首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: CYP2D6 and CYP2C19 are polymorphically expressed enzymes that show marked interindividual and interethnic variation. The aim of this study was to determine the frequency of the defective alleles in CYP2D6 and CYP2C19 in Africans and to test whether the genotype for CYP2C19 is better correlated with the proguanil/cylcoguanil ratio than the mephenytoin S/R ratio. METHODS: Two hundred and sixteen black Tanzanians were phenotyped for CYP2D6 with the use of sparteine, and for CYP2C19 with the use of mephenytoin and proguanil. Of these 196 subjects were also genotyped for CYP2D6 (including the CYP2D6*1, CYP2D6*3 and CYP2D6*4 alleles) and 195 were genotyped for CYP2C19 (including the CYP2C19*1, CYP2C19*2 and the CYP2C19*3 alleles). Furthermore 100 subjects were examined for the allele duplication in CYP2D6, leading to ultrarapid metabolism, with long PCR. RESULTS: The sparteine metabolic ratio (MR) was statistically significantly higher in the Tanzanian group of homozygous, extensive metabolizers compared to a historical control group of white Danish extensive metabolizers. Only one poor metabolizer for CYP2D6 (MR=124 and genotype CYP2D6*1/CYP2D6*4 ) was found. The gene frequencies were 0.96 for the CYP2D6*1 allele and 0.04 for the CYP2D6*4 allele. No CYP2D6*3 alleles were found. Nine subjects had an allele duplication in CYP2D6 (9%). For CYP2C19 there were seven subjects (3. 6%) who were phenotyped as poor metabolizers, but only three subjects (1.5%) had a genotype (CYP2C19*2/CYP2C19*2 ) indicative of poor metabolism. The gene frequencies were 0.90 for the CYP2C19*1 allele and 0.10 for the CYP2C19*2 allele. No CYP2C19*3 alleles were found. The mephenytoin S/R ratios were not bimodally distributed. CONCLUSIONS: Both the genotyping and phenotyping results show that there is a substantial difference between an African black population and a Caucasian population in the capacity to metabolize drugs via CYP2D6 and CYP2C19.  相似文献   

2.
Objective: To test whether some genotypes for CYP2D6 or CYP2C19 could contribute to longevity, we genotyped 241 Danish nonagenarians and centenarians for CYP2D6 and CYP2C19. Methods: For CYP2D6 we identified the alleles CYP2D6*1, CYP2D6*3 and CYP2D6*4 with allele-specific polymerase chain reaction (PCR). The CYP2D6*5 alleles were identified with a long PCR method. For CYP2C19 we identified the alleles CYP2C19*1, CYP2C19*2 and CYP2C19*3 with an oligonucleotide ligation assay. Results: The four alleles for CYP2D6 did not occur in Hardy-Weinberg proportions. The frequency of poor metabolism was slightly higher (10.2%) than expected [7.7%; odds ratio (OR) = 1.36 (0.75–2.40)]. The genotypes for CYP2C19 occur in Hardy-Weinberg proportions. The frequency of poor metabolism (3.8%) was not significantly different from a young control group [3.1%; OR = 1.21 (0.26–5.75)]. Conclusion: CYP2D6 could play a role in human longevity due to the lack of Hardy-Weinberg proportions. If CYP2D6 only plays a role in longevity by protecting the poor metabolizers from cancer, we should expect a rise in the frequency in these genotypes in Denmark from 7.7% among young adults to 10–11% among very old people. We found a frequency of poor metabolism of 10.2% in the very old group. CYP2C19 is – due to the occurrence of Hardy-Weinberg proportions and the expected number of poor metabolizers – unlikely to contribute to human longevity.  相似文献   

3.
4.
Objective: Eighty-three healthy elderly Swedish subjects (age 87 ± 4 years, mean ± SD, range 80–98 years) were genotyped with respect to the two genetic polymorphisms of oxidative drug metabolism, CYP2D6 and CYP2C19, using allele-specific polymerase chain reaction (PCR). A control population consisted of 248 younger unrelated healthy volunteers (age 31 ± 9 years, range 19–63 years) for CYP2D6, and 162 (age 30 ± 8 years, range 19–55 years) for CYP2C19. Results: No significant differences were found between the control groups and the elderly subjects with respect to the frequencies of the defect alleles CYP2D6*3, CYP2D6*4, CYP2C19*2 and CYP2C19*3. Neither were there any differences in the genotype frequencies, or the predicted phenotype frequencies. The study indicates that the CYP2D6 and CYP2C19 genotypes play no major role in the probability of reaching high age. Conclusion: No genetically determined differences in the pharmacokinetics of drugs metabolized by these two polymorphic enzymes are to be expected in the oldest age groups compared with younger adults. Received: 10 March 1998 / Accepted: 1 May 1998  相似文献   

5.
The isozyme debrisoquine hydroxylase (CYP2D6) is central for the elimination of neuroleptic drugs. The capacity to hydroxylate debrisoquine is currently examined by genotyping of the isozyme. Approximately 7% of Europeans have a reduced capacity to hydroxylate debrisoquine, and they are defined as poor metabolizers. Two studies of small samples of well-defined patients with schizophrenia have shown that 6·5–6·6% were poor metabolizers, which is close to the rate in psychic normals. We found a total rate of 3·9% of poor metabolizers in a big sample (N=509) of patients with schizophrenia. The rate in the Danish subsample (N=221) was 4·5%, and in the Norwegian subsample (N=288) the rate was 3·5%. Our results indicate that the true rate of poor metabolizers among patient's with schizophrenia is still to be determined. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
7.
CYP2D6 participates in the biotransformation of many commonly used drugs. Large genetic variability in CYP2D6 results in a wide interindividual variability in the response to CYP2D6 substrate drugs. Previous studies have assessed the phenotype and genotype distributions of CYP2D6 in relatively small Finnish population samples. The aim of our study was to investigate the frequencies of CYP2D6 genotypes in a larger Finnish population cohort of 857 healthy volunteers. The volunteers were genotyped for 10 CYP2D6 genetic variants (*2, *3, *4, *5, *6, *9, *10, *17, *39, *41) and copy number variation performed with TaqMan genotyping assays and copy number assay targeting exon 9. CYP2D6 phenotypes were inferred from the genotype data with the classical and activity score methods. According to the classical method, a large majority of the study cases were extensive metabolizers (EM; 87.3%; 95% confidence interval 84.9–89.3) and the second largest group was ultrarapid metabolizers (UM; 7.2%; 5.7–9.2%). Intermediate (IM) and poor metabolizers (PM) were in clear minority (3.0%; 2.1–4.4% and 2.3%; 1.5–3.6%, respectively). The activity score method yielded similar phenotype predictions. These results show that the frequency of UM genotype is higher and that of PM and IM genotype is lower in the Finnish population than in other North European populations. Accordingly, CYP2D6 genetic profile of the Finnish population differs from its geographically close neighbours, which has implications for the effective and safe use of drugs metabolized by CYP2D6.  相似文献   

8.
9.
10.
118名中国壮族(广西壮族自治区)志愿者一次口服消旋美芬妥黄100mg和异喹胍10mg后,应用气相色谱法分别测定尿中S-和R-美芬妥英含量比值和异喹胍及其代谢物4羟异喹胍含量比值,作为体内药物羟化代谢能力的指标,实验结果表明,118名志愿者中有12名的S/R美芬妥英比值大于1.0,是为S-美芬妥英弱羟化代谢者。说明我国壮族人群中S-美芬妥英羟化代谢缺陷频发率高达10.2%。但在118名壮族志愿者中未发现异喹胍弱羟化代谢者,且S-美芬妥英的羟化代谢多态发生态性和异喹胍羟化代谢多态性不存在着相关性,另外,选择其中16名志愿者(4名弱代谢者,12名强代谢者)研究了尿中美芬妥英和异喹胍及其代谢物的消除动力学规律,并估算了它们主要的药代动力学参数。  相似文献   

11.
细胞色素P-450 CYP2D6基因分型与表型的吻合率   总被引:1,自引:1,他引:0  
目的:研究细胞色素P-450 2D6基因分型测定方法及其与表型的吻合率。方法:利用等位基因特异扩增法基本原理,对CYP2D6酶缺陷等位基因CYP2D6*3,*4,*6和*7进行测定。结果:通过168例基因分型,并将结果与表型对照,发现同时测定CYP2D6*3,*4,*6和*7等位基因时,125例快代谢者和43例慢代谢者的基因分型结果与表型结果的吻合率为100%。快代谢者至少有一个野生型CYP2D6等位基因,基因型为*1/*1,*1/*3和*1/*4。发现慢代谢者是CYP2D6突变型纯合子,基因型为*3/*4,*4/*4,*3/*6,*4/*7,*4/*6和*6/*6。结论:对CYP2D6*3,*4,*6和*7等位基因的测定能够准确预测其表型。  相似文献   

12.
13.

Purpose  

Cytochrome P450 2D6 (CYP2D6) genotypes and the dextromethorphan/dextrorphan (DXM/DXT) metabolic ratio (MR), which is a marker of CYP2D6 activity, were studied in 118 unrelated healthy Ecuadorians.  相似文献   

14.
CYP2D6 is genotyped clinically for prediction of response to tamoxifen, psychotropic drugs and other medications. Phenotype prediction is dependent upon accurate genotyping. The CYP Allele Nomenclature Committee maintains the allelic nomenclature for CYP2D6; however, in some cases, the list of polymorphisms associated with a given allele is incomplete. Clinical laboratories and in vitro diagnostic manufacturers rely upon this nomenclature, in addition to the literature, to infer allelic function and haplotypes and when they design CYP2D6-testing platforms. This article provides more complete sequencing data for the CYP2D6*11 allele and describes the difficulties encountered in genotyping CYP2D6 when incomplete data are available. The CYP Allele Nomenclature Committee should provide clear information about the completeness of the original data used to define each allele.  相似文献   

15.
The polymorphic cytochrome P450 isoenzymes (CYPs) 2C9, 2C19 and 2D6 metabolise many important drugs, as well as other xenobiotics. Their polymorphism gives rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in the clinical response to these drugs. In this study, we determined the genotype profile of a random Italian population in order to compare the CYP2C9, CYP2C19 and CYP2D6 allele frequencies among Italians with previous findings in other Caucasian populations. Frequencies for the major CYP2C9, CYP2C19 and CYP2D6 mutated alleles and genotypes have been evaluated in 360 unrelated healthy Italian volunteers (210 males and 150 females, aged 19-52 years). Genotyping has been carried out on peripheral leukocytes DNA by molecular biology techniques (PCR, RFLP, long-PCR). CYP2C9, CYP2C19 and CYP2D6 allele and genotype frequencies resulted in equilibrium with the Hardy-Weinberg equation. One hundred and fourteen subjects (31.7%) carried one and 23 subjects (6.4%) carried two CYP2C9 mutated alleles. Sixty-eight (18.9%) volunteers were found to be heterozygous and six (1.7%) homozygous for the CYP2C19*2, while no CYP2C19*3 was detected in the evaluated population. Volunteers could be divided into four CYP2D6 genotypes groups: 192 subjects (53.3%) with no mutated alleles (homozygous extensive metabolisers, EM), 126 (35.0%) with one mutated allele (heterozygous EM), 12 (3.4%) with two mutated alleles (poor metabolisers, PM) and 30 (8.3%) with extracopies of a functional gene (ultrarapid metabolisers, UM). Frequencies of both CYP2C9 and CYP2C19 allelic variants, as well as CYP2D6 detrimental alleles, in Italian subjects were similar to those of other Caucasian populations. Conversely, the prevalence of CYP2D6 gene duplication among Italians resulted very high, confirming the higher frequency of CYP2D6 UM in the Mediterranean area compared to Northern Europe.  相似文献   

16.
研究细胞色素P450-2D6基因分型测定方法及其与表型的吻合率。方法:利用等位基因特异扩增法基本原理,对CYP2D6酶缺陷等位基因CYP2D6*3,*4,*6和*7进行测定。结果;通过168例基因分型,并将结果与表型对照,发现同时测定CYP2D6*3,*4,*6和*7等位基因时,125例快代谢者和43例慢代谢者的基因分型结果与表型结果的吻合率为100%。  相似文献   

17.
CYP2D6基因与药物代谢   总被引:2,自引:0,他引:2  
细胞色素P 45 0 (CYP)中的CYP2D6酶在抗抑郁药、安定药及某些抗心律失常药的代谢中起重要作用 ,CYP2D6基因位于 2 2号常染色体上为隐性遗传 ,CYP2D6基因呈多态性约有 70余种等位基因变异型 ,也存在特异人群差别 ,因而导致所编码的酶活性不同 ,这些数据有助于理解药物代谢的个体差异、有助于预测药物之间的相互作用。  相似文献   

18.
19.
Genetically determined individual differences in the ability to oxidize certain drugs have raised recently a considerable interest because of clinical importance of this problem. Determination of CYP2D6 oxidation phenotype is used to obtain more efficient pharmacotherapy and to explain lower efficacy of some drugs and presentation of adverse effects in particular patients. The aim of this study was to identify the CYP2D6 oxidation phenotype with dextromethorphan (DM) as a probe drug. The study included 85 healthy volunteers of Polish origin. DM (40 mg) was given orally to healthy adults and 10-h urine samples were collected. DM and the metabolite dextrorphan (DX) were analyzed by the HPLC method. Phenotyping was performed using the metabolic ratio (MR) calculated as the urinary DM/DX output. Based on the metabolic ratio, we can distinguish extensive (EM) and poor (PM) metabolizers in human population. Individuals with a dextromethorphan MR greater than 0.3 (log > -0.5) were classified as PMs. In our study, the frequency of the PM phenotype was 9.4%, which is in the range found in other Caucasian populations (3-10%).  相似文献   

20.
BACKGROUND: The cytochrome P450 isoenzymes CYP2C19 and CYP2D6 catalyze reactions involved in the metabolism of many widely used drugs. Their polymorphisms give rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in clinical response to some drugs. Individuals who carry two null alleles of either gene are known as poor metabolizers (PMs), while those who carry more than two copies of the functional CYP2D6 gene are ultrarapid metabolizers (UMs). AIM: The aim of the current study was to genotype Israelis from four different ethnic backgrounds with respect to CYP2C19 and CYP2D6. STUDY DESIGN: Polymorphisms of the CYP2C19 and CYP2D6 genes were determined by genotyping the four ethnic groups using PCR and/or restriction fragment length polymorphism (RFLP) analysis. The groups consisted of three Jewish communities, Yemenite Jews (n = 36), Sephardic Jews (n = 47), Ethiopian Jews (n = 28), and one Arabian population, Bedouins (n = 50). RESULTS: CYP2C19*2 allele frequencies ranged from 12.0 to 19.6% among the four ethnic groups. Within the study population, the CYP2C19*3 gene was only found in one Bedouin individual, in the heterozygous state (CYP2C19*1/*3). In each group, one individual was homozygous for CYP2C19*2, and were predicted to be PMs. The data revealed a high prevalence of CYP2D6*2, *4, *10, *41, and gene duplication, followed by *5 and *17, while *3 was very rare. The frequencies of the CYP2D6*4, *10, and *17 alleles and CYP2D6 gene duplication were significantly different among the four groups. However, the CYP2D6*2, *3, and *5 and *41 alleles showed similar frequencies in the four groups. Four (8.5%) Sephardic Jews and one (2.0%) Bedouin were found with the genotype CYP2D6*4/*4 (two null alleles), and were thus presumably PMs. A total of 15 individuals, distributed in all groups, were found with functional CYP2D6 gene duplications. The frequencies of predicted UMs (duplication of CYP2D6) were 17.8% (5/28) and 12.8% (6/47) in Ethiopian Jews and Sephardic Jews, respectively, which were higher than that of Yemenite Jews (5.6%, 2/36) and Bedouins (4.0%, 2/50). CONCLUSIONS: This is the first study of the CYP2D6 gene polymorphism in Israeli ethnic groups, either Jewish or Arab. Furthermore, this is also the first study of the CYP2C19 gene polymorphism in Jewish or Arab subgroups living in Israel. The frequencies of various alleles for the CYP2D6 gene are significantly different among the ethnic groups in Israel. These new findings may have important clinical implications in administrating drugs metabolized by CYP2D6 and for CYP2D6-related adverse drug reactions in the Israeli population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号