首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
α‐Synuclein is known to be a major component of Lewy bodies and glial cytoplasmic inclusions in the brains of patients with α‐synucleinopathies. Synphilin‐1, an α‐synuclein‐associated protein, is also present in these inclusions. However, little is known about the post‐translational modifications of synphilin‐1. In the present study, it is reported that synphilin‐1 is phosphorylated by glycogen synthase kinase‐3βin vitro. It is well known that protein phosphorylation is involved in various physiological phenomena, including signal transduction and protein degradation. Therefore, phosphorylation of synphilin‐1 may play an important role in the function of this protein in the brain.  相似文献   

2.
3.
Through a multiprotein complex, glycogen synthase kinase‐3β (GSK‐3β) phosphorylates and destabilizes β‐catenin, an important signaling event for neuronal growth and proper synaptic function. δ‐Catenin, or NPRAP (CTNND2), is a neural enriched member of the β‐catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that δ‐catenin expression is also affected by GSK‐3β signaling and participates in the molecular complex regulating β‐catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of δ‐catenin with members of the molecular destruction complex: GSK‐3β, β‐catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK‐3β formed a complex with δ‐catenin, and its inhibition resulted in increased δ‐catenin and β‐catenin expression levels. LY294002 and amyloid peptide, known activators of GSK‐3β signaling, reduced δ‐catenin expression levels. Furthermore, δ‐catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of δ‐catenin, like that of β‐catenin, is regulated by proteasome‐mediated degradation. Coimmunoprecipitation experiments showed that δ‐catenin overexpression promoted GSK‐3β and β‐catenin interactions. Primary cortical neurons and PC12 cells expressing δ‐catenin treated with proteasome inhibitors showed increased ubiquitinated β‐catenin forms. Consistent with the hypothesis that δ‐catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing δ‐catenin showed enhanced β‐catenin turnover. These studies identify δ‐catenin as a new member of the GSK‐3β signaling pathway and further suggest that δ‐catenin is potentially involved in facilitating the interaction, ubiquitination, and subsequent turnover of β‐catenin in neuronal cells. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Objective: To explore the peripheral leucocytic messenger RNA (mRNA) expression of glycogen synthase kinase‐3β (GSK‐3β) gene in Alzheimer's disease (AD) patients. Methods: Using TaqMan relative quantitative real‐time polymerase chain reaction, we analyzed leucocytic gene expression of GSK‐3β in 48 AD patients and 49 healthy controls. Clinical data of AD patients were also collected. Results: The mRNA expression level of the GSK‐3β gene was significantly higher in the AD group (3.13 ± 0.62) than in the normal group (2.77 ± 0.77). Correlational analyses showed that the mRNA expression level of GSK‐3β gene in AD patients was associated with the age of onset (P= 0.047), age (P= 0.055), and Behavioral Pathology in Alzheimer's Disease Rating Scale total score (P= 0.062) and subscores: aggressiveness score (P= 0.073) and anxieties and phobias score (P= 0.067). Through multivariate regression model, older age, higher anxieties and phobias score and aggressiveness score were associated with higher mRNA expression level of GSK‐3β gene. Conclusion: In AD patients, the mRNA expression level of the GSK‐3β gene is increased and may be related to age and behavioural pathology in AD.  相似文献   

6.
7.
8.
Abnormal tau phosphorylation (p‐tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p‐tau is controlled by Glycogen Synthase Kinase (GSK)‐3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p‐tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser396 and Ser262after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK‐3β sensitive but AMPK insensitive residues, Ser202/Thr205 (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK‐3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p‐AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p‐tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK‐3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.  相似文献   

9.
Glycogen synthase kinase‐3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3β rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long‐term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3β that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long‐term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

10.
Oligodendrocytes, the myelinating cells of the CNS, are derived postnatally from oligodendrocyte precursors (OPs) of the subventricular zone (SVZ). However, the mechanisms that regulate their generation from SVZ neural stem cells (NSC) are poorly understood. Here, we have examined the role of glycogen synthase kinase 3β (GSK3β), an effector of multiple converging signaling pathways in postnatal mice. The expression of GSK3β by rt‐qPCR was most prominent in the SVZ and in the developing white matter, around the first 1–2 weeks of postnatal life, coinciding with the peak periods of OP differentiation. Intraventricular infusion of the GSK3β inhibitor ARA‐014418 in mice aged postnatal day (P) 8–11 significantly increased generation of OPs in the dorsal microdomain of the SVZ, as shown by expression of cell specific markers using rt‐qPCR and immunolabelling. Analysis of stage specific markers revealed that the augmentation of OPs occurred via increased specification from earlier SVZ cell types. These effects of GSK3β inhibition on the dorsal SVZ were largely attributable to stimulation of the canonical Wnt/β‐catenin signaling pathway over other pathways. The results indicate GSK3β is a key endogenous factor for specifically regulating oligodendrogenesis from the dorsal SVZ microdomain under the control of Wnt‐signaling. GLIA 2014;62:778–789  相似文献   

11.
12.
13.
Inappropriate activation of cyclin‐dependent kinase 5 (CDK5) resulting from proteolytic release of the activator fragment p25 from the membrane contributes to the formation of neurofibrillary tangles, β‐amyloid (βA) aggregation, and chronic neurodegeneration. At 18 months of age, 3× Tg‐AD mice were sacrificed after either 3 weeks (short term) or 1 year (long term) of CDK5 knockdown. In short‐term‐treated animals, CDK5 knockdown reversed βA aggregation in the hippocampi via inhibitory phosphorylation of glycogen synthase kinase 3β Ser9 and activation of phosphatase PP2A. In long‐term‐treated animals, CDK5 knockdown induced a persistent reduction in CDK5 and prevented βA aggregation, but the effect on amyloid precursor protein processing was reduced, suggesting that yearly booster therapy would be required. These findings further validate CDK5 as a target for preventing or blocking amyloidosis in older transgenic mice. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
Patients with Huntington's disease have an expanded polyglutamine tract in huntingtin and suffer severe brain atrophy and neurodegeneration. Because membrane dysfunction can occur in Huntington's disease, we addressed whether mutant huntingtin in brain and primary neurons is present in lipid rafts, which are cholesterol‐enriched membrane domains that mediate growth and survival signals. Biochemical analysis of detergent‐resistant membranes from brains and primary neurons of wild‐type and presymptomatic Huntington's disease knock‐in mice showed that wild‐type and mutant huntingtin were recovered in lipid raft‐enriched detergent‐resistant membranes. The association with lipid rafts was stronger for mutant huntingtin than wild‐type huntingtin. Lipid rafts extracted from Huntington's disease mice had normal levels of lipid raft markers (Gαq, Ras, and flotillin) but significantly more glycogen synthase kinase 3‐β. Increases in glycogen synthase kinase 3‐β have been associated with apoptotic cell death. Treating Huntington's disease primary neurons with inhibitors of glycogen synthase kinase 3‐β reduced neuronal death. We speculate that accumulation of mutant huntingtin and glycogen synthase kinase 3‐β in lipid rafts of presymptomatic Huntington's disease mouse neurons contributes to neurodegeneration in Huntington's disease. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
β‐Amyloid (Aβ) deposits and hyperphosphorylated tau aggregates are the chief hallmarks in the Alzheimer's disease (AD) brains, but the strategies for controlling these pathological events remain elusive. We hypothesized that CK2‐coupled SIRT1 activation stimulated by cilostazol suppresses tau acetylation (Ac‐tau) and tau phosphorylation (P‐tau) by inhibiting activation of P300 and GSK3β. Aβ was endogenously overproduced in N2a cells expressing human APP Swedish mutation (N2aSwe) by exposure to medium containing 1% fetal bovine serum for 24 hr. Increased Aβ accumulation was accompanied by increased Ac‐tau and P‐tau levels. Concomitantly, these cells showed increased P300 and GSK3β P‐Tyr216 expression; their expressions were significantly reduced by treatment with cilostazol (3–30 μM) and resveratrol (20 μM). Moreover, decreased expression of SIRT1 and its activity by Aβ were significantly reversed by cilostazol as by resveratrol. In addition, cilostazol strongly stimulated CK2α phosphorylation and its activity, and then stimulated SIRT1 phosphorylation. These effects were confirmed by using the pharmacological inhibitors KT5720 (1 μM, PKA inhibitor), TBCA (20 μM, inhibitor of CK2), and sirtinol (20 μM, SIRT1 inhibitor) as well as by SIRT1 gene silencing and overexpression techniques. In conclusion, increased cAMP‐dependent protein kinase‐linked CK2/SIRT1 expression by cilostazol can be a therapeutic strategy to suppress the tau‐related neurodegeneration in the AD brain. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Background: Oxidative stress is a central factor in the pathogenesis of Parkinson’s disease (PD). Heme oxygenase‐1 (HO‐1) is an antioxidant protein expressed in response to oxidative challenge, and its expression levels are inversely correlated with glycogen synthase kinase‐3β (GSK3β) activity. Underexpression of HO‐1 in concert with an upregulation of GSK3β would result in a less effective antioxidant response and might increase the risk of PD. Methods: We examined two functional polymorphism in the promoter regions of HO‐1 (?413, rs2071746) and GSK3β (?157, rs6438552) in a group of 251 Spanish patients with PD and 234 controls. Results: Subjects carrying both the HO‐1 (?413, rs2071746) TT genotype and the GSK3β (?157, rs6438552) TT genotype had a four times higher risk of developing PD than subjects without these genotypes (adjusted by age and sex OR = 4.12; 95% CI = 1.45–11.71; Bonferroni corrected P = 0.024). Conclusions: Considering synergistic effects between polymorphisms in oxidative stress‐related genes may help in determining the risk profile for PD.  相似文献   

18.
Objective – Glycogen synthase kinase‐3β (GSK‐3β) and cyclin‐dependent kinase 5 (CDK5) have been implicated as two major protein kinases involved in the abnormal hyperphosphorylation of tau in Alzheimer’s disease (AD) brain, and the development of neurofibrillary tangles. CDK5 regulatory subunit 1 (CDK5R1) encodes for p35, a protein required for activation of CDK5. As both CDK5R1 and GSK‐3β genes are related to phosphorylation of tau, we examined the combined contribution of these genes to the susceptibility for AD. Methods – In a case–control study in 283 AD patients and 263 healthy controls, we examined the combined effects between CDK5R1 (3′‐UTR, rs735555) and GSK‐3β (?50, rs334558) polymorphisms on susceptibility to AD. Results – Subjects carrying both the CDK5R1 (3′‐UTR, rs735555) AA genotype and the GSK‐3β (?50, rs334558) CC genotype had a 12.5‐fold decrease in AD risk (adjusted by age, sex and APOE status OR = 0.08, 95% CI = 0.01–0.76, P = 0.03), suggesting synergistic effects (epistasis) between both genes. Conclusion – These data support a role for tau phosphorylation regulating genes in risk for AD.  相似文献   

19.
Purpose: To evaluate safety, tolerability, and seizure outcome data during long‐term treatment with once‐daily adjunctive perampanel (up to 12 mg/day) in patients with refractory partial‐onset seizures. Methods: Study 307 was an extension study for patients completing the double‐blind phase of three pivotal phase III trials (studies 304, 305, and 306). The study consisted of two phases: an open‐label treatment phase (including a 16‐week blinded conversion period and a planned 256‐week maintenance period) and a 4‐week follow‐up phase. Patients were blindly titrated during the conversion period to their individual maximum tolerated dose (maximum 12 mg/day). Adverse events (AEs) were monitored throughout the study and seizure frequency recorded. The interim data cutoff date for analyses was December 1, 2010. Key Findings: In total, 1,218 patients were enrolled in the study. At the interim cutoff date, 1,186 patients were in the safety analysis set; 1,089 (91.8%) patients had >16 weeks of exposure to perampanel, 580 (48.9%) patients had >1 year of exposure, and 19 (1.6%) patients had >2 years of exposure. At the interim analysis, 840 (70.8%) patients remained on perampanel treatment. The large majority of patients (n = 1,084 [91%]) were titrated to 10 mg or 12 mg/day. Median (range) duration of exposure was 51.4 (1.1–128.1) weeks. Treatment‐emergent AEs were reported in 87.4% of patients. The most frequent were dizziness (43.9%), somnolence (20.2%), headache (16.7%), and fatigue (12.1%). Serious AEs were reported in 13.2% of patients. In the intent‐to‐treat analysis set (n = 1,207), the frequency of all seizures decreased over the first 26 weeks of perampanel treatment in patients with at least 26 weeks of exposure to perampanel (n = 1,006 [83.3%]); this reduction was maintained in patients with at least 1 year of exposure (n = 588 [48.7%]). The overall median percent changes in seizure frequency in patients included in each 13‐week interval of perampanel treatment were ?39.2% for weeks 14–26 (n = 1,114), ?46.5% for weeks 40–52 (n = 731), and ?58.1% for weeks 92–104 (n = 59). Overall responder rates in patients included in each 13‐week interval of perampanel treatment were 41.4% for weeks 14–26 (n = 1,114), 46.9% for weeks 40–52 (n = 731), and 62.7% for weeks 92–104 (n = 59). During the blinded conversion period, the reduction in seizure frequency in patients previously randomized to placebo (?42.4%, n = 369) was similar to that in patients previously randomized to perampanel (?41.5%, n = 817). Significance: Consistent with pivotal phase III trials, these interim results demonstrated that perampanel had a favorable tolerability profile in patients with refractory partial‐onset seizures over the longer term. The decrease in seizure frequency was consistent and maintained in those patients over at least 1 year of perampanel exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号