首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principal vector of Borrelia burgdorferi, the Lyme borreliosis spirochete, in the Northeast and Midwestern regions of the United States is the blacklegged tick Ixodes scapularis. Because of a favorable environment, I. scapularis is also plentiful in the South; however, a correlation with Lyme borreliosis cases does not exist in this region of the United States. Concern existed that something intrinsic to ticks found in Louisiana could mitigate their ability to transmit B. burgdorferi. Therefore, we set out to assess the ability of I. scapularis ticks from Louisiana to become infected with and transmit B. burgdorferi using mice as hosts. In the laboratory, mating adult female ticks collected in southeastern Louisiana were fed on the ears of rabbits. After oviposition and egg hatching, the resulting larvae were fed on mice that had been needle-inoculated with two different strains of B. burgdorferi sensu stricto, B31 and JD1. Larvae were found to be positive for spirochetes. Additional fed larvae were allowed to molt into the nymphal stage. Flat nymphs remained infected with B. burgdorferi. Infected nymphs were allowed to feed on na?ve mice, all of which became infected as shown by culture of ear biopsy specimens. Na?ve larvae were then fed on these same mice to assess transmissibility. The resulting engorged larvae harbored spirochetes. We have demonstrated that the I. scapularis ticks found in Louisiana are fully competent to carry and transmit B. burgdorferi infection.  相似文献   

2.
Borrelia burgdorferi strains exhibit various degrees of infectivity and pathogenicity in mammals, which may be due to their relative ability to evade initial host immunity. Innate immune cells recognize B. burgdorferi by Toll-like receptors (TLRs) that use the intracellular molecule MyD88 to mediate effector functions. To determine whether impaired TLR signaling enhances Ixodes scapularis acquisition of B. burgdorferi, we fed nymphs on wild-type (WT) and MyD88-/- mice previously infected with two clinical isolates of B. burgdorferi, BL206, a high-virulence strain, and B348, an attenuated strain. Seventy-three percent of the nymphs that fed on BL206-infected WT mice and 40% of the nymphs that fed on B348-infected WT mice acquired B. burgdorferi, whereas 100% of the nymphs that fed on MyD88-/- mice became infected, irrespective of B. burgdorferi strain. Ticks that acquired infection after feeding on MyD88-/- mice harbored more spirochetes than those that fed on WT mice, as assessed by quantitative PCR for B. burgdorferi DNA. Vector transmission of BL206 and B348 was also enhanced when MyD88-/- mice were the blood meal hosts, with the mean pathogen burden at the skin inoculation site significantly higher than levels in WT mice. These results show that the absence of MyD88 facilitates passage of both low- and high-infectivity B. burgdorferi strains between the tick vector and the mammal and enhances the infectivity of a low-infectivity B. burgdorferi strain.  相似文献   

3.
Ixodes scapularis ticks were collected in 2000 and 2001 from two areas in Pennsylvania and tested for the presence of Anaplasma phagocytophilum and Borrelia burgdorferi by PCR and DNA sequencing. Of the ticks collected from northwestern and southeastern Pennsylvania, 162 of 263 (61.6%) and 25 of 191 (13.1%), respectively, were found to be positive for B. burgdorferi. DNA sequencing showed >99% identity with B. burgdorferi strains B31 and JD1. PCR testing for A. phagocytophilum revealed that 5 of 263 (1.9%) from northwestern Pennsylvania and 76 of 191 (39.8%) from southeastern Pennsylvania were positive. DNA sequencing revealed two genotypes of A. phagocytophilum, the human granulocytic ehrlichiosis (HGE) agent and a variant (AP-Variant 1) that has not been associated with human infection. Although only the HGE agent was present in northwestern Pennsylvania, both genotypes were found in southeastern Pennsylvania. These data add to a growing body of evidence showing that AP-Variant 1 is the predominant agent in areas where both genotypes coexist.  相似文献   

4.
The agents of Lyme disease (Borrelia burgdorferi) and human granulocytic ehrlichiosis (Ehrlichia phagocytophila) are both transmitted by the tick Ixodes scapularis. In nature, ticks are often infected with both agents simultaneously. We studied whether previous infection with either Borrelia or Ehrlichia in ticks would affect acquisition and transmission of a second pathogen. Ehrlichia-infected I. scapularis nymphs were fed upon Borrelia-infected mice, and Borrelia-infected I. scapularis nymphs were fed upon Ehrlichia-infected mice. The efficiency with which previously infected nymphal ticks acquired a second pathogen from infected hosts was compared to that of uninfected ticks. An average of 51% +/- 15% of ticks acquired Ehrlichia from infected mice regardless of their prior infection status with Borrelia. An average of 85% +/- 10% of ticks acquired Borrelia from infected mice regardless of their prior infection status with Ehrlichia. Also, we assessed the efficiency with which individual nymphs could transmit either agent alone, or both agents simultaneously, to individual susceptible hosts. An average of 76% +/- 9% of Borrelia-infected ticks and 84% +/- 10% of Ehrlichia-infected ticks transmitted these agents to mice regardless of the presence of the other pathogen. There was no evidence of interaction between the agents of Lyme disease and human granulocytic ehrlichiosis in I. scapularis ticks. The presence of either agent in the ticks did not affect acquisition of the other agent from an infected host. Transmission of the agents of Lyme disease and human granulocytic ehrlichiosis by individual ticks was equally efficient and independent. Dually infected ticks transmitted each pathogen to susceptible hosts as efficiently as ticks infected with only one pathogen.  相似文献   

5.
Here we describe a protocol for purifying Borrelia burgdorferi from feeding ticks by velocity centrifugation and Percoll density gradient centrifugation. The purified spirochetes were motile and 10- to 20-fold purer than the bacteria in crude tick homogenates. The purified bacteria were present in sufficient quantity for protein and gene expression studies. In comparison to culture-grown bacteria, tick-borne spirochetes had several proteins that were upregulated and a few that were downregulated. When the levels of B. burgdorferi outer surface proteins OspA and OspC were measured, OspC protein and mRNA levels were lower in cultured bacteria than in bacteria purified from ticks. Although differences in OspA mRNA levels were observed between cultured and tick-borne bacteria, no differences were observed at the protein level. These experiments demonstrate that tick-transmitted borreliae display a gene expression and antigen profile different from that of spirochetes cultured in vitro.  相似文献   

6.
Feeding of an ixodid tick on a Borrelia-infected vertebrate is the natural route of tick infection. To obtain a cohort of nymphs with a high prevalence of infection, the immersion of Ixodes ricinus larvae in the suspension of B. burgdorferi sensu stricto spirochetes was used. Immersed larvae fed on C3H mice until full engorgement, molted to nymphs and 9 of 10 nymphs were shown to be infected by PCR with specific primers. Specific antibodies in the sera of the mice, on which either immersion-infected larvae or infected nymphs had engorged, were not detected. However, nymphs molted from immersed larvae were able to infect naïve mice, and all the resulting 10 adults were infected.  相似文献   

7.
PCR analysis of Ixodes scapularis ticks collected in New Jersey identified infections with Borrelia burgdorferi (33.6%), Babesia microti (8.4%), Anaplasma phagocytophila (1.9%), and Bartonella spp. (34.5%). The I. scapularis tick is a potential pathogen vector that can cause coinfection and contribute to the variety of clinical responses noted in some tick-borne disease patients.  相似文献   

8.
Female BALB/c mice were infested four times with pathogen-free Ixodes scapularis nymphs prior to infestation with nymphs infected with Borrelia burgdorferi B31. Each infestation was separated by a 14-day tick-free period. Mean weights of fed ticks and percentage reaching repletion did not indicate development of acquired resistance. Only 16.7% of mice repeatedly infested with pathogen-free ticks prior to infected I. scapularis nymph challenge became positive for B. burgdorferi. One hundred percent of control mice infested only with infected ticks were culture positive for B. burgdorferi.  相似文献   

9.
Blood fed nymphal Ixodes scapularis Say infected with Borrelia burgdorferi were dissected to obtain salivary gland and midgut extracts. Extracts were inoculated into C3H/HeJ mice, and ear, heart, and bladder were cultured to determine comparative infectivity. Aliquots of extracts were then analyzed by quantitative polymerase chain reaction to determine the number of spirochetes inoculated into mice. A comparative median infectious dose (ID50) was determined for both salivary gland and midgut extract inoculations. Our data demonstrated a statistically significant difference (P < 0.002) in the ID50 derived from salivary gland (average = 18) versus midgut (average = 251) extracts needed to infect susceptible mice. A rationale for the differential infectivity of salivary and midgut derived spirochetes is discussed.  相似文献   

10.
The polymerase chain reaction (PCR) was used to amplify DNA sequences of the etiologic agent of Lyme disease, Borrelia burgdorferi, and was applied to the detection of the spirochete in its tick vector. The target for PCR amplification was the OSP-A gene of strain B31; analysis of isolates from different geographical areas indicated that this gene could be used to identify most North American isolates. These methods were extended to the analysis of colony-derived and field-collected Ixodes dammini. OSP-A-specific sequences were identified in 15 of 15 colony-derived nymphal ticks that had fed previously on an infected animal; no such amplification products were detected in 8 control ticks. Segregated midgut tissues of field-collected adult and nymphal ticks from Nantucket Island, Mass., and the Crane Reserve, Ipswich, Mass., were examined by both direct fluorescent-antibody (DFA) staining and PCR. The DFA technique identified 16 infected ticks of 30 paired specimens; 15 of these specimens were positive by PCR. One specimen was positive by PCR that was DFA negative. Both live whole ticks and desiccated dead specimens were suitable for this analysis. Because only five ticks are suitable for DFA analysis, the use of PCR may extend the range of specimens that can be analyzed for the presence of the Lyme spirochete.  相似文献   

11.
The study was conducted at sites of known transmission of Borrelia burgdorferi in east central Alabama. The objectives were to determine species of ticks present at these sites, their host associations, and species of ticks and small mammals naturally infected with B. burgdorferi. A total of 451 hosts were examined for ticks, including cotton mice, Peromyscus gossypinus (Le Conte); cotton rats, Sigmodon hispidus Say & Ord; southern short-tailed shrews, Blarina carolinensis (Bachman); house mice, Mus musculus L.; golden mice, Ochrotomys nuttalli (Harlan); and white-tailed deer, Odocoileus virginianus (Zimmermann). Ticks were examined for B. burgdorferi using indirect and direct fluorescent antibody assays. Ear biopsy samples from rodents were cultured in modified Kelly's medium in attempts to isolate B. burgdorferi. A total of 859 Amblyomma americanum L., Dermacentor albipictus (Packard), D. variabilis (Say), Ixodes scapularis Say, and Rhipicephalus sanguineus (Latreille) were recovered from hosts and by dragging. A. americanum and I. scapularis accounted for 53.4% of all ticks collected. Nearly half of all ticks collected were examined for the agent. Spirochetes were detected in four nymphal and two adult A. americanum recovered from white-tailed deer and three larval I. scapularis recovered from cotton mice. No spirochetes were cultured from field-caught rodents.  相似文献   

12.
13.
Ixodes ticks are infected by Borrelia burgdorferi when larvae feed on spirochete-infected mice. We studied the acquisition of B. burgdorferi by larval ticks, characterized the production of outer surface protein A (OspA) by spirochetes entering larvae, and examined the effects of OspA antibodies on the establishment of B. burgdorferi infections in ticks. Most larvae were infected by spirochetes 24 to 48 h after placement on mice. OspA antibodies stained the first spirochetes observed in larvae, suggesting that OspA is synthesized early during the colonization of the vector. When OspA antibodies were administered to B. burgdorferi-infected mice and larvae were then placed on the animals, the severity of larval infection and the number of infected ticks (7 of 16) were decreased compared with that of controls (15 of 16). The inhibitory effects of OspA antibodies were observed with passive antibody transfer as well as active host-generated immunity. The lower larval infection rate observed in the presence of OspA antibodies was exacerbated after the larval molt since only 1 of 12 nymphs was infected, and none of the mice that were fed upon by these nymphs became infected with B. burgdorferi. Therefore, an OspA antibody response in mice altered the reservoir competence of the vertebrate host by inhibiting the movement of B. burgdorferi from the host to the vector.  相似文献   

14.
The blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae), has a wide geographical distribution in Ontario, Canada, with a detected range extending at least as far north as the 50th parallel. Our data of 591 adult I. scapularis submissions collected from domestic animals (canines, felines, and equines) and humans during a 10-yr period (1993-2002) discloses a monthly questing activity in Ontario that peaks in May and October. The Lyme disease spirochete Borrelia burgdorferi Johnson, Schmidt, Hyde, Steigerwalt & Brenner was detected in 12.9% of I. scapularis adults collected from domestic hosts with no history of out-of-province travel or exposure at a Lyme disease endemic area. Fifty-three isolates of B. burgdorferi were confirmed positive with polymerase chain reaction by targeting the rrf (5S)-rrl (23S) gene. Using DNA sequencing of the ribosomal species-specific rrf (5S) -rrl (23S) intergenic spacer region, all isolates belong to the pathogenic genospecies B. burgdorferi sensu stricto (s.s.). Nucleotide sequence analysis of a 218- to 220-bp amplicon fragment exhibits six cluster patterns and, collectively, these isolates branch into four phylogenetic cluster groups for both untraveled, mammalian hosts and those with travel to the northeastern United States (New Jersey and New York). Four of five geographic regions in Ontario had strain variants consisting of three different genomic cluster groups. Overall, our molecular characterization of B. burgdorferi s.s. shows genetic heterogeneity within Ontario and displays a connecting link to common strains from Lyme disease endemic areas in the northeastern United States. Moreover, our findings of B. burgdorferi in I. scapularis reveal that people and domestic animals may be exposed to Lyme disease vector ticks, which have wide-ranging distribution in eastern and central Canada.  相似文献   

15.
We describe a procedure for the introduction of Borrelia burgdorferi, the spirochetal agent of Lyme disease, into larvae of the tick vector Ixodes scapularis. Internalized spirochetes were observed in larvae examined after 15 or 45 min immersion at 32 degrees C in liquid culture suspensions of low passage B. burgdorferi strain B31. Larval ticks immersed in low passage strain B31 were able to feed to repletion on white-footed mice. Midguts of larvae contained many spirochetes 1 wk postengorgement, while larvae incubated with high passage strain B31 were free of detectable spirochetes at the same interval. Larvae incubated with low passage strain B31 were competent to transmit the pathogen to mice, as shown by serology, reisolation of B. burgdorferi from mice, and xenodiagnosis. Ticks maintained the infection transstadially to the nymphal stage and transmitted the infection to naive mice, replicating an essential aspect of natural infection. This method requires no special equipment and allows artificial infection of large numbers of ticks at the larval stage. It will facilitate studies of the contribution of specific B. burgdorferi genetic loci to tick colonization.  相似文献   

16.
17.
Plasmid analysis of Borrelia burgdorferi, the Lyme disease agent.   总被引:46,自引:19,他引:46       下载免费PDF全文
A simple procedure for extraction of plasmid-enriched DNA from borreliae was used in a plasmid analysis of 13 strains of the Lyme disease agent, Borrelia burgdorferi. The extracted DNA was subjected to low-percentage agarose gel electrophoresis and examined either directly by ethidium bromide staining or after hybridization of the plasmids in situ with a DNA probe for the gene encoding the major outer membrane protein OspA. Each isolate had four to seven discernible plasmids of various sizes. Only 2 of the 13 strains had the same plasmid profile. The ospA gene probe hybridized to large plasmids to strains from both North America and Europe. A strain which had been passaged many times was found to have lost two of the six plasmids originally present. These findings indicate the potential usefulness of plasmid analysis as a strain-typing procedure and for identifying possible plasmid-conferred virulence factors.  相似文献   

18.
Four state parks located in Lyme disease endemic regions of Wisconsin were surveyed for the presence of Ixodes scapularis Say during May and June of 1998 by drag sampling along hiking trails. Nymphal abundance varied between parks, with the average number of nymphs encountered in 1 h ranging from 6.2 +/- 3.8-47.1 +/- 36.3 (mean +/- SD). Questing nymphs were tested for the presence of Borrelia burgdorferi by culture in BSK medium and 7-12% was found to be infected. The average risk of encountering an infected nymph (entomologic risk index) ranged from 0.5 to 5.2 infected nymphs per hour. The highest entomological risk index was recorded from a small island park in northwestern Wisconsin during the last week in May (8.0 infected nymphs per hour). These results indicate a lower risk for human Lyme disease exposure in Wisconsin state parks in comparison with highly endemic areas of the northeastern United States.  相似文献   

19.
The variety of Borrelia burgdorferi sensu lato (B. burgdorferi) genospecies leads to distinction in clinical manifestations of Lyme borreliosis (LB). There are reports of LB clinical characteristics in China, where the B. burgdorferi genospecies in ticks and animal hosts are different from those in Europe and North America. During May to September in 2010 and 2011, all patients who had erythema migrans (EM, more than 5 cm in diameter) after a recent tick-bite, and sought medical care at Mudanjiang Forestry Central Hospital, Heilongjiang Province of northeastern China, were enrolled in the study. Specific PCR was used to determine the B. burgdorferi genospecies in the disseminated patients. Of 265 EM patients, B. burgdorferi DNA was detected in blood specimens from 15 of 55 disseminated patients. Sequence analyses of 5S–23S rRNA, flagellin, ospC, 16S rRNA and ospA genes revealed that 11 patients were infected with Borrelia garinii, three with Borrelia afzelii and one with Borrelia valaisiana-related genospecies. Among 15 patients, 40%, 13.3% and 13.3% manifested pruritus, pain and ulceration, respectively. Systemic symptoms, arthralgia or a swollen joint and lymphadenopathy were observed in 26.7%, 13.3% and 6.7% patients, respectively. In northeastern China, three genospecies of LB patients were detected. The B. burgdorferi genospecies identified in this study was predominantly B. garinii. A case infected with B. valaisiana-related genospecies was reported for the first time.  相似文献   

20.
Ixodes ricinus ticks, collected in 1996-1998 in different Polish woodlands, were examined to assess the frequency of the occurrence of Lyme borreliosis-associated genospecies. A total of 568 samples of individual adults and 162 samples of individual (n =48) and pooled (of 2 to 7) samples of nymphs were analysed by the polymerase chain reaction (PCR) for Borrelia burgdorferi sensu lato. Spirochetes were detected in 130 adult ticks (22.9%) and in a minimum of 32 (5.3%) nymphs. Further identification of 153 B. burgdorferi s.l.-positive samples by nested PCR using three species-specific primers revealed the occurrence of B. afzelii, B. burgdorferi sensu stricto and B. garinii. Both single-species and mixed infections were noted. Single-species infections were observed in the majority of samples (n = 83/153; 54.2%). Within this group B. afzelii was found in 38/153 samples (24.9%), followed by B. burgdorferi sensu stricto (n = 23/153; 15.0%) and B. garinii (n = 22/153; 14.4%). Dual infections with B. burgdorferi s.s. and B. afzelii were detected in 17/121 (14.0%) adults, while both B. burgdorferi s. s./B. garinii and B. afzelii/B. garinii coinfected 11/121 (9.1%) adult ticks. Triple infection with B. burgdorferi s.s., B. afzelii and B. garinii was noted twice (1.6%). In general, B. afzelii was found in 72/153 (47.1%) tick samples and was the predominant species. B. burgdorferi s. s. and B. garinii were detected in a total of 60/153 (39.2%) and 51/153 (33.3%) samples, respectively. Although, 21 (13.7%) samples were infected by B. burgdorferi s.l. genospecies undetectable by the primers used, results of our study confirm that Lyme borreliosis pathogenic genospecies are well established in tick populations throughout Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号