首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway. For investigation of this, a mouse model with a gene-targeted mutation in Pkhd1 that recapitulates phenotypic characteristics of human autosomal recessive polycystic kidney disease was produced. The absence of FPC is associated with aberrant ciliogenesis in the kidneys of Pkhd1-deficient mice. It was found that the COOH-terminus of FPC and the NH2-terminus of PC2 interact and that lack of FPC reduced PC2 expression but not vice versa, suggesting that PC2 may function immediately downstream of FPC in vivo. PC2-channel activities were dysregulated in cultured renal epithelial cells derived from Pkhd1 mutant mice, further supporting that both cystoproteins function in a common pathway. In addition, mice with mutations in both Pkhd1 and Pkd2 had a more severe renal cystic phenotype than mice with single mutations, suggesting that FPC acts as a genetic modifier for disease severity in autosomal dominant polycystic kidney disease that results from Pkd2 mutations. It is concluded that a functional and molecular interaction exists between FPC and PC2 in vivo.  相似文献   

2.
Mutations in the PKHD1 gene, which encodes fibrocystin, cause autosomal recessive polycystic kidney disease (ARPKD). Unfortunately, the lack of specific antibodies to the mouse protein impairs the study of splicing, post-translational processing, shedding, and temporal and spatial expression of endogenous fibrocystin at the cellular and subcellular level. Here, we report using a knock-in strategy to generate a null Pkhd1 strain and a strain that expresses fibrocystin along with two SV5-Pk epitope tags engineered in-frame into the third exon, immediately C-terminal to the signal-peptide cleavage site in a poorly conserved region. By 6 mo of age, the Pkhd1-null mouse develops massive cystic hepatomegaly and proximal tubule dilation, whereas the mouse with epitope-tagged fibrocystin has histologically normal liver and kidneys at 14 mo. Although Pkhd1 was believed to generate many splice forms, our western analysis resolved fibrocystin as a 500 kD product without other forms in the 15-550 kD range. Western analysis also revealed that exosome-like vesicles (ELVs) secrete the bulk of fibrocystin in its mature cleaved form, and scanning electron microscopy identified that fibrocystin on ELVs attached to cilia. Furthermore, the addition of ELVs with epitope-tagged fibrocystin to wild-type cells showed that label transferred to primary cilia within 5 min. In summary, tagging of the endogenous Pkhd1 gene facilitates the study of the glycosylation, proteolytic cleavage, and shedding of fibrocystin.  相似文献   

3.
Mutations in PKHD1 cause autosomal recessive polycystic kidney disease (ARPKD). We produced a mouse model of ARPKD by replacing exons 1–3 of Pkhd1 with a lacZ reporter gene utilizing homologous recombination. This approach yielded heterozygous Pkhd1 lacZ/+ mice, that expressed β-galactosidase in tissues where Pkhd1 is normally expressed, and homozygous Pkhd1 lacZ/lacZ knockout mice. Heterozygous Pkhd1 lacZ/+ mice expressed β-galactosidase in the kidney, liver, and pancreas. Homozygous Pkhd1 lacZ/lacZ mice lacked Pkhd1 expression and developed progressive renal cystic disease involving the proximal tubules, collecting ducts, and glomeruli. In the liver, inactivation of Pkhd1 resulted in dilatation of the bile ducts and periportal fibrosis. Dilatation of pancreatic exocrine ducts was uniformly seen in Pkhd1 lacZ/lacZ mice, with pancreatic cysts arising less frequently. The expression of β-galactosidase, Pkd1, and Pkd2 was reduced in the kidneys of Pkhd1 lacZ/lacZ mice compared with wild-type littermates, but no changes in blood urea nitrogen (BUN) or liver function tests were observed. Collectively, these results indicate that deletion of exons 1–3 leads to loss of Pkhd1 expression and results in kidney cysts, pancreatic cysts, and biliary ductal plate malformations. The Pkhd1 lacZ/lacZ mouse represents a new orthologous animal model for studying the pathogenesis of kidney cysts and biliary dysgenesis that characterize human ARPKD.  相似文献   

4.
BALB/c mice homozygous for the bpk gene exhibit a form of autosomal recessive (AR) polycystic kidney disease (PKD) with massive collecting duct cysts, common bile duct dilation and chaotic intrahepatic bile ducts/portal triads. The combined renal and biliary pathology mimics much of the pathology seen in human ARPKD. Murine models of ARPKD generally have a reduced renal expression of epidermal growth factor (EGF) and an increased expression of EGF receptors (EGF-R). However, the role that EGF and EGF-R play in the progression of PKD has been unclear. Evidence from various model systems/ages of treatment produces conflicting results. Treating neonatal C57BL/6J-cpk mice with EGF ameliorates the renal pathology and dysfunction while treating 2- and 3-week-old bpk mice with an EGF-receptor tyrosine kinase inhibitor also ameliorates ARPKD. Therefore, to determine whether neonatal EGF treatment would accelerate or inhibit the progression of the PKD in bpk mice, we administered exogenous EGF (1 μg/g body weight subcutaneously) daily from postnatal days 3–9 (a critical period for tubule maturation). Neonatal EGF treatment but not sham treatment retarded the development of azotemia and common bile duct dilation and the chaotic hepatic triad changes in cystic mice. However, EGF treatment neither reduced the severity of the renal cystic pathology nor reduced the degree of cystic enlargement of the kidneys. Cystic mice treated past 9 days of age died prior to their scheduled termination at 21 days of age. The role of EGF in the progression of polycystic kidney disease in bpk mice is relatively complicated, with neonatal treatment being associated with some amelioration of the renal dysfunction and extrarenal pathology without an effect on the renal pathology. Continuation of treatment beyond 9 days increased morbidity. Therefore, in discussing the role of EGF or EGF receptor in mediating the pathophysiology of PKD, the stage of development may be an important consideration. Received: 8 March 2000 / Revised: 29 August 2000 / Accepted: 30 August 2000  相似文献   

5.
BACKGROUND: Transforming growth factor-alpha (TGF-alpha) expression is abnormal in polycystic kidney disease. We previously demonstrated that blockade of the epidermal growth factor receptor (EGFR), the receptor for TGF-alpha, significantly slowed disease progression in the bpk murine model of autosomal-recessive kidney disease (ARPKD). In the present study, kidney TGF-alpha expression in this model is characterized, and the therapeutic potential of inhibiting TGF-alpha in ARPKD is examined using a novel inhibitor of tumor necrosis factor-alpha converting enzyme (TACE), the metalloproteinase that cleaves membrane-bound TGF-alpha to release the secreted ligand. METHODS: Immunohistochemistry (IH) and Western analysis were performed on kidneys from cystic bpk mice and noncystic littermates at postnatal days 7, 14, and 21. Bpk mice and normal controls were treated with WTACE2, a competitive inhibitor of TACE, from day 7 until day 21, and the effects on kidney histology and renal function were assessed. RESULTS: Increased TGF-alpha expression by IH was demonstrated in the proximal tubules (PT) at postnatal day 7 and collecting tubules (CT) by day 21. A parallel increase in kidney TGF-alpha expression was demonstrated by Western analysis. Treatment of cystic bpk mice with WTACE2 resulted in a 43% reduction in kidney weight to body weight ratio (11.2 vs. 19.7%), improved cystic index (3.2 vs. 4.8), reduced cystic CT to PT ratio (1.2 vs. 8), and a greater than 30% reduction in BUN and serum creatinine. CONCLUSIONS: These findings support the pathophysiological role of the TGF-alpha/EGFR axis in murine ARPKD and demonstrate that inhibition of TGF-alpha secretion has therapeutic potential in PKD.  相似文献   

6.
7.
8.
9.
c-ErbB2 (also referred to as Neu or HER2), a transmembrane glycoprotein with intrinsic tyrosine kinase activity, is structurally related to epidermal growth factor receptor (EGFR) and forms active heterodimers with EGFR as well as other members of the EGFR family. c-ErbB2 is reported to mediate differentiation and proliferation in epithelial cells and is expressed in a tissue-specific and developmental stage-specific manner. Given the role of EGFR in cystic renal epithelial hyperplasia and the immature phenotype of cystic renal epithelial cells, the segment-specific expression pattern of c-ErbB2 in human autosomal recessive polycystic kidney disease (ARPKD) was examined in nine ARPKD kidney specimens ranging from gestational age 17 wk through postnatal age 4 wk. c-ErbB2 staining of human ARPKD samples showed increased expression with increasing gestational age compared with normal human fetal and postnatal kidneys. This increased c-ErbB2 expression was primarily localized to the apical surfaces of cystic collecting tubule cells, similar to the pattern of EGFR expression, and paralleled collecting tubular cyst formation and growth.  相似文献   

10.
EGF-related growth factors in the pathogenesis of murine ARPKD   总被引:5,自引:0,他引:5  
BACKGROUND: Epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and their receptor, EGFR, play key roles in polycystic kidney disease (PKD) pathogenesis. Renal expression of two related growth factors, amphiregulin and heparin-binding EGF, has not been examined previously in PKD. The aims of this study of murine autosomal-recessive polycystic kidney disease (ARPKD) were (1) to characterize amphiregulin and heparin-binding EGF expression in cystic versus normal kidneys and cells; and (2) to identify the functional effects of abnormal EGF-related growth factor expression. METHODS: Amphiregulin and heparin-binding-EGF expression were examined by immunohistology and Western blot of kidneys and conditionally-immortalized collecting tubule cells obtained from cystic bpk mice (a murine model of ARPKD) and normal littermates. EGF, TGF-alpha, amphiregulin, and heparin-binding EGF in vitro effects on cystic and control collecting tubule cells were assessed by cell proliferation, cyst fluid mitogenicity, and EGFR activation. RESULTS: By immunohistology, amphiregulin and heparin-binding EGF localized to apical and basolateral surfaces of proximal tubule cysts > normal proximal tubules. In cystic collecting tubules, heparin-binding EGF (but not amphiregulin) localized to both apical and basolateral surfaces; whereas in normal collecting tubules, amphiregulin and heparin-binding EGF localized to the basolateral surface only. Increased amphiregulin and heparin-binding EGF expression by Western blot was seen in cystic vs. normal kidneys and increased heparin-binding EGF (but not amphiregulin) expression was present in cystic collecting tubule cell lines vs. controls. EGF, TGF-alpha, amphiregulin, and heparin-binding EGF were all mitogenic to cystic > control collecting tubule cells. Immunoprecipitation of EGF and TGF-alpha reduced cyst fluid mitogenicity by almost 80%, whereas heparin-binding EGF and amphiregulin immunoprecipitations had minimal effects. Differential receptor activation was also seen: Heparin-binding EGF markedly activated EGFR (>EGF = TGF-alpha > amphiregulin), with a greater effect seen in cystic vs. control collecting tubule cells. CONCLUSION: Multiple EGF-related growth factors are abnormally expressed in murine ARPKD and may have differential roles in disease pathogenesis. In particular, newly identified abnormalities in heparin-binding EGF expression in cystic kidneys and cells may have important implications for disease pathogenesis.  相似文献   

11.
Autosomal recessive polycystic kidney disease (ARPKD) is a rare but devastating inherited disease in humans. Various strains of mice that are homozygous for the cpk gene display renal pathology similar to that seen in human ARPKD. The PKD progresses to renal insufficiency, azotemia, and ultimately a uremic death by approximately 3 wk of age. This study characterizes PKD in mice that are homozygous for the cpk gene on a BALB/c inbred mouse background. The BALB/c-cpk/cpk murine model displays renal as well as extrarenal pathology similar to that found in human ARPKD. The renal pathology includes the well-characterized early proximal tubule and, later, massive collecting duct cysts. The extrarenal defects in this murine model include common bile duct dilation, intrahepatic biliary duct cysts with periductal hyperplasia, and pancreatic dysplasia with cysts. Renal mRNA expression of c-myc, a proto-oncogene, and clusterin (SGP-2), a marker associated with immature collecting ducts, decreases during normal development but is upregulated in murine ARPKD. Expression of epidermal growth factor (EGF) mRNA is significantly diminished, whereas EGF receptor mRNA is upregulated in the BALB/c-cpk/cpk kidney compared with phenotypically normal littermates. To determine whether the altered EGF expression contributes to the development of PKD, neonatal mice were treated with exogenous EGF (1 microg/g body wt injected subcutaneously on postnatal days 3 through 9). EGF treatment reduced the relative kidney weight and common bile duct dilation and downregulated renal expression of clusterin and EGF receptor. However, exogenous EGF did not affect the degree of renal failure, the pancreatic pathology, or the misregulated renal expression of c-myc. In summary, the present study characterizes the renal and extrarenal pathology in the BALB/c-cpk/cpk murine model of ARPKD. Renal mRNA expression of EGF is diminished in this mouse model. EGF treatment did not prevent renal failure but ameliorated pathologic changes in the kidney and the biliary ducts of the BALB/c-cpk/cpk mouse.  相似文献   

12.
Hypertension is a well-recognized complication of autosomal recessive polycystic kidney disease (ARPKD). The renin-angiotensin system (RAS) is a key regulator of blood pressure; however, data on the RAS in ARPKD are limited and conflicting, showing both up- and down-regulation. In the current study, we characterized intrarenal and systemic RAS activation in relationship to hypertension and progressive cystic kidney disease in the ARPKD orthologous polycystic kidney (PCK) rat. Clinical and histological measures of kidney disease, kidney RAS gene expression by quantitative real-time PCR, angiotensin II (Ang II) immunohistochemistry, and systemic Ang I and II levels were assessed in 2-, 4-, and 6-month-old cystic PCK and age-matched normal rats. PCK rats developed hypertension and progressive cystic kidney disease without significant worsening of renal function or relative kidney size. Intrarenal renin, ACE and Ang II expression was increased significantly in cystic kidneys; angiotensinogen and Ang II Type I receptor were unchanged. Systemic Ang I and II levels did not differ. This study demonstrates that intrarenal, but not systemic, RAS activation is a prominent feature of ARPKD. These findings help reconcile previous conflicting reports and suggest that intrarenal renin and ACE gene upregulation may represent a novel mechanism for hypertension development or exacerbation in ARPKD.  相似文献   

13.
Using currently available ultrasound equipment, 38 BPK and CPK mice were evaluated at 7 days of age for the presence of autosomal recessive polycystic kidney disease (ARPKD). The kidneys were less echogenic than adjacent soft tissues and measured between 5.1 and 6.3 mm from pole to pole in 32 unaffected mice and 1 with ARPKD. In 5 mice with ARPKD, the kidneys were similar in echogenicity to adjacent soft tissues and measured between 6.9 and 8.4 mm from pole to pole. Renal sonography is able to identify most mice with polycystic kidney disease prior to the development of abdominal enlargement and laboratory abnormalities, and shows promise for future applications in animal research. Received June 27, 1996; received in revised form and accepted December 19, 1996  相似文献   

14.
Li KJ  Shiau AL  Chiou YY  Yo YT  Wu CL 《Kidney international》2005,67(5):1710-1722
BACKGROUND: Polycystic kidney disease (PKD) is a genetic disorder characterized by development of renal cysts and progressive renal dysfunction. Renal tissues from both PKD patients and rodent models of PKD show elevated c-myc expression. Prothymosin alpha (ProT) is positively regulated by c-myc through binding to the E box of its promoter. Through creating transgenic mice and clinical studies, we sought to investigate whether ProT overexpression contributes to PKD development. METHODS: ProT heterozygous and homozygous transgenic mice were generated and characterized. Morphologic, histologic, immunohistochemical, and biochemical analyses of the transgenic mice were performed. RESULTS: Two transgenic lines that represented integration at two different loci of the chromosomes were generated. ProT overexpression in the kidneys of homozygous transgenic mice induced a PKD phenotype, which included polycystic kidneys, elevated blood urea nitrogen (BUN), and lethality at about 10 days of age. Similar overexpression pattern of ProT was noted in cystic kidneys of the transgenic mice as well as in human autosomal-recessive PKD (ARPKD) and autosomal-dominant PKD (ADPKD) kidneys. ProT protein levels in the kidneys and urine as well as renal mRNA level of epithelial growth factor receptor (EGFR) of homozygous ProT transgenic mice were significantly higher than heterozygous or nontransgenic littermates. Furthermore, the heterozygous transgenic mice at 17 months of age also developed mild cystic kidneys. CONCLUSION: Transgenic mice overexpressing ProT represent a novel model for PKD and may provide insights into PKD development. ProT, like c-myc and EGFR, may contribute to the development of renal cysts and may be a potential noninvasive diagnostic molecule of PKD.  相似文献   

15.
An extensive body of in vitro data implicates epithelial chloride secretion, mediated through cystic fibrosis transmembrane conductance regulator (CFTR) protein, in generating or maintaining fluid filled cysts in MDCK cells and in human autosomal dominant polycystic kidney disease (ADPKD). In contrast, few studies have addressed the pathophysiology of fluid secretion in cyst formation and enlargement in autosomal recessive polycystic kidney disease (ARPKD). Murine models of targeted disruptions or deletions of specific genes have created opportunities to examine the role of individual gene products in normal development and/or disease pathophysiology. The creation of a murine model of CF, which lacks functional CFTR protein, provides the opportunity to determine whether CFTR activity is required for renal cyst formation in vivo. Therefore, this study sought to determine whether renal cyst formation could be prevented by genetic complementation of the BPK murine model of ARPKD with the CFTR knockout mouse. The results of this study reveal that in animals that are homozygous for the cystic gene (bpk), the lack of functional CFTR protein on the apical surface of cystic epithelium does not provide protection against cyst growth and subsequent decline in renal function. Double mutant mice (bpk -/-; cftr -/-) developed massively enlarged kidneys and died, on average, 7 d earlier than cystic, non-CF mice (bpk -/-; cftr +/+/-). This suggests fundamental differences in the mechanisms of transtubular fluid secretion in animal models of ARPKD compared with ADPKD.  相似文献   

16.
Gene amplification (overexpression) of c-erb B-2 was tested in a variety of cystic renal diseases, renal cell neoplasms (adenomas and carcinomas) and end stage kidneys without cysts. C-erb B-2 encodes a receptor-like protein that shares homology with, but is distinct from the epidermal growth factor (EGF) receptor. A monoclonal antibody that immunoprecipitates a protein of approximately 185 kD from a lysate of NIH/3T3 cells transfected with the c-erb B-2 gene was utilized for testing. Simple renal cysts, cystic renal dysplasia, autosomal recessive polycystic kidney disease (ARPKD), and non-cystic, essentially normal kidneys failed to show c-erb B-2 overexpression. In contrast, autosomal-dominant polycystic kidney disease (ADPKD), acquired (dialysis-associated) cystic disease (ACD), non-cystic end stage kidneys and renal cell neoplasms revealed overexpression of c-erb B-2 with some frequency (40% or more of cases tested). Three cystic disorders revealing c-erb B-2 overexpression also showed platelet-derived growth factors (PDGFs) expression in similar locations (cyst lining and adjacent tubules). Other growth factors [insulin-like growth factor (IGF-I), fibroblast growth factor (FGF) and beta transforming growth factor (TGF beta)] were not noted to be overexpressed in either c-erb B-2 positive or negative cystic diseases. C-erb B-2 may be a marker related to the proliferative/growth capabilities of selected cystic diseases, including potential for associated genesis of benign and malignant renal cell tumors.  相似文献   

17.
Proteins associated with autosomal dominant and autosomal recessive polycystic kidney disease (polycystin-1, polycystin-2, and fibrocystin) localize to various subcellular compartments, but their functional site is thought to be on primary cilia. PC1+ vesicles surround cilia in Pkhd1del2/del2 mice, which led us to analyze these structures in detail. We subfractionated urinary exosome-like vesicles (ELVs) and isolated a subpopulation abundant in polycystin-1, fibrocystin (in their cleaved forms), and polycystin-2. This removed Tamm-Horsfall protein, the major contaminant, and subfractionated ELVs into at least three different populations, demarcated by the presence of aquaporin-2, polycystin-1, and podocin. Proteomic analysis of PKD ELVs identified 552 proteins (232 not yet in urinary proteomic databases), many of which have been implicated in signaling, including the molecule Smoothened. We also detected two other protein products of genes involved in cystic disease: Cystin, the product of the mouse cpk locus, and ADP-ribosylation factor-like 6, the product of the human Bardet-Biedl syndrome gene (BBS3). Our proteomic analysis confirmed that cleavage of polycystin-1 and fibrocystin occurs in vivo, in manners consistent with cleavage at the GPS site in polycystin-1 and the proprotein convertase site in fibrocystin. In vitro, these PKD ELVs preferentially interacted with primary cilia of kidney and biliary epithelial cells in a rapid and highly specific manner. These data suggest that PKD proteins are shed in membrane particles in the urine, and these particles interact with primary cilia.Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting between 1:400 to 1:1000 individuals.1,2 There are two genetic loci, PKD1 and PKD2, producing the proteins polycystin-1 (PC1)35 and polycystin-2 (PC2),6 respectively. Autosomal recessive polycystic kidney disease (ARPKD), the most common cause of hereditary childhood PKD, is caused by mutations to PKHD1, which encodes fibrocystin/polyductin (FCP).7,8 These three PKD proteins have been localized to primary cilia,9,10 where the PC1/PC2 complex acts as a flow sensor on the cilium.11 The role of FCP is less clear, but it complexes with PC2.12,13Another site of PC1 expression is in urinary exosomes, small vesicles (50 to 100 nm in diameter) present in normal urine, that have been analyzed as a source of biomarkers for various renal diseases.14,15 Urinary exosomes are thought to be end products of the multivesicular body (MVB)-sorting pathway in which membrane proteins are uniquely packaged into intraluminal vesicles (ILVs) within the MVB, some of which are secreted as exosomes when MVBs fuse with the apical plasma membrane.MVBs and exosomes have been shown to have a role in left/right (L/R) axis determination in the embryonic node. These MVBs, termed nodal vesicular parcels (NVPs), are released from the floor of the node and swept by nodal flow to the left side, where they interact with the “picket-fence” immotile cilia.16 Symmetry breaking is dependent on a PC2 Ca2+-dependent flux.17,18Transmission electron microscopy studies of dilated bile ducts found in ARPKD mouse model Pkhd1del2/del2 showed PC1+ exosome-like vesicles surrounding cholangiocyte primary cilia, whereas only occasional single ELVs were found attached to WT cilia.19 The observations of abundant PC1 in ELVs and of abnormal ELV accumulation in FCP-deficient mice led us to examine whether these may have a functional role in the urinary and biliary systems, analogous to the NVP in the node.  相似文献   

18.
Patients with inherited cystic kidney diseases have progressive cystic dilation of nephrons with concomitant loss of functional renal parenchyma and renal failure. Animal models of inherited cystic kidney disease are useful for study of the pathogenesis and molecular basis of cystic renal diseases. This article describes the clinical and pathologic features in two spontaneously occurring murine models of inherited polycystic kidney disease due to independent allelic mutations on mouse chromosome 8. The mutations, designated kat and kat2J, affect a chromosomal segment homologous to a region of human chromosome 4q35; the altered gene has not yet been identified. An allelism test showed that the mutations are at the same locus. The phenotype, inherited as an autosomal recessive, is more severe in kat2J/kat2J mice. Their kidneys are morphologically normal at birth, but by 3 mo of age, cysts affect all levels of the nephron. Adult males have testicular hypoplasia and they are sterile. A few of the oldest kat2J/kat2J mice have focal portal bile duct proliferation and dilation. kat2J/kat2J mice develop anemia and uremia and die before 1 yr of age. In kat/kat mice, the renal cystic disease progresses more slowly but is morphologically similar to that of kat2J/kat2J mice. The progressive cystic transformation of the kidneys in these allelic murine models resembles that seen in humans with autosomal dominant polycystic kidney disease.  相似文献   

19.
We report a case of autosomal recessive polycystic kidney disease (ARPKD). A presumptive diagnosis was made after a late-term prenatal ultrasound revealed hypoplastic lungs, massive polycystic kidneys, and oligohydramnios. A full-term baby girl was delivered vaginally. Respiratory distress required intubation. Twelve hours after birth, she underwent bilateral nephrectomy and peritoneal dialysis catheter placement. The average kidney size was 150 g and 9.25 cm. Pathologic examination confirmed ARPKD. Peritoneal dialysis was started on the third day of life. The baby had no gross neurologic deficit. At 6 months of age, she was growing well, and the mother was a candidate to be a living-related kidney donor.  相似文献   

20.
BACKGROUND: Progressive cyst enlargement, the hallmark of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-recessive (ARPKD) polycystic kidney disease, precedes the eventual decline of function in these conditions. The expansion of individual cysts in ADPKD is determined to a major extent by mural epithelial cell proliferation and transepithelial fluid secretion. This study determined if common receptor-mediated agonists and an anonymous lipid stimulate the production of 3' 5'-cyclic monophosphate (cAMP) in mural epithelial cells from the two major types of human cystic diseases. METHODS: cAMP responses to maximally effective concentrations of renal agonists were determined together with measurements of transepithelial anion current and cellular proliferation and extracellular signal-related kinase (ERK 1/2) expression in primary cultures of epithelial cells from human ADPKD and ARPKD cysts. RESULTS: The rank orders of responses to ligands for ADPKD and ARPKD cells were identical: epinephrine > desmopressin (DDAVP) approximately arginine vasopressin (AVP) > adenosine > prostaglandin E(2) (PGE(2)) > parathyroid hormone (PTH). cAMP concentrations elevated by epinephrine, DDAVP, adenosine, and PGE(2) were diminished by receptor-specific inhibitors. Pools of cyst fluid collected individually from 16 of 19 ADPKD kidneys increased, to varying degrees, cAMP levels in ADPKD and ARPKD cells. PGE(2), beta-adrenergic and AVP antagonists partially inhibited cAMP accumulation in response to fluids from three kidneys, but a large portion of the endogenous activity was attributed to yet-to-be identified bioactive lipid, designated cyst activating factor (CAF). CAF stimulated cAMP production in ADPKD and ARPKD cells, activated ERK(1/2), and increased cellular proliferation in ADPKD cells. CAF increased positive short circuit current (I(SC)) in polarized ADPKD and T-84 monolayers, indicating stimulation of net anion secretion. CONCLUSION: Endogenous adenylyl cyclase agonists promote cell proliferation and electrolyte secretion of human ADPKD and ARPKD cells in vitro. We suggest that increased levels of cAMP may accelerate cyst growth and overall renal enlargement in patients with PKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号