首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sustained attention develops during childhood and has been linked to the right fronto‐parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting the right fronto‐parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7–13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d′ and the coefficient of variation in reaction times (RTCV). Diffusion‐weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as well as equivalent anatomical regions‐of‐interest (ROIs) in the left hemisphere and mean global WM FA. When analyzed collectively, right hemisphere ROIs FA was significantly associated with d′ independently of age. Follow‐up analyses revealed that only FA of right SLF and the superior part of the right PC contributed significantly to this association. RTCV was significantly associated with right superior PC FA, but not with right SLF FA. Observed associations remained significant after controlling for FA of equivalent left hemisphere ROIs or global mean FA. In conclusion, better sustained attention performance was associated with higher FA of WM in regions connecting right frontal and parietal cortices. Further studies are needed to clarify to which extent these associations are driven by maturational processes, stable characteristics and/or experience. Hum Brain Mapp 34:3216–3232, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.

Introduction

Previous studies by our group have found that white matter integrity as determined by Diffusion Tensor Imaging (DTI) is associated with working memory decline. It has been proposed that subtle white matter integrity loss may lead to the disruption of working memory in particular because it relies on the dynamic and reiterative activity of cortico-cortical pathways.

Methods

DTI and working memory measurement were acquired for 99 adults from our GENIE study of healthy middle aged and elderly individuals. Voxel-based statistics were used to identify clusters of voxels in mean diffusivity images specifically associated with variations in working memory performance. Tractography then identified the cortico-cortical white matter pathways passing through these clusters, between the temporal, parietal and frontal cortices.

Results

Significant clusters were identified which were associated with working memory in the white matter of the temporal and frontal lobes, the cingulate gyrus, and in the thalamus. The tracts that passed through these clusters included the superior parietal lobule pathway, the medial temporo-frontal pathway, the uncinate fasciculus, the fronto-parietal fasciculus, and the cingulum.

Conclusions

Significant clusters were identified in the white matter that were associated with working memory performance. Tractography performed through these clusters identified white matter fiber tracts which pass between grey matter regions known to be activated by working memory tasks and also mirror working memory pathways suggested by previous functional connectivity imaging.  相似文献   

3.

Background

Response time variability (RTV) is consistently increased in patients with attention-deficit/hyperactivity disorder (ADHD). A right-hemispheric frontoparietal attention network model has been implicated in these patients. The 3 main connecting fibre tracts in this network, the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and the cingulum bundle (CB), show microstructural abnormalities in patients with ADHD. We hypothesized that the microstructural integrity of the 3 white matter tracts of this network are associated with ADHD and RTV.

Methods

We examined RTV in adults with ADHD by modelling the reaction time distribution as an exponentially modified Gaussian (ex-Gaussian) function with the parameters μ, σ and τ, the latter of which has been attributed to lapses of attention. We assessed adults with ADHD and healthy controls using a sustained attention task. Diffusion tensor imaging–derived fractional anisotropy (FA) values were determined to quantify bilateral microstructural integrity of the tracts of interest.

Results

We included 100 adults with ADHD and 96 controls in our study. Increased τ was associated with ADHD diagnosis and was linked to symptoms of inattention. An inverse correlation of τ with mean FA was seen in the right SLF of patients with ADHD, but no direct association between the mean FA of the 6 regions of interest with ADHD could be observed.

Limitations

Regions of interest were defined a priori based on the attentional network model for ADHD and thus we might have missed effects in other networks.

Conclusion

This study suggests that reduced microstructural integrity of the right SLF is associated with elevated τ in patients with ADHD.  相似文献   

4.
Decades of research have established that the home language environment, especially quality of caregiver speech, supports language acquisition during infancy. However, the neural mechanisms behind this phenomenon remain under studied. In the current study, we examined associations between the home language environment and structural coherence of white matter tracts in 52 typically developing infants from English speaking homes in a western society. Infants participated in at least one MRI brain scan when they were 3, 6, 12, and/or 24 months old. Home language recordings were collected when infants were 9 and/or 15 months old. General linear regression models indicated that infants who heard the most adult words and participated in the most conversational turns at 9 months of age also had the lowest fractional anisotropy in the left posterior parieto-temporal arcuate fasciculus at 24 months. Similarly, infants who vocalized the most at 9 months also had the lowest fractional anisotropy in the same tract at 6 months of age. This is one of the first studies to report significant associations between caregiver speech collected in the home and white matter structural coherence in the infant brain. The results are in line with prior work showing that protracted white matter development during infancy confers a cognitive advantage.  相似文献   

5.
This study examined the relationship between hippocampal place fields and spatial working memory. Place cells were recorded while rats solved a spatial working memory task in light and dark testing conditions. Rats made significantly more errors when tested in darkness, and although place fields changed in multiple ways in darkness, only changes in place field specificity predicted the degree of impaired spatial memory. This finding suggests that more spatially distinct place fields may contribute to hippocampal-dependent mnemonic functions.  相似文献   

6.
Cognitive control of thoughts, actions and emotions is important for normal behaviour and the development of such control continues throughout childhood and adolescence. Several lines of evidence suggest that response inhibition is primarily mediated by a right-lateralized network involving inferior frontal gyrus (IFG), presupplementary motor cortex (preSMA), and subthalamic nucleus. Though the brain's fibre tracts are known to develop during childhood, little is known about how fibre tract development within this network relates to developing behavioural control. Here we examined the relationship between response inhibition, as measured with the stop-signal task, and indices of regional white matter microstructure in typically-developing children. We hypothesized that better response inhibition performance would be associated with higher fractional anisotropy (FA) in fibre tracts within right IFG and preSMA after controlling for age. Mean FA and diffusivity values were extracted from right and left IFG and preSMA. As hypothesized, faster response inhibition was significantly associated with higher FA and lower perpendicular diffusivity in both the right IFG and the right preSMA, possibly reflecting faster speed of neural conduction within more densely packed or better myelinated fibre tracts. Moreover, both of these effects remained significant after controlling for age and whole brain estimates of these DTI parameters. Interestingly, right IFG and preSMA FA contributed additively to the prediction of performance variability. Observed associations may be related to variation in phase of maturation, to activity-dependent alterations in the network subserving response inhibition, or to stable individual differences in underlying neural system connectivity.  相似文献   

7.
Functional neurological changes after surgery combined with data from diffusion tensor imaging (DTI) studies can provide direct evidence of anatomical localization of brain function. The goal of the present study was to characterize mechanisms of spatial neglect using these techniques by analyzing two patients with development or worsening of left neglect after surgery at our hospital in 2008. In both cases, the surgical approach was via the right inferior parietal lobes, and damage to the superior longitudinal fasciculus (SLF) was demonstrated after surgery by DTI tractography. By contrast, neither the inferior longitudinal fasciculus (ILF) nor the inferior fronto-occipital fasciculus (IFOF) was damaged. These results suggest that damage to the right SLF in the inferior parietal lobe plays a critical role in the development of spatial neglect.  相似文献   

8.

Background

Previous diffusion tensor imaging (DTI) studies in patients with obsessive–compulsive disorder (OCD) have reported inconsistent findings, and it is not known whether observed findings are related to abnormalities in axonal structure or myelination.

Methods

In this DTI study, we investigated fractional anisotropy, as well as axial and radial diffusivity, in 21 patients with OCD and 29 healthy controls.

Results

We found decreased fractional anisotropy in the body of the corpus callosum in the OCD group, which was underpinned by increased radial diffusivity.

Limitations

The cross-sectional design was the main limitation.

Conclusion

Our findings of increased radial diffusivity provide preliminary evidence for abnormal myelination in patients with OCD.  相似文献   

9.
Two experiments are described assessing whether long-term intraventricular or intrahippocampal administration of beta-amyloid protein 1-40 (beta A1-40) affects spatial working memory in rats monitored in a longitudinal study using the open-field water maze. A delayed matching-to-position procedure (DMTP) was employed in which platform locations were semi-randomly altered between days but were kept constant over the four trials on each day. Intertrial intervals (ITIs) were either 30 s or 1 h between Trials 1 and 2 (all other intervals = 30 s), with Trial 2 performance being an index for spatial working memory. Animals were trained before and tested repeatedly at various intervals after application of various compounds (see below) in five successive test sessions (TSs). In Experiment 1, beta A1-40 was applied after a challenge with long-term oral exposure to aluminium (Al; as 0.1% sulfate in drinking water). This in itself did not affect spatial working memory at any delay, despite of the more than 6 months of intake. beta A1-40 administered alone via intracerebroventricular (icv) minipumps (20 micrograms in 250 microliters) led to a small increase in latencies to find the platform, which recovered to control levels 3 months after minipumps were exhausted. Application of beta A1-40 in Al-exposed animals led to a subtle and progressive decline in working memory. This deterioration was reversed by the nootropic compound nefiracetam, which had no effect on the Al only group. In Experiment 2, well-trained rats were bilaterally implanted with intra-hippocampal minipumps containing beta A1-40 or reverse sequence beta A40-1. This did not impair spatial working memory in the DMTP task, measured either directly after minipumps were exhausted, or 2 weeks later. When intraperitoneally (i.p.) injected with a low concentration of the muscarinic antagonist scopolamine (0.2 mg/kg), a dose that was not effective alone, animals in the beta A1-40 group were amnesic. These data suggest that intra-hippocampal beta A1-40 administration alters cholinergic transmission, but these alterations may be mild and thus do not lead to obvious working memory deficits in a DMTP task in well-trained animals.  相似文献   

10.
Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p?<?0.05). We conclude that low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.  相似文献   

11.
12.
We examined, with event-related fMRI, two hypotheses about the organization of human working memory function in frontal cortex: (1) that a region immediately anterior to the frontal eye fields (FEF) (superior frontal cortex, SFC) is specialized for spatial working memory (Courtney, et al., 1998); and (2) that dorsolateral prefrontal cortex (PFC) plays a privileged role in the manipulation of spatial stimuli held in working memory (Owen, et al., 1996; Petrides 1994). Our delayed-response task featured 2-D arrays of irregularly arranged squares that were highlighted serially in a random sequence. The Forward Memory condition required maintenance of the spatio-temporal sequence, the Manipulate Memory condition required reordering this sequence into a new spatially defined order, the Guided Saccade condition required saccades to highlighted squares in the array, but no memory, and the Free Saccade condition required self-paced, horizontal saccades. The comparison of fMRI signal intensity associated with 2-D saccade generation (Guided Saccades) versus fMRI signal intensity associated with the delay period of the working memorials condition revealed no evidence for greater working memory-related activity than saccade-related activity in SFC in any individual subject, nor at the level of the group, and greater 2-D saccade than delay-period activity in three of five subjects. These results fail to support the hypothesis that spatial working memory-related activity is represented preferentially in a region of SFC anterior to the FEF (Courtney, et al., 1998). The comparison of maintenance versus manipulation of spatio-temporal information in working memory revealed significantly greater activity associated with the latter in dorsolateral PFC, but not in ventrolateral PFC or in SFC. These results suggest that the delay-related function of SFC is limited to the maintenance of spatial information, and that this region does not support the nonmnemonic executive control functions supported by dorsolateral PFC. These results also indicate that the preferential recruitment of dorsolateral PFC for the manipulation of information held in working memory applies to tasks employing spatial stimuli, as well as to tasks employing verbal stimuli (D'Esposito, et al., 1999); Petrides et al., 1993; Postle et al., 1999).  相似文献   

13.
European Archives of Psychiatry and Clinical Neuroscience - Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory...  相似文献   

14.
Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working memory performance has been suggested based on the analysis of individuals with varying pathologies. This study aimed to identify correlations between white matter and individual differences in verbal working memory performance in normal young subjects. We performed voxel-based morphometry (VBM) analyses using T1-weighted structural images as well as voxel-based analyses of fractional anisotropy (FA) using diffusion tensor imaging. Using the letter span task, we measured verbal working memory performance in normal young adult men and women (mean age, 21.7 years, SD = 1.44; 42 men and 13 women). We observed positive correlations between working memory performance and regional white matter volume (rWMV) in the frontoparietal regions. In addition, FA was found to be positively correlated with verbal working memory performance in a white matter region adjacent to the right precuneus. These regions are consistently recruited by working memory. Our findings suggest that, among normal young subjects, verbal working memory performance is associated with various regions that are recruited during working memory tasks, and this association is not limited to specific parts of the working memory network.  相似文献   

15.
Subtypes of working memory performance were examined in a cohort of 50 HIV-infected adults and 23 uninfected controls using an n-back paradigm (2-back) in which alphabetic stimuli were quasi-randomly presented to a quadrant of a computer monitor. In the verbal working memory condition, participants determined whether each successive letter matched the letter that appeared two previously in the series, regardless of spatial location. In the spatial working memory condition, participants determined whether each letter matched the spatial location of the letter that had appeared two previously, regardless of letter identity. The dependent variable was percent accuracy in each condition. Results of mixed model ANOVA revealed that the HIV-infected participants performed significantly worse than controls on both the verbal and spatial working memory tasks. A significant main effect for working memory condition was also present with both participant groups performing better on the spatial working memory task. These results, the first study of HIV-infected adults to directly compare verbal versus spatial working memory performance using the identical test stimuli across task conditions, suggests that HIV infection is associated with a decrement in working memory efficiency that is equally apparent for both verbal and spatial processing. These findings implicate central executive dysfunction as a likely substrate and provide the basis for hypothesizing that decline in working memory may contribute to other HIV-associated neuropsychological deficits.  相似文献   

16.
This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and more on alternative ventral pathways that possibly mediate visual elements of language.  相似文献   

17.
18.
The prefrontal cortex of the brain has been shown to play a crucial role in working memory, and age-related changes in prefrontal function may contribute to the improvements in working memory that are observed during childhood. We examined the developmental trajectory of working memory in school-age children with early-treated phenylketonuria (PKU), a metabolic disorder that results in prefrontal dysfunction. Using a recognition procedure, we evaluated working memory for letters, abstract objects, and spatial locations in 20 children with PKU and 20 typically developing control children. Children in both groups ranged from 6 to 17 years of age. Our findings revealed poorer performance across all three types of materials for children with PKU. In addition, there was a significant difference in the developmental trajectory of working memory for children with PKU as compared with controls. Specifically, deficits were not apparent in younger children with PKU. Instead, deficits were observed only in older children, suggesting the presence of a developmental deficit rather than a developmental delay in the working memory of children with PKU.  相似文献   

19.
Genetic, neuropathological and magnetic resonance imaging findings support the presence of diffuse white matter cytoarchitectural disruption in bipolar disorder. In this study, diffusion-weighted imaging (DWI) was applied to study cortical white matter microstructure organisation in 24 patients with DSM-IV bipolar disorder and 35 matched normal controls. DWI images were obtained using a 1.5 Tesla scanner and apparent diffusion coefficient (ADC) values were determined over regions of interest placed, bilaterally, in the frontal, temporal, parietal, and occipital white matter. Significantly increased ADC values were found in bipolar patients with respect to normal controls in the right temporal lobe, left parietal lobe and bilateral occipital lobes. ADC values did not associate significantly with age or with clinical variables (p>0.05). Diffuse cortical white matter alterations on DWI in bipolar disorder denote widespread disruption of white matter integrity and may be due to altered myelination and/or axonal integrity.  相似文献   

20.
Predicting which individuals may engage in aggressive behavior is of interest in today’s society; however, there is little data on the neural basis of aggression in healthy individuals. Here, we tested whether regional differences in white matter (WM) microstructure were associated with later reports of aggressive tendencies. We recontacted healthy young adults an average of 3 years after they underwent research MRI scans. Via electronic survey, we administered the Buss Perry Aggression Questionnaire. We divided aggression into Aggressive Thoughts (Anger and Hostility subscales) and Aggressive Acts (Verbal and Physical subscales) and used Tract-Based Spatial Statistics to test the relationship of those measures to WM microstructure. In 45 individuals age 15–30 at baseline, we observed significant relationships between Aggressive Acts and fractional anisotropy (FA) in a parietal region consistent with the superior longitudinal fasciculus (SLF). As the SLF has an established relationship to executive function, we performed an exploratory analysis in a subset of individuals with working memory data. Decreased FA in executive network regions, as well as working memory performance, were associated with later self-reported aggressive tendencies. This has implications for our healthy behavior understanding of as well as that of patient populations known to have executive dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号