首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Toxicology in vitro》2010,24(6):1727-1735
The development of novel in vitro methods to assess risks of allergic sensitization are essential in reducing animal testing whilst maintaining consumer safety. The main research objectives of this study were to identify novel biomarkers to assess the sensitization predictability of chemicals. Phenotypic and cytokine responses of moDCs and MUTZ-3 cells were investigated following application of contact sensitizers; dinitrochlorobenzene (DNCB), cinnamaldehyde (Cin), eugenol (E), isoeugenol (IE), P-phenylenediamine (PPD) and non-sensitizers; salicyclic acid (SA) and sodium lauryl sulphate (SLS). CD86 was up-regulated on MUTZ-3 cells in response to DNCB, Cin and PPD, however, moDCs only modulated CD86 in response to DNCB and E. PDL-1 (Programmed death receptor ligand-1) proved a promising sensitization biomarker in MUTZ-3 cells where up-regulation occurred in response to DNCB, Cin, IE and PPD. Additionally, moDC-expressed PDL-1 was modulated in response to Cin, IE and E thus demonstrating improved sensitizer predictability when compared with CD86. MCP-1 and RANTES were identified as biomarkers of DNCB exposure but MCP-1 did not show any change in expression above controls for the other sensitizers investigated. However, RANTES was increased in MUTZ-3 cells by both DNCB and Cin. Our findings highlight novel biomarkers which, in MUTZ-3 cells, could be taken forward within a multiple biomarker in vitro assay ensuring strong and reliable predictability.  相似文献   

2.
It has been known that dendritic cells (DCs) including Langerhans cells (LCs) play a critical role in the skin sensitization process. Many attempts have been made to develop in vitro sensitization tests that employ DCs derived from peripheral blood mononuclear cells (PBMC-DC) or CD34+ hematopoietic progenitor cells (CD34+ HPC) purified from cord blood or bone marrow. However, the use of the DCs in in vitro methods has been difficult due to the nature of these cells such as low levels in the source and/or donor-to-donor variability. In our studies, we employed the human monocytic leukemia cell line, THP-1, in order to avoid some of these difficulties. At the start, we examined whether treatment of the cells with various cytokines could produce DCs from THP-1. Treatment of THP-1 cells with cytokines such as GM-CSF, IL-4, TNF-alpha, and/or PMA did induce some phenotypic changes in THP-1 cells that were characteristic of DCs. Subsequently, responses to a known sensitizer, dinitrochlorobenzene (DNCB), and a non-sensitizer, dimethyl sulfoxide (DMSO) or sodium lauryl sulfate (SLS), on the expression of co-stimulatory molecules, CD54 and CD86, were examined between the naive cells and the cytokine-treated cells. Interestingly, the naive THP-1 cells responded only to DNCB and the response to the sensitizer was more distinct than cytokine-treated THP-1 cells. Similar phenomena were also observed in the human myeloid leukemia cell line, KG-1. Furthermore, with treatment of DNCB, naive THP-1 cells showed augmented expression of HLA, CD80 and secretion of IL-1 beta. The response of THP-1 cells to a sensitizer was similar to that of LCs/DCs. Upon demonstrating the differentiation of monocyte cells in our system, we then evaluated a series of chemicals, including known sensitizers and non-sensitizers, for their potential to augment CD54 and CD86 expression on naive THP-1 cells. Indeed, known sensitizers such as PPD and 2-MBT significantly augmented CD54 and CD86 expression in a dose-dependent manner while non-sensitizers, such as SLS and methyl salicylate (MS), did not. To note, the metal allergens such as (NH(4))(2)[PtCl(4)], NiSO(4) and CoSO(4) augmented significantly only CD54 expression. Taking advantage of a cultured cell line, measurement of the co-stimulatory molecules, CD54 and CD86, on naive THP-1 cells following chemical exposure shows promise for the development of a simple, short-term in vitro sensitization test.  相似文献   

3.
The aim of this study was to explore the usefulness of a human monocyte cell line in the development of in vitro models for predictive testing of contact sensitizers. Several studies have shown that contact sensitizers induce CD86 expression and enhanced internalization of MHC class II molecules in dendritic cells (DCs). We used THP-1, a human monocyte cell line, as a replacement for DCs for evaluation of these phenotypical alterations as predictive endpoints for contact sensitizers. Known sensitizers and irritants were evaluated. After 24-h exposure to samples, the expression of CD86 on THP-1 cells was measured by flow cytometry. Sensitizers such as dinitrochlorobenzene (DNCB), 2-mercaptobenzothiazole (MBT), eugenol, p-phenylenediamine (PPDA) and ammonium tetrachloroplatinate (Pt) enhanced CD86 expression on THP-1 cells, while nickel sulfate, cobalt sulfate and irritants such as methylsalicylate (MS), sodium dodecyl sulfate (SDS) and dimethyl sulfoxide (DMSO) did not augment CD86 expression. A synergistic effect was observed when DNCB and IFN- were added simultaneously to a culture of THP-1 cells. Furthermore, internalization of MHC class II molecules was observed when the cells were treated with some of sensitizers for 2 h. The inducing effects of chemicals on the two phenotypical alterations were the same. These results suggest that these test systems can be used to predict contact-sensitizing ability of chemicals as an in vitro sensitization assay.  相似文献   

4.
5.
In the induction phase of allergic contact hypersensitivity, dendritic cells (DCs), including Langerhans cells (LCs) present in epidermis, can trigger an efficient T cell response once they have matured in response to an allergen. Upon maturation, DCs have been shown to induce expression of several surface molecules and the up-regulation of cytokine production. We have previously shown that THP-1 cells, human acute monocytic leukemia cell line, can discriminate between allergens and irritants by measuring expression of surface markers, CD86 and CD54, following chemical exposure. At the same time, we have also reported that augmented expression of HLA and CD80, and production of IL-1beta were up-regulated in THP-1 cells when treated with an allergen, 2,4-dinitrochlorobenzene (DNCB). In the present study, we first evaluated whether THP-1 cells induced the phenotypic changes and the production of cytokines, which are observed in the process of DC maturation, when treated with two known allergens, DNCB and nickel sulfate (NiSO(4)), and one irritant (sodium lauryl sulfate (SLS)). Exposure to DNCB and NiSO(4) induced significant augmentation of CD40 and CD83 expression as well as CD86 and CD54. Also, TNF-alpha and IL-8 secretion were markedly induced by DNCB and NiSO(4) in a dose-dependent manner. In addition, DNCB and NiSO(4) augmented CD1a expression and production of IL-6, respectively. On the contrary, SLS did not change any of these markers. We then evaluated a series of chemicals, including six known allergens (e.g., hydroquinone (HQ)) and two non-allergens (e.g., methyl paraben (MP)), in order to investigate the potential increase of CD86, CD54, CD40, and CD83 expression on THP-1 cells, and production of TNF-alpha and IL-8. Indeed, all tested allergens, except eugenol (EU), caused significant increased changes in at least four of the analyzed six markers, while non-allergens did not induce any changes. EU significantly augmented CD86, CD54 and CD40 expression. These results revealed that the wide variety of responses to allergens in THP-1 cells may emulate allergen-induced maturation processes of DCs. It is suggested that THP-1 cells, which could develop several DC-like properties, are suitable for identifying sensitizing potential of chemicals.  相似文献   

6.
Dendritic cells (DCs) play a critical role in the skin sensitization process of contact allergens. Many efforts have been made to develop in vitro sensitization tests that employ DCs, but more recently protocols were introduced that use cell lines other than DCs. The potential of the cell line THP-1 compared to monocyte-derived DCs (MoDCs) was evaluated using a known potent sensitizer 2,4-dinitrochlorobenzene (DNCB) and the terpenoid ascaridol (1,4-epodioxy-p-menth-2-ene), an ingredient present in oxidized tea tree oil. Activation of these cells was studied by estimation of the CD86 and CD54 cell surface expression. Overall, comparable results were found. The expression of CD86 was augmented by ascaridol in THP-1 and MoDCs, while the expression of CD54 was not reproducibly increased. These results encourage the further development of THP-1 cells as a short-term model for sensitization testing.  相似文献   

7.
Consumer and medical products can contain leachable chemical allergens which can cause skin sensitization. Recent efforts have been directed at the development of non-animal based tests such as in vitro cell activation assays for the identification of skin sensitizers. Prohapten identification by in vitro assays is still problematic due to the lack of prohapten bioactivation. The present study evaluated the effect of hapten and prohapten exposure on cell surface markers expression (CD86, CD54 and CD40) in the human monocytic leukemia, THP-1, cell line. Upregulation of activation and costimulatory markers are key events in the allergic sensitization process and have been reported to serve as indicators of skin sensitization. Cells were exposed to the prohaptens benzo(a)pyrene (BaP), 7,12-dimethylbenz(a)anthracene (DMBA), carvone oxime (COx), cinnamic alcohol (CA) and isoeugenol (IEG) at concentrations ranging from 1 to 10 μM for 24 and 48 h. The direct-binding haptens dinitrochlorobenzene (DNCB), benzoquinone (BQ), hydroxylethyl acrylate (HEA) and benzylbromide (BB) were used as positive controls. Cells were also exposed to the irritants sodium dodecyl sulfate (SDS) and sulfanilamide (SFA). Bioactivation of prohaptens was achieved by adding aroclor-induced rat liver microsomes (S9) to the cell cultures. Consistent upregulation of surface expressions of CD86, CD54 (ICAM-1) and CD40 was observed in THP-1 cells treated with direct-acting haptens (±S9) or prohapten (+S9). Upregulation of these markers was not observed after exposure to skin irritants or prohaptens in the absence of exogenously added S9. In conclusion, modification of in vitro cell culture assays to include co-incubation with microsomes enhances identification of prohaptens and allows them to be clearly distinguished from direct-binding haptens.  相似文献   

8.
The human cell line activation test (h-CLAT) is an OECD approved (Test No. 442E) assay to identify novel skin sensitizers. h-CLAT simulates dendritic cell activation in the skin sensitization pathway and is based on the measurement of CD54 and CD86 overexpression on monocytic, leukemic THP-1 cells. However, the current h-CLAT markers show inconsistent results with moderate and weak sensitizers. Moreover, these markers have accessory roles in cell adhesion and signaling rather than a direct role in cellular inflammation. Therefore, we have explored other inflammation-related markers in this study. PBMCs comprises a mixture of cells that resemble the complex immunological milieu in adults and were primarily used to identify markers. PBMCs (n = 10) and THP-1 cells were treated with 1-chloro-2,4-dinitrobenzene (DNCB, strong) and NiCl2 (Ni, moderate) sensitizers or DMSO (control) and incubated for 24 h. The samples were subjected to RNA sequencing to obtain log2fold change in gene expression. DNCB and NiCl2 significantly upregulated 80 genes in both cell types. Of these, CD109, CD181, CD183, CLEC5A, CLEC8A & CD354 were experimentally validated. DNCB and Ni but not isopropyl alcohol (non-sensitizer) significantly induced the expression of all novel markers except CLEC8A. Moreover, the percentage induction of all novel markers except CLEC8A satisfied the OECD acceptance criteria. In summary, we identified five novel markers that may supplement the current repertoire of h-CLAT markers.  相似文献   

9.
The activation of dendritic cells (DC), including Langerhans cells (LC) that reside within the epidermis, is a critical event in the induction phase of allergic contact hypersensitivity. Although recently, p38 mitogen-activated protein kinase (MAPK) has been reported to play a role in the activation of DC induced by allergens, the signaling pathways involved in this process have yet to be determined. We previously found that THP-1 cells have a high capacity to induce TNF-alpha release and CD86, CD54, and CD40 expression following allergen treatment; reflecting in vitro allergen-induced DC activation during skin sensitization. In this study, we investigated the signaling pathways in THP-1 cells activated by two representative allergens, DNCB and NiSO(4). We found that DNCB and NiSO(4) induced phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK). Inhibition of p38 MAPK activation selectively blocked DNCB-induced TNF-alpha release, but not NiSO(4)-induced release. In contrast, inhibition of ERK pathways selectively suppressed NiSO(4)-induced TNF-alpha release but not DNCB-induced release. In addition, we found that the inhibition of p38 MAPK and ERK pathways caused a selective inhibition of CD86, CD54, and/or CD40 expression following treatment with DNCB or NiSO(4). In particular, inhibition of p38 MAPK suppressed CD86, CD54, and CD40 expression induced by DNCB and CD86 expression induced by NiSO(4) while inhibition of ERK pathways suppressed CD86, CD54 and CD40 expression induced by DNCB and NiSO(4). These data indicate that both DNCB and NiSO(4) activate p38 MAPK and ERK, and thereby stimulate TNF-alpha release and phenotypic changes through the different signal transduction pathways.  相似文献   

10.
We previously reported that in vitro primary sensitization of hapten-specific T cells by cultured human epidermal Langerhans cells (LC) provides an alternative approach to discriminate strong contact sensitizers from irritants (Krasteva et al., 1996; Moulon et al., 1993). However, this LC-based immunoassay was limited by the availability of human skin samples. In the present study, we used monocyte-derived dendritic cells (DC) to analyse the autologous proliferative T cell response to several allergens. Monocytes were purified from the peripheral blood of healthy donors and cultured for 6–8 days in the presence of GM/CSF and IL-4 and then for 2 days in the presence of GM/CSF and TNF. The resulting cells exhibited the phenotype of mature DC, as assessed by the strong expression of HLA-DR, CD80, CD83 and CD86 antigens. We showed that trinitrophenyl (TNP)-treated mature DC induced a significant T cell proliferative response in all experiments, while fluorescein isothiocyanate (FITC) gave positive results in about half of them. The prohaptens eugenol and isoeugenol induced significant proliferation in one out of eight and in four out of 12 experiments, respectively. Interestingly, in 16 assays T cells never proliferated in the presence of sodium lauryl sulfate (SLS)-treated DC. Thus, this in vitro model allows discrimination between strong contact sensitizers and irritants. It might be very useful, therefore, for restriction of animal experimentation.  相似文献   

11.
Ku HO  Jeong SH  Kang HG  Pyo HM  Cho JH  Son SW  Kim HR  Lee KJ  Ryu DY 《Toxicology》2008,250(2-3):116-123
The murine local lymph node assay (LLNA) has been extensively utilized to evaluate sensitizing chemicals. However, there have been some concerns that its use to discriminate between classes of chemicals is minimal. It is thus desirable to identify better or alternative immune endpoints with in LLNA itself. Here, we evaluated the protein and/or mRNA levels of cytokines and granzyme B (GzmB), a cytotoxic lymphocyte product, to discriminate between sensitizers and irritants and to characterize the chemical sensitizers when used as supplemental indicators in LLNA endpoints. For this, CBA/N mice were topically treated daily with a well-known chemical sensitizer such as a strong contact sensitizer 1-chloro-2,4-dinitrobenzene (DNCB), a skin contact sensitizer 2-phenyl-4-ethoxymethylene-5-oxazolone (OXA), and a skin or respiratory sensitizer toluene 2,4-diisocyanate (TDI), and the non-sensitizing irritants, croton oil (CRO) and nonanoic acid (NA), for 3 consecutive days. The protein and/or mRNA levels in auricular lymph nodes draining the ear skin were then analyzed by real-time RT-PCR and immunoassay. The sensitizers, but not the irritants, evoked pronounced interleukin (IL)-2, IL-3 and IL-4 or interferon (IFN)-gamma. Significantly, different sensitizers evoked different cytokine patterns of IL-4 and IFN-gamma, as DNCB strongly up-regulated both IFN-gamma and IL-4, OXA up-regulated IFN-gamma strongly but IL-4 weakly, and TDI up-regulated IL-4 strongly but IFN-gamma weakly. The sensitizers also strongly up-regulated GzmB mRNA, while the irritants had a much weaker effect. Thus, these cytokines and GzmB mRNA may be useful as additional endpoints for discriminating between irritants and sensitizers or contact and respiratory sensitizers in the LLNA.  相似文献   

12.
Identification of allergenic chemicals is an important occupational safety issue. While several methods exist to identify contact sensitizers, there is currently no validated model to predict the potential of chemicals to act as respiratory sensitizers. Previously, we reported that cytometry analysis of the local immune responses induced in mice dermally exposed to the respiratory sensitizer trimellitic anhydride (TMA 10%) and contact sensitizer dinitrochlorobenzene (DNCB 1%) could identify divergent expression of several immune parameters. The present study confirms, first, that IgE-positive B cells, MHC class II molecules, interleukin (IL)-2, IL-4 and IL-4Rα can differentiate the allergic reactions caused by high doses of strong respiratory (TMA, phthalic anhydride and toluene diisocyanate) and contact sensitizers (DNCB, dinitrofluorobenzene and oxazolone). The second part of the study was designed to test the robustness of these markers when classing the weakly immunogenic chemicals most often encountered. Six respiratory allergens, including TMA (2.5%), five contact allergens, including DNCB (0.25%), and two irritants were compared at doses of equivalent immunogenicity. The results indicated that IL-4Rα and IL-2 can be reliably used to discriminate sensitizers. Respiratory sensitizers induced markedly higher IL-4Rα levels than contact allergens, while irritants had no effect on this parameter. Inversely, contact allergens tended to induce higher percentages of IL-2+CD8+ cells than respiratory allergens. In contrast, the markers MHC-II, IgE and IL-4 were not able to classify chemicals with low immunogenic potential. In conclusion, IL-4Rα and IL-2 have the potential to be used in classifying a variety of chemical allergens.  相似文献   

13.
For the development of mechanistic assays in immunotoxicology, the phenotype, cytokine production, and stimulatory function of dendritic cells (DCs) were assessed after incubation with the chemical haptens aminophenol, chlorpromazine hydrochloride, dinitrochlorobenzene (DNCB), and with the DNCB-corresponding tolerogen DCNB, the metal allergen nickel sulfate, the irritants sodium dodecyl sulfate and benzoic acid, as well as with staphylococcal enterotoxin B (SEB) and lipopolysaccharide (LPS). DCs were differentiated from human monocytes by in vitro exposure to GM-CSF and interleukin-4 (IL-4) for 7 days. Flow cytometric data revealed that only representative haptens increased the surface expression of HLA-DR, CD86, CD40, and of CD54 on DCs when compared to irritants or to the tolerogen. This event was associated with an increased ability of DCs to stimulate T cell proliferation. Moreover, after incubation with the haptens, but not with the irritants or the tolerogen, a higher production of TNF-alpha by DCs was observed. Under our experimental conditions, no release of IL-1beta, IL-10, or IL-12 was detected. Compared to the activation elicited by haptens, SEB strongly up-regulated HLA-DR and costimulatory molecule expression. In agreement with this effect, there was a marked release of TNF-alpha and a slight production of IL-12. IL-1beta and IL-10 were not detected in the culture medium. Finally, SEB-pulsed DCs showed a strong T-cell-stimulating activity. These data underline the activating potential of haptens versus irritants or a tolerogen on DC functions. The different levels of DC activation by haptens and SEB suggested that distinct cellular events were involved.  相似文献   

14.
In recent years test systems have been described that may be applied routinely to discriminate between contact allergens and irritants in vitro. Using human monocyte-derived dendritic cells (MoDC), this study was designed to refine the settings of a potential routine screening protocol for contact allergens and to investigate the so far poorly defined concentration dependency of contact allergen-specific effects. MoDC were generated by 6 days of culture in the presence of IL-4 and GM-CSF and were then cultured for 24 or 48 h in medium with lipopolysaccharide (LPS), contact allergens [picrylsulphonic acid (TNBS), 1-chloro-2,4-dinitrobenzene (DNCB)] or irritants [sodium dodecyl sulphate (SDS), benzalkonium chloride (BAC)] that were free of detectable endotoxin contamination. The induction of CD86 and HLA-DR expression was quantified by flow cytometry as markers for MoDC activation. LPS activation upregulated CD86 about 20-fold and HLA-DR expression about 4-fold. Compared to LPS, contact allergens had weaker effects. TNBS and DNCB induced activation marker upregulation starting slightly below the cytotoxic concentration and increasing in a dose-dependent manner. However, at partially cytotoxic concentrations, irritants also induced CD86 and HLA-DR expression, as confirmed by flow cytometry and quantitative RT-PCR. Both SDS and BAC induced activation marker expression on surviving MoDC, when more than 50% of the MoDC population had been killed by the treatment. Consequently, routine testing of unknown substances would need to quantify activation marker expression as well as cytotoxicity in parallel. In the concentration range around the lowest cytotoxic concentration, the assay may be able to discriminate between contact allergens and irritants.  相似文献   

15.
Contact allergens induce in vitro and in vivo the activation of dendritic cells (DC) and Langerhans cells (LC), which includes the up-regulation of surface marker expression (e.g. CD86, CD54) and cytokine production (e.g. TNF-alpha, IL-1beta, IL-8). The mitogen-activated protein kinase (MAPK) pathway also has a crucial role in this activation. However, the extent of MAPK involvement in the IL-8 production during DC/LC activation is not well understood. Earlier, we reported that contact allergens activated THP-1 cells, human monocytic cell line, like LC/DC in vitro. In this study, we further characterize the mechanism of IL-8 production using THP-1 cells as surrogate DCs. First, we evaluated the potential of 23 chemicals with different skin sensitization potencies to predominantly induce IL-8 production in vitro. Next we investigated the role of MAPK signaling and TNF-alpha, which is known to have autocrine effects on DC activation (e.g., IL-8 production). Inhibition of extracellular signal-regulated kinase (ERK), one of the MAPK pathways, suppressed the IL-8 production induced by both 2,4-dinitrochlorobenzene (DNCB) and nickel sulfate (NiSO(4)), and inhibition of p38 MAPK, a second MAPK pathway, significantly suppressed IL-8 production induced by only DNCB. Additionally, neutralization of TNF-alpha activity suppressed IL-8 production in THP-1 cells exposed to DNCB and NiSO(4). In conclusion, IL-8 production was predominantly induced in THP-1 cells following allergen stimulation, and MAPK pathways and TNF-alpha were involved in the IL-8 production induced by DNCB and NiSO(4). A better understanding of the mechanism of DC activation in vitro might lead to the clarification of the in vivo skin sensitization mechanism.  相似文献   

16.
17.
《Toxicology in vitro》2010,24(2):578-585
As the induction of contact hypersensitivity is the result of a series of cellular processes, including maturation and migration of epidermal dendritic cells (Langerhans cells (LC)), a battery of assays based on these in vivo events might provide a robust in vitro predictability model for distinguishing sensitizers from non-sensitizers. Therefore, assays with read-out for changes in CD86 expression and CXCL8 secretion were compared with a novel functional assay based on the in vitro migratory behaviour of LC. In all three assays LC derived from the human myeloid-leukaemia-cell-line MUTZ-3 (MUTZ-LC) were used. Exposure of MUTZ-LC to a panel of five sensitizers and three non-sensitizers resulted in increased CD86 expression in only 3/5 sensitizers, but also in 1/3 non-sensitizers. In contrast, CXCL8 secretion was uniformly increased after exposure to all sensitizers, but not after exposure to non-sensitizers. In a transwell migration assay, preferential migration of sensitizer-exposed MUTZ-LC towards CXCL12 was observed (5/5 sensitizers), whereas non-sensitizer-exposed MUTZ-LC only migrated towards CCL5 (3/3 non-sensitizers). In conclusion, the novel MUTZ-LC migration assay and analysis of CXCL8 secretion proved to be more successful than analysis of CD86 in predicting sensitizers from non-sensitizers and therefore warrant further investigation in the field of in vitro assay development.  相似文献   

18.
In order to seek a novel biomarker for predicting skin sensitization, changes in the gene expression profile of THP-1 cells on exposure to 2,4-dinitrochlorobenzene (DNCB), p-phenylenediamine (pPD) and nickel sulfate (Ni) were assessed using oligo-DNA microarrays. While the change in gene expression varied depending on the sensitizers, up-regulation of MIP-1 beta mRNA expression was detected in both DNCB-treated and Ni-treated THP-1 cells. This finding was validated by RT-PCR and confirmed at the protein level by ELISA. Secretion of MIP-1 beta from THP-1 was detected after 24-h treatment with sensitizers such as DNCB, Ni, 2-mercaptobenzothiazole (2-MBT) and cobalt sulfate (Co), while pPD and non-sensitizers such as sodium dodecyl sulfate (SDS) and benzalkonium chloride (BC) had no effect. The use of both MIP-1 beta production and CD86 expression as criteria reduced the number of false-negatives, and the results were in good agreement with those of in vivo assays. MIP-1 beta may be useful as a novel biomarker in in vitro sensitization assay using THP-1 cells, either alone or in combination with known markers.  相似文献   

19.
Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNFalpha) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Facetrade mark and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO(4), DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening.  相似文献   

20.
Immature dendritic cells (DCs) modulate differentiation markers following in vitro exposure to chemicals generating contact allergies. THP-1 is a monocytoid cell line maintaining some differentiating plasticity. In this study, human DCs and THP-1 cells were compared as in vitro models to predict contact sensitisation of chemicals with different sensitising potential. Expression of CD80 and CD86 was assessed by flow cytometry after exposure to subtoxic concentrations of potent (2,4-dinitrochlorobenzene, DNCB and p-phenylendiamine, PPD), strong (thimerosal, TMS), moderate (sodium tetrachloroplatinate, Na2PtCl4) sensitising compounds as well as of non-sensitising, irritating sodium dodecyl sulphate (SDS) as compared to a vehicle of sensitising substances (dimethyl sulphoxide, DMSO). Up-regulation of CD86 following in vitro incubation of DCs and THP-1 cells with DNCB, PPD, TMS and Na2PtCl4, but not with SDS, was observed. The CD80 membrane marker was up-regulated on DCs following in vitro incubation with DNCB and PPD, but not with TMS, Na2PtCl4. and SDS. On THP-1 cells, only DNCB up-regulated CD80 expression. In conclusion, both the cell line THP-1 and DCs are promising in vitro models for assays aiming at predicting the sensitisation potential of chemicals. THP-1 cell line is by far easier to handle and offers relevant advantages from the practical point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号