a)pyrene (50 mg/kg body weight, orally) for 4 weeks (twice a week) to induced lung carcinogenesis. Starting 1 week prior to benzo(a)pyrene administration, group III animals were treated with mangiferin (100 mg/kg body weight) in the diet for 18 weeks; 12 weeks after benzo(a)pyrene administration, group III animals were treated with mangiferin that continued until the end of the experiment period (18 weeks). At the end of the experiment period, the reactive oxygen species, glutathione and the activities of antioxidant enzymes were assessed in both lung and liver tissues. The levels of glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, vitamin E and vitamin C were decreased in group II animals. However, in the mangiferin + benzo(a)pyrene-treated groups III and IV, the levels of GSH and the activities of antioxidant enzymes in both lung and liver were improved when compared with benzo(a)pyrene-induced group II animals. In addition, the finding that mangiferin decreased reactive oxygen species levels and enhanced antioxidant status suggests that this polyphenol might also be of value in the prevention of benzo(a)pyrene-induced lung carcinogenesis.  相似文献   

16.
Methiocarb, is used worldwide in agriculture and health programs. Besides its advantages in the agriculture, it causes several toxic effects. In this study, we aimed to investigate subacute effects of methiocarb on lipid peroxidation, reduced glutathione (GSH), antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) and histopathological changes in rat tissues. Moreover, we examined the possible protective effects of vitamin E and taurine on methiocarb-induced oxidative damage in rat tissues. Rats were randomly divided into six groups as follows; I-control group; II-methiocarb group; III-vitamin E group; IV-vitamin E + methiocarb group; V-taurine group and VI-taurine + methiocarb group. Methiocarb significantly increased lipid peroxidation in liver and kidney when compared to control groups. Levels of GSH and activities of SOD, CAT and GSH-Px were found to be decreased, while GSH-Rd remained unchanged in rat liver and kidney treated with methiocarb. Pretreatment of vitamin E and taurine resulted in a significant decrease on lipid peroxidation, alleviating effects on GSH and antioxidant enzymes. The degenerative histological changes were less in liver than kidney of rats treated with methiocarb. Pretreatment of vitamin E and taurine showed a protective effect on the histological changes in kidney comparing to the liver of rats treated with methiocarb.  相似文献   

17.
BACKGROUND AND AIM: Stress as a cofactor has been reported to affect the progression and severity of several diseases. The influence of stress on the liver is of interest from the clinical point of view because stress plays a potential role in aggravating liver diseases in general and hepatic inflammation in particular, probably through generation of reactive oxygen species. The present study was undertaken to investigate the potential of the antioxidant vitamins A (retinol), E (tocopherol) and C (ascorbic acid) individually and in combination (vitamin E + C) to modulate restraint stress-induced oxidative changes. These effects were determined by measuring changes in hepatic levels of free radical scavenging enzymes such as superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase, as well as levels of total glutathione (GSH), malondialdehyde (MDA), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). METHODS: Immobilisation was achieved by placing the animals in wire mesh cages of their size. The rats were orally administered vitamins A, E and C individually and in combination (E + C) prior to and after 6 hours of immobilisation stress exposure. The hepatic levels of SOD, GST, catalase, GSH and MDA were determined by spectrophotometric methods. Liver SOD activity was assayed by monitoring the amount of enzyme required to inhibit autoxidation of pyrogallol by 50%. Hepatic GST was monitored by following the increase in absorbance at 340 nm of CDNB-GSH conjugate generated due to GST catalysis between GSH and CDNB. Catalase activity in liver tissues was determined using peroxidase as the substrate. Lipid peroxidation was measured by determining the level of thiobarbituric acid reactive substances. ALT and AST were determined by commercial kits. RESULTS: Six hours of immobilisation stress caused a decrease in liver levels of SOD (p = 0.001), catalase (p = 0.031), GST (p = 0.021) and GSH (0.013), while levels of MDA (p = 0.0015), AST (p = 0.05) and ALT (p = 0.046) were increased compared with non-stressed control rats. Both pre-vitamin stress and post-vitamin stress treatments either alone or in combination were associated with increased normalisation of these parameters towards control values, with post-vitamin treatment being the more effective of the two. Vitamins E and C individually were found to be more effective in restoring the endogenous antioxidant system than vitamin A. The combined vitamin (E + C) post-stress treatment was found to be effective but not additive in combating hepatic oxidative stress. The beneficial effects of these vitamin treatments were also reflected in reversions of altered AST and ALT levels towards their control values. CONCLUSION: Vitamins E or C alone or in combination can be given as prophylactic/therapeutic supplements for combating scavenging free radicals generated in liver tissue. This approach may reduce oxidative stress caused by diseases such as cirrhosis.  相似文献   

18.
A K De  R Darad 《Toxicology letters》1988,44(1-2):47-54
The effects of feeding vitamin E-deficient diets to rats for one year were investigated to analyse the relationship of the vitamin with other antioxidants and some antioxidative enzymes. Long-term vitamin E deficiency lowered the levels of antioxidants like vitamin E, ascorbic acid and glutathione (GSH) in all tissues analysed and thus increasing the extent of tissue peroxidisability. Vitamin E deficiency had also influenced the activities of superoxide dismutase (SOD), catalase and glutathione peroxidase, the enzymes that are involved in detoxification mechanisms of products arising from free radical metabolism.  相似文献   

19.
Erythrocyte, serum and plasma antioxidant activities and the effects of propylthiouracil (PTU) treatment on these activities were studied in patients with toxic multinodular goiter. The activities of the erythrocyte antioxidant enzymes (glucose-6-phosphate dehydrogenase, catalase, Cu/Zn-superoxide dismutase, selenium (Se)-dependent glutathione peroxidase and glutathione reductase) and the levels of erythrocyte Se, serum ceruloplasmin and plasma malondialdehyde were significantly higher while serum vitamin E, plasma vitamin C and plasma Se were lower in hyperthyroid patients. PTU treatment, not for 1 but for 3 months caused a partial reversal of antioxidant activities to euthyroid levels. It is suggested that alterations in blood antioxidant activities following PTU treatment might be due to the antioxidant and/or antithyroid effect of this drug.  相似文献   

20.
Thioacetamide (TAA) administration (0.3 g/l of tap water for a period of 3 months) to rats resulted in hepatic cirrhosis as assessed by biochemical and histopathological findings. This treatment caused an increase in the levels of malondialdehyde (MDA) and diene conjugates (DCs) and a decrease in the levels of glutathione (GSH), vitamin E, vitamin C and the activities of glutathione peroxidase (GSH-Px) in the liver of rats. Superoxide dismutase (SOD) activities were unchanged. Taurine (2% w/w, added to the chow diet) was administered together with TAA (0.3 g/l of drinking water) for 3 months. Taurine was found to decrease TAA-induced hepatic lipid peroxidation and to increase TAA-depleted vitamin E levels and GSH-Px activities. Histopathological findings also suggested that taurine has an inhibitive effect on TAA-induced hepatic cirrhosis. These results indicate that taurine treatment has a protective effect against TAA-induced liver cirrhosis by decreasing oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号