首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 background K+ channels that set the resting membrane potential. Whole-cell and single-channel patch-clamp recording were used to compare five Ca2+ channel antagonists with respect to their potency as inhibitors of native bTREK-1 K+ channels. The dihydropyridine (DHP) Ca2+ channel antagonists amlodipine and niguldipine potently and specifically inhibited bTREK-1 with IC50 values of 0.43 and 0.75 microM, respectively. The other Ca2+ channel antagonists, including the DHP nifedipine, the diphenyldiperazine flunarizine, and the cannabinoid anandamide were less potent, with IC50 values of 8.18, 2.48, and 5.07 microM, respectively. Additional studies with the highly prescribed antihypertensive amlodipine showed that inhibition of bTREK-1 by this agent was voltage-independent and specific. At concentrations that produced near complete block of bTREK-1, amlodipine inhibited voltage-gated Kv1.4 K+ and T-type Ca2+ currents in AZF cells by less than 10%. At the single-channel level, amlodipine reduced bTREK-1 open probability without altering the unitary conductance. The results demonstrate that selected DHP L-type Ca2+ channel antagonists potently inhibit native bTREK-1 K+ channels, whereas other Ca2+ channel antagonists also inhibit bTREK-1 at higher concentrations. Collectively, organic Ca2+ channel antagonists make up the most potent class of TREK-1 inhibitors yet described. Because TREK-1 K+ channels are widely expressed in the central nervous and cardiovascular systems, it is possible that some of the therapeutic or toxic effects of frequently prescribed drugs such as amlodipine may be due to their interaction with TREK-1 K+ rather L-type Ca2+ channels.  相似文献   

2.
We tested the assumption that nifedipine blocks L-type calcium current [I(Ca(L))] at +10 mV and unmasks Na(+)/Ca(2+) exchange-triggered contractions in guinea pig isolated ventricular myocytes. Voltage-clamp pulses elicited I(Ca(L)) at +10 mV and evoked contractions in myocytes superfused with Tyrode's solution (35 degrees C). Nifedipine blocked I(Ca(L)) with an IC(50) of 0.3 microM; this decreased to 50 nM at a holding potential of -40 mV, indicating preferential block of inactivated L-type Ca(2+) channels. Use-independent block of I(Ca(L)) increased with concentration (10-100 microM) and application time when nifedipine was rapidly applied (t(1/2) = approximately 0.2 s) during rest intervals (5-30 s). The fraction of use-dependent block of I(Ca(L)) diminished with increasing drug concentration. Nifedipine also accelerated I(Ca(L)) inactivation on the first test pulse. The combination of 30 microM nifedipine/30 microM Cd(2+) (Nif 30/Cd 30) was as effective as 100 microM nifedipine to suppress I(Ca(L)) on the first test pulse at +10 mV. The incidence of complete block of contractions, as for complete block of I(Ca(L)), increased as a function of nifedipine concentration and application time. Neither nifedipine nor Nif 30/Cd 30 affected Na(+)/Ca(2+) exchange current at +10 to +100 mV. Contractions at +100 mV, although as large as those at +10 mV, were delayed in onset and resistant to nifedipine or Nif 30/Cd 30. We conclude that nifedipine-sensitive I(Ca(L)) triggers contractions at +10 mV, whereas nifedipine-resistant Na(+)/Ca(2+) exchange current initiates those at +100 mV.  相似文献   

3.
The effect of various Ca++ antagonists and local anesthetics on neuronal cell degeneration induced by veratridine was studied in primary rat brain neuronal cultures. Cell death was quantified by measuring lactate dehydrogenase (LDH) released in the culture medium. The neuronal cell degeneration was Ca+(+)-dependent because, in the absence of extracellular Ca++, 16 hr of exposure to 30 microM veratridine failed to produce release of LDH. Ca++ antagonists, nonselective for slow Ca++ channels (flunarizine, cinnarizine, lidoflazine, prenylamine and bepridil) inhibited veratridine-induced release of LDH with IC50 values between 0.11 and 0.47 microM. Ca++ antagonists selective for slow Ca++ channels were less potent and inhibited veratridine-induced release of LDH at concentrations in the following order of potency: nicardipine greater than gallopamil and verapamil greater than niludipine greater than nitrendipine greater than nifedipine greater than nimodipine greater than diltiazem. Tested local anesthetics were incomplete inhibitors of veratridine-induced release of LDH. A good correlation was found between the potency of the drugs to inhibit released LDH induced by 30 microM veratridine in neuronal cultures and their binding affinity for the batrachotoxin binding site of Na+ channels in rat cortex synaptosomal preparation. It is concluded that protection against veratridine-induced neurotoxicity can be mediated by blocking a veratridine-sensitive Na+ channel. It is a property of certain nonselective Ca++ antagonists. There is apparently no direct relationship with Ca++ antagonistic activity. The effect is unrelated to local anesthetic activity.  相似文献   

4.
Celikalim (WAY-120,491) is a putative potassium channel activator that has been shown to lower blood pressure in animal models and humans. In the present study, we have examined the effects of celikalim on contractility and ionic currents in feline cardiac muscle. Celikalim was found to decrease contractility in electrically stimulated (2 Hz frequency) left atrial and right ventricular papillary muscle preparations with IC50 values of 0.95 +/- 0.12 microM (n = 6) and 0.29 +/- 0.07 microM (n = 5), respectively. Glyburide (1 microM) reversed the celikalim-induced negative inotropy (left atrial halves). Celikalim was also shown to activate a glyburide-sensitive current in voltage-clamped isolated ventricular myocytes that reversed close to the calculated value of the potassium equilibrium potential (n = 4 cells). In addition, celikalim was found to inhibit voltage-activated calcium current (L-type) in isolated ventricular myocytes (51 +/- 2% inhibition at 1 microM; n = 4 cells). We conclude that celikalim is a potassium channel activator and hypothesize that both the negative inotropy and the glyburide-sensitive current evoked by this drug are mediated by ATP-regulated potassium channels. Inhibition of voltage-activated calcium channels by celikalim may also contribute to the negative inotropy induced by this drug.  相似文献   

5.
The calcium channel-inhibiting drugs diltiazem, verapamil and nitrendipine represent three general classes of organic calcium antagonists. In the present study, the effect of these drugs on calcium currents (ICa++) in rabbit sternomastoid muscle fibers was examined. ICa++ were recorded at room temperature using a vaseline gap voltage clamp. ICa++ measured had similar kinetics to those reported in rat skeletal muscle, were partially blocked by 0.5 mM CdCI2 and could be reduced by substitution of Mg++ for Ca++. Diltiazem reversibly blocked ICa++ in a concentration-dependent manner with the 50% inhibitory concentration (IC50) being 63 microM. Verapamil was slightly more potent with approximately 50% block of ICa++ occurring at 10 microM. In contrast, nitrendipine at concentrations from 1 to 10 microM had no blocking action on ICa++, even after 20 min of exposure. Thus, although Ca++ channels in mammalian skeletal muscle fibers are readily blocked by cadmium, diltiazem and verapamil, these channels appear to be insensitive to the dihydropyridine compound nitrendipine.  相似文献   

6.
In order to characterize pharmacologically voltage-operated calcium channels in the rat brain, we have developed a technique to measure intracellular calcium levels ([Ca++]i) in immature rat cortical slices loaded with the fluorescent calcium probe Fura-2. KCl depolarization caused a rapid and reversible increase in cortical [Ca++]i. A significant increase was already observed at 20 mM KCl and the maximal effect was obtained at 77 mM. This response was not modified when extracellular Na+ was substituted by the nonpermeant cation bis(2-hydroxyethyl)-dimethylammonium chloride and was insensitive to the Na+ channel blocker tetrodotoxin (1 microM). In the absence of extracellular Ca++, KCl (50 mM) failed to increase [Ca++]i. The KCl (50 mM)-induced increase in [Ca++]i was not affected by the L-type calcium channel blockers nifedipine and isradipine and was only partially inhibited (by less than 30% at 50 microM) by verapamil and diltiazem. In contrast, nimodipine prevented this response by 41% at 50 microM. Flunarizine (a nonselective T channel blocker) inhibited the KCl response by 47% at 30 microM, whereas nicergoline (another nonselective T channel blocker) reduced this entry by 74% at 300 microM (IC50 = 120 microM). Cyclandelate, an atypical calcium antagonist, inhibited KCl-induced increase in [Ca++]i with a maximal effect of 41% at 30 microM, whereas perhexiline was inactive. The KCl-induced rise in [Ca++]i was only marginally inhibited by omega-conotoxin with a maximal effect of 20% from 1 nM to 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We investigated the effects of the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) on endothelin-1 (ET-1)-induced constriction of rat small pulmonary arteries (diameter 100-400 microm) in vitro, following endothelium removal. ET-1 (30 nM) induced a sustained constriction of rat pulmonary arteries in physiological salt solution. Arteries preconstricted with ET-1 were relaxed by niflumic acid (IC50: 35.8 microM) and NPPB (IC50: 21.1 microM) in a reversible and concentration-dependent manner. However, at concentrations known to block Ca++-activated Cl- channels, DIDS (相似文献   

8.
Summary— Intracerebroventricular (i.c.v.) injections of dihydropyridine derivatives calcium channel agonist (BAY K8644) and antagonists (nifedipine, nicardipine, PN 200–110) induced opposite long-lasting changes in blood pressure (BP) in pentobarbital anesthetized spontaneously hypertensive rats (SMR). I.c.v. nifedipine (NIF), nicardipine (NIC), and PN 200–110 decreased mean blood pressure dose-dependently and stereoselec-tively, (+) NIC and (+) PN being 8 and 3 times more potent than their (-) isomers, respectively. The decrease in BP was due to a withdrawal of the sympathetic tone, since NIF- and NIC-induced falls in BP were suppressed after either hexamethonium (HXM), 6 OHDA or bilateral adrenalectomy. I.c.v. BAY K8644 increased BP dose-dependently. The i.c.v. BAY K8644-induced hypertensive effect was inhibited: a), by NIF and (+) PN but not by (-) PN, therefore probably occurring at central DHP sites; b), by HXM and reserpine, thus probably mediated by an increase in sympathetic tone; c), by i.c.v. methylatropine (MA) while i.v. MA and i.c.v. HXM had no inhibitory effect, thus probably involving central muscarinic sites. In SHR, NIC did not after the K+-evoked ACh release but suppressed the BAY K8644-induced increase in ACh release. In anesthetized normotensive control rats (WKY), neither i.c.v. NIF, NIC or BAY K8644 changed BP, nor did the latter after ACh release. Moreover, in conscious WKY, i.c.v. nicardipine increased BP and HR while, in conscious SHR it decreased BP without any change in HR. These data suggest that central DHP sites may be involved in the cholinergic transmission and may participate in genetic hypertension via sympathetic tone.  相似文献   

9.
The aim of this study was to determine the effects of the antiestrogen agent clomiphene on cardiac anionic and cationic sarcolemmal ion channels. Whole-cell recordings were made from rat and guinea pig ventricular myocytes. Clomiphene inhibited the volume-regulated chloride current [I(Cl,vol), activated by cell swelling after hypotonic shock (approximately 145 mOsM)] with an IC(50) value of approximately 9.4 microM. In contrast, at concentrations up to 100 microM, clomiphene failed to inhibit both the chloride current activated by cyclic AMP (I(Cl,cAMP)) and the anionic background current (I(AB)). At 10 microM, clomiphene blocked the voltage-gated fast sodium current and the L-type calcium current (I(Ca,L)) in both species. The voltage-independent fractional block of I(Ca,L) induced by clomiphene (10 microM) was approximately 82%, this concentration also inhibited the inwardly rectifying K(+) current with a fractional current block of approximately 26% at -90 mV. Fractional block of outward current at +70 mV in rat was approximately 25%, implying that delayed rectifying K(+) channels were also affected by clomiphene. We conclude that clomiphene shows selectivity for I(Cl,vol) over I(Cl,cAMP) and I(AB) and therefore represents a useful tool for studying chloride conductances in isolated ventricular myocytes with interfering currents blocked. However, due to its effects on cation conductances it would be of little value in this regard for other types of in vitro or in vivo experiments.  相似文献   

10.
Summary— We studied the effects of six dihydropyridines on the specific binding of (+)-[3H]-isradipine to vascular (portal vein) and cardiac isolated membranes to achieve the relative cardiovascular selectivity of these compounds. Elgodipine, (+)-oxodipine and nifedipine had a significantly higher affinity for the vascular L-type calcium channel than for the cardiac calcium channel while nicardipine showed opposite properties. The other dihydropyridines (nitrendipine and (+)-isradipine) had similar affinities for the cardiac and vascular calcium channels. As the membrane potential of isolated membranes is about 0 mV, these results suggest that the differences in binding of these dihydropyridines to L-type calcium channels in vascular and cardiac cells may be attributed to differences in the molecular structure of these calcium channels.  相似文献   

11.
Pyrethroids are commonly used insecticides for both household and agricultural applications. It is generally reported that voltage-gated sodium channels are the primary target for toxicity of these chemicals to humans. The phylogenetic and structural relatedness between sodium channels and voltage-gated calcium (Ca) channels prompted us to examine the effects of the type 1 pyrethroid allethrin on the three major classes of mammalian calcium channels exogenously expressed in human embryonic kidney 293 cells. We report that all classes of mammalian calcium channels are targets for allethrin at concentrations very similar to those reported for interaction with sodium channels. Allethrin caused blockade with IC(50) values of 7.0 microM for T-type alpha(1G) (Ca(v)3.1), 6.8 microM for L-type alpha(1C) (Ca(v)1.2), and 6.7 microM for P/Q-type alpha(1A) (Ca(v)2.1) channels. Mechanistically, the blockade of calcium channels was found to be significantly different than the prolonged opening of mammalian sodium channels caused by pyrethroids. In all calcium channel subtypes tested, allethrin caused a significant acceleration of the inactivation kinetics and a hyperpolarizing shift in the voltage dependence of inactivation. The high-voltage-activated P/Q- and L-type channels showed a frequency of stimulation-dependent increase in block by allethrin, whereas the low-voltage-activated alpha(1G) subtype did not. Allethrin did not significantly modify the deactivation kinetics or current-voltage relationships of any of the calcium channel types. Our study indicates that calcium channels are another primary target for allethrin and suggests that blockade of different types of calcium channels may underlie some of the chronic effects of low-level pyrethroid poisoning.  相似文献   

12.
Part of the neurotoxic effects of inorganic mercury (Hg(2+)) and methylmercury (MeHg) was attributed to their interaction with voltage-activated calcium channels. Effects of mercury on T-type calcium channels are controversial. Therefore, we investigated effects of Hg(2+) and MeHg on neuronal Ca(v)3.1 (T-type) calcium channel stably expressed in the human embryonic kidney (HEK) 293 cell line. Hg(2+) acutely inhibited current through the Ca(v)3.1 calcium channel in concentrations 10 nM and higher with an IC(50) of 0.63 +/- 0.11 microM and a Hill coefficient of 0.73 +/- 0.08. Inhibition was accompanied by strong deceleration of current activation, inactivation, and deactivation. The current-voltage relation was broadened, and its peak was shifted to a more depolarized membrane potentials by 1 microM Hg(2+). MeHg in concentrations between 10 nM and 100 microM inhibited the current through the Ca(v)3.1 calcium channel with an IC(50) of 13.0 +/- 5.0 microM and a Hill coefficient of 0.47 +/- 0.09. Low concentration of MeHg (10 pM to 1 nM) had both positive and negative effects on the current amplitude. Micromolar concentrations of MeHg reduced the speed of current activation and accelerated current inactivation and deactivation. The current-voltage relation was not affected. Up to 72 h of exposure to 10 nM MeHg had no significant effect on current amplitude, whereas 72-h-long exposure to 1 nM MeHg increased significantly current density. Acute treatment with Hg(2+) or MeHg did not affect HEK 293 cell viability. In conclusion, interaction with the Ca(v)3.1 calcium channel may significantly contribute to neuronal symptoms of mercury poisoning during both acute poisoning and long-term environmental exposure.  相似文献   

13.
Fluoxetine is a commonly prescribed antidepressant compound. Its action is primarily attributed to selective inhibition of the reuptake of serotonin (5-hydroxytryptamine) in the central nervous system. Although this group of antidepressant drugs is generally believed to cause fewer proarrhythmic side effects compared with tricyclic antidepressants, serious concerns have been raised by case reports of tachycardia and syncopes associated with fluoxetine treatment. To determine the electrophysiological basis for the arrhythmogenic potential of fluoxetine, we investigated the effects of this drug on cloned human ether-a-go-go-related gene (HERG) potassium channels heterologously expressed in Xenopus oocytes using the two-microelectrode voltage-clamp technique. We found that fluoxetine blocked HERG channels with an IC(50) value of 3.1 microM. Inhibition occurred fast to open channels with very slow unbinding kinetics. Analysis of the voltage dependence of block revealed loss of inhibition at membrane potentials greater than 40 mV, indicating that channel inactivation prevented block by fluoxetine. No pronounced changes in electrophysiological parameters such as voltage dependence of activation or inactivation, or inactivation time constant could be observed, and block was not frequency-dependent. This is the first study demonstrating that HERG potassium channels are blocked by the selective serotonin reuptake inhibitor fluoxetine. We conclude that HERG current inhibition might be an explanation for the arrhythmogenic side effects of this drug.  相似文献   

14.
Calcium channel antagonists are widely prescribed for treatment of hypertension. In this study, we examined whether treatment with the calcium channel antagonists, nicardipine, nifedipine or diltiazem, alters cytochrome P-450 2B or 3A (CYP2B or CYP3A, respectively) expression in rat liver. Western blot analyses were undertaken using antibodies specific for one or several members of these cytochrome P-450 subfamilies. Nicardipine was found to be an effective inducer of CYP3A; in particular, CYP3A23 was increased approximately 36-fold following treatment with 100 mg of nicardipine/kg/day. Nicardipine induced CYP2B forms up to approximately 3.1-fold. Nifedipine did not alter CYP3A expression but did increase CYP2B expression such that total CYP2B, CYP2B1, and CYP2B2v (a splice variant of CYP2B2) were increased approximately 5- to 15-fold after treatment with 100 mg of nifedipine/kg/day, with increases in benzyloxyresorufin O-dealkylase and erythromycin N-demethylase activities, respectively. The distinct differences in cytochrome P-450 induction profile induced by nicardipine and nifedipine suggest that they may enhance cytochrome P-450 expression by different mechanisms unrelated to their effects on calcium channels.  相似文献   

15.
Antihypertensive drugs of the "calcium channel blocker" or "calcium antagonist" class have been used to establish the physiological role of L-type Ca(2+) channels in vascular smooth muscle. In contrast, there has been limited progress on the pharmacology T-type Ca(2+) channels. T-type channels play a role in cardiac pacemaking, aldosterone secretion, and renal hemodynamics, leading to the hypothesis that mixed T- and L-type blockers may have therapeutic advantages over selective L-type blockers. The goal of this study was to identify compounds that block the Ca(v)3.2 T-type channel with high affinity, focusing on two classes of compounds: phenylalkylamines (e.g., mibefradil) and dihydropyridines (e.g., efonidipine). Compounds were tested using a validated Ca(2+) influx assay into a cell line expressing recombinant Ca(v)3.2 channels. This study identified four clinically approved antihypertensive drugs (efonidipine, felodipine, isradipine, and nitrendipine) as potent T-channel blockers (IC(50) < 3 microM). In contrast, other widely prescribed dihydropyridines, such as amlodipine and nifedipine, were 10-fold less potent, making them a more appropriate choice in research studies on the role of L-type currents. In summary, the present results support the notion that many available antihypertensive drugs block a substantial fraction of T-current at therapeutically relevant concentrations, contributing to their mechanism of action.  相似文献   

16.
We investigated block of the alpha1Cb subunit of L-type calcium channels by dihydropyridines (DHPs) in which a permanently charged or neutral head group was linked to the active DHP moiety by a spacer chain containing ten methylene (-CH2) groups. We compared the sensitivity of channel modulation by the charged (DHPch) and neutral (DHPn) forms to specific alpha1Cb mutations in domains IIIS5, IIIS6, and IVS6, which had previously been shown to reduce channel modulation by the neutral DHP (+)-isradipine. The effects of these mutations were studied on channel block recorded from polarized (-80 mV) and depolarized (-40 mV) holding potentials (HPs). We found that channel block by DHPn was markedly reduced at both HPs by each mutation studied. In contrast, channel block by DHPch was only modestly reduced by mutations in IIIS6 and IVS6 for block from either -40 mV or -80 mV. Replacement of IIIS5 Thr1061 by Tyr, which abolished block by DHPn in an HP-independent manner, had little effect on channel block by DHPch recorded from -40 mV. However, this mutation markedly reduced DHPch block of currents recorded from a -80 mV HP. Inhibition of current by DHPch was not markedly use-dependent, in contrast with block by verapamil, another charged calcium channel blocker. These results suggest that the presence of a permanently charged head group restricts the access of the attached DHP moiety to a subset of interaction residues on the alpha1C subunit in a voltage-dependent manner. Furthermore, these restricted interactions confer distinct functional properties upon the charged DHP molecules.  相似文献   

17.
Block of human heart hH1 sodium channels by amitriptyline   总被引:8,自引:0,他引:8  
Amitriptyline is a tricyclic antidepressant used to treat major depression and various neuropathic pain syndromes. This drug also causes cardiac toxicity in patients with overdose. We characterized the tonic and use-dependent amitriptyline block of human cardiac (hH1) Na(+) channels expressed in human embryonic kidney cells under voltage-clamp conditions. Our results show that, near the therapeutic plasma concentration of 1 microM, amitriptyline is an effective use-dependent blocker of hH1 Na(+) channels during repetitive pulses (approximately 55% block at 5 Hz). The tonic block for resting and for inactivated hH1 channels by amitriptyline (0.1-100 microM) yielded IC(50) values (50% inhibitory concentration) of 24.8 +/- 2.0 (n = 9) and 0.58 +/- 0.03 microM (n = 7), respectively. Substitution of phenylalanine with lysine at the hH1-F1760 position, a putative binding site for local anesthetics, eliminates the use-dependent block by amitriptyline at 1 microM. The time constants of recovery from the inactivated-state amitriptyline block in hH1 wild-type and hH1-F1760K mutant channels are 8.0 +/- 0. 5 (n = 6) and 0.45 +/- 0.07 s (n = 6), respectively. A substitution at either hH1-F1760K or hH1-Y1767K significantly increases the IC(50) values for resting and inactivated states of amitriptyline, but the increase is much more pronounced with the hH1-F1760K mutation. Because these two residues were proposed to form a part of the local anesthetic binding site, we conclude that amitriptyline and local anesthetics interact with a common binding site. Furthermore, at therapeutic concentrations, the ability of amitriptyline to act as a potent use-dependent blocker of Na(+) channels may, in part, explain its analgesic actions.  相似文献   

18.
We have used the whole-cell patch-clamp technique to study the effect of mefloquine (Lariam), a commonly used antimalarial drug, on the volume-regulated anion channel (VRAC) in cultured bovine pulmonary artery endothelial cells. We also examined its effects on other Cl(-) channels, i.e., the Ca(2+)-activated Cl(-) channel and the cystic fibrosis transmembrane conductance regulator, to assess the specificity of this compound for VRAC. At pH 7.4 mefloquine induced a fast and reversible block of the volume-sensitive chloride current (I(Cl,swell)), with an IC(50) value of 1.19 +/- 0.07 microM. The blocking efficiency increased with increasing extracellular pH (IC(50) value for pH 8.8 was 0.15 +/- 0.01 microM), indicating that this effect is mediated by the uncharged form of mefloquine. Ca(2+)-activated Cl(-) currents, I(Cl,Ca), activated by loading T84 cells via the patch pipette with 1 microM free Ca(2+) also were inhibited by mefloquine (IC(50) value 3.01 +/- 0.17 microM at pH 7.4). The cystic fibrosis transmembrane conductance regulator channel, transiently transfected in cultured bovine pulmonary artery endothelial cells, was not affected by 10 microM of the drug. This study describes for the first time effects of mefloquine on anion channels. Our data reveal a potent block of VRAC and Ca(2+)-activated Cl(-) channel at therapeutic concentrations. These results may contribute to a better understanding of the actions and side effects of this widely used antimalarial drug.  相似文献   

19.
Chronotropic and inotropic actions of phencyclidine were studied in spontaneously beating right atrial muscle and electrically paced left atrial muscle preparations isolated from guinea-pig or rat hearts. In right atrial muscle preparations, phencyclidine (10-100 microM) decreased the frequency of spontaneous beating. Guinea-pig and rat heart preparations had similar sensitivities to this action of phencyclidine. The negative chronotropic effect was not altered by atropine. A high concentration of naloxone failed to affect the chronotropic effect of phencyclidine in guinea-pig muscle, but significantly reduced the effect in rat heart muscle preparations. Phencyclidine (1-100 microM) caused positive inotropic effects in both guinea-pig and rat heart left atrial muscle electrically stimulated at 1.5 Hz; rat heart preparations had a higher sensitivity to the positive inotropic action of phencyclidine. The positive inotropic effect was reduced by verapamil, nifedipine and relatively high concentrations of diltiazem, but was not affected by propranolol, phentolamine, tripelennamine, atropine or ryanodine, indicating that the effect is not mediated by adrenergic, histaminergic or cholinergic systems or does not involve ryanodine-sensitive calcium pools. Inactivation of the fast sodium channels by partial membrane depolarization, and subsequent restoration of the contraction by raising the extracellular Ca++ concentration, did not abolish the positive inotropic action of phencyclidine. These results suggest that the negative chronotropic effect of phencyclidine is not mediated by a stimulation of the muscarinic receptor. The positive inotropic effects of phencyclidine seem to result from an increase in Ca++ influx through the slow channels of the cardiac cell membrane.  相似文献   

20.
Papaverine, 1-[(3,4-dimethoxyphenyl)methyl]-6,-7-dimethoxyisoquinoline, has been used as a vasodilator agent and a therapeutic agent for cerebral vasospasm, renal colic, and penile impotence. We examined the effects of papaverine on a rapidly activating delayed rectifier K(+) channel (hKv1.5) cloned from human heart and stably expressed in Ltk(-) cells as well as a corresponding K(+) current (the ultrarapid delayed rectifier, I(Kur)) in human atrial myocytes. Using the whole cell configuration of the patch-clamp technique, we found that papaverine inhibited hKv1.5 current in a time- and voltage-dependent manner with an IC(50) value of 43.4 microM at +60 mV. Papaverine accelerated the kinetics of the channel inactivation, suggesting the blockade of open channels. Papaverine (100 microM) also blocked I(Kur) in human atrial myocytes. These results indicate that papaverine blocks hKv1.5 channels and native hKv1.5 channels in a concentration-, voltage-, state-, and time-dependent manner. This interaction suggests that papaverine could alter cardiac excitability in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号