首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that the administration of bone marrow stromal cells (MSCs) prevents the development of mechanical and thermal allodynia in animals subjected to a sciatic nerve injury. Furthermore, exogenously administered MSCs have been shown to participate in the repair and regeneration of damaged tissues in a variety of animal models. However, some limitations of this therapeutic approach, basically related to the ex vivo cell manipulation procedure, have arisen. IMT504, the prototype of the PyNTTTTGT class of immunostimulatory oligonucleotides, stimulates MSC expansion both in vitro and in vivo. In this study, we evaluated the effect of IMT504 systemic administration on the development of mechanical and thermal allodynia in rats subjected to a sciatic nerve crush. Animals were treated with IMT504, MSCs or saline either immediately after performing the lesion or 4 days after it, and were evaluated using the von Frey and Choi tests at different times after injury. Control animals developed both mechanical and thermal allodynia. Animals receiving either IMT504 or MSCs immediately after injury did not develop mechanical allodynia and presented a significantly lower number of nociceptive responses to cold stimulation as compared to controls. Moreover, injury-induced allodynia was significantly reduced after IMT504 delayed treatment. Our results show that the administration of IMT504 reduces neuropathic pain-associated behaviors, suggesting that IMT504 could represent a possible therapeutic approach for the treatment of neuropathic pain.  相似文献   

2.
Single ligature nerve constriction (SLNC) is a newly developed animal model for the study of neuropathic pain. SLNC of the rat sciatic nerve induces pain-related behaviors, as well as changes in the expression of neuropeptide tyrosine and the Y(1) receptor in lumbar dorsal root ganglia (DRGs) and spinal cord. In the present study, we have analyzed the expression of another neuropeptide, galanin, in lumbar DRGs and spinal cord after different degrees of constriction of the rat sciatic nerve. The nerve was ligated and reduced to 10-30, 40-80 or 90% of its original diameter (light, medium or strong SLNCs). At different times after injury (7, 14, 30, 60 days), lumbar 4 and 5 DRGs and the corresponding levels of the spinal cord were dissected out and processed for galanin-immunohistochemistry. In DRGs, SLNC induced a gradual increase in the number of galanin-immunoreactive (IR) neurons, in direct correlation with the degree of constriction. Thus, after light SLNC, a modest upregulation of galanin was observed, mainly in small-sized neurons. However, following medium or strong SLNCs, there was a more drastic increase in the number of galanin-IR neurons, involving also medium and large-sized cells. The highest numbers of galanin-IR neurons were detected 14 days after injury. In the dorsal horn of the spinal cord, medium and strong SLNCs induced a marked ipsilateral increase in galanin-like immunoreactivity in laminae I-II. These results show that galanin expression in DRGs and spinal cord is differentially regulated by different degrees of nerve constriction and further support its modulatory role on neuropathic pain.  相似文献   

3.
The expression of galanin and neuropeptide Y in rat lumbar 5 (L5) dorsal root ganglia and dorsal horn (L4-5) was studied after four types of peripheral nerve injury using immunohistochemistry and in situ hybridization. The possible correlation between these two peptides and tactile allodynia-like behaviour was analysed as well. The models employed were the Gazelius (photochemical lesion) and Seltzer and Bennett (constriction lesions) models, as well as complete sciatic nerve transection (axotomy). Two weeks after surgery, the Gazelius model rats more frequently displayed a greater tactile allodynia than the rats from the Seltzer and Bennett models. Tactile allodynia was not observed in any of the axotomized rats. A marked increase in the number of galanin-immunoreactive and galanin messenger RNA-positive neuron profiles was observed in ipsilateral dorsal root ganglia in all types of models. The increase in allodynic rats (Gazelius, Seltzer and Bennett models) was less pronounced than that after axotomy. In addition, in the Bennett model the number of galanin-immunoreactive neurons was significantly lower in allodynic rats as compared to non-allodynic rats, and the same tendency, but less obvious was found in the Seltzer model. Furthermore, an increase in galanin-immunoreactive fibres was found in the superficial laminae of the ipsilateral dorsal horn in all lesion models, especially in lamina II. A dramatic increase in the number of neuropeptide Y and neuropeptide Y messenger RNA-positive neuron profiles was also found in the ipsilateral dorsal root ganglia in all models, but no significant difference was found in peptide levels between allodynic and non-allodynic rats in any of the models. The present results suggest that the levels of endogenous galanin may play a role in whether or not allodynia develops in the Bennett model.  相似文献   

4.
To investigate the analgesic effect of intrathecally administered γ-aminobutyric acid (GABA) transporter-1 inhibitor NO-711 on the sciatic nerve chronic constriction injury (CCI) rats. 5 days after intrathecal catheter placement, neuropathic pain model was established by CCI of sciatic nerve on rats. Withdrawal thresholds for mechanical allodynia and latency for thermal hyperalgesia were measured in all animals. All rats operated upon for CCI displayed decreased withdrawal thresholds for mechanical allodynia and latency for thermal hyperalgesia, which has significant difference compared with sham groups. After intrathecal NO-711 administration, withdrawal thresholds and latency were significantly increased on CCI rats compared with control group after 1 day. The results show that GABA transporter-1 inhibitor could effectively develop analgesic effect in sciatic nerve CCI rats’ model.  相似文献   

5.
The proinflammatory cytokine tumor necrosis factor-alpha (TNF) is an important mediator in neuropathic pain. We investigated the temporal pattern of TNF mRNA expression in the sciatic nerve, in dorsal root ganglia (DRG) and spinal cord in the mouse chronic constriction injury model of neuropathy with quantitative real-time polymerase chain reaction. Neuropathic pain-like behaviour was monitored by evaluating thermal hyperalgesia and mechanical allodynia. Pain-related behaviour and TNF expression were evaluated 6 h, 1, 3, 7 and 14 days after injury. Naive animals and sham-operated mice were used as controls. We found an early upregulation of sciatic nerve TNF mRNA levels in chronic constriction injury (CCI) and sham-operated animals 6 h after surgery: 1 day later TNF overexpression was present in CCI mice only and disappeared 3 days after injury. The mRNA cytokine levels were elevated in DRG 1 and 3 days after surgery in CCI animals only, while the cytokine was not modulated in the spinal cord. A significant hyperalgesia was present in CCI and sham-operated mice at 6 h and 1 day, while at later time point only CCI mice presented lower thresholds. Mechanical allodynia was already present only in CCI animals 6 h from surgery and remained constant up to the 14 th day. The results indicate that a transient early TNF upregulation takes place in peripheral nervous system after CCI that can activate a cascade of proinflammatory/pronociceptive mediators.  相似文献   

6.
We analyzed the effects of different treadmill running protocols on the functional recovery after chronic constriction injury (CCI) of the sciatic nerve in mice. We found that a treadmill protocol of short-lasting running (1 h/d for 5 days after CCI) reduced the neuropathy-induced mechanical allodynia and normalized the weight bearing and the sciatic static index of the injured hindpaw. At difference, a treadmill protocol of long-lasting running (1 h/d for more than 5 days after CCI) was unfavorable both for allodynia and for functional recovery. Behavioral results were correlated with immunofluorescence assays of microglia and astrocytes activation in L4/L5 lumbar spinal cord sections. We found a differential pattern of activation characterized by: (i) reduced microglia expression, after both short- and long-lasting treadmill running; (ii) reduced astrocytes expression after short-lasting treadmill running; and, (iii) persistence of astrocytes expression after long-lasting treadmill running. Finally, in sections of injured sciatic nerves, we analyzed the expression of Cdc2 and GAP-43 proteins that are both up-regulated during peripheral regenerative processes. Compared to mice subjected to long-lasting treadmill running, mice subjected to short-lasting treadmill running showed an acceleration of the regenerative processes at the injured sciatic nerve. Our data demonstrate that short-lasting treadmill running, by reducing the neuropathic pain symptoms and facilitating the regenerative processes of the injured nerve, have beneficial rehabilitative effects on the functional recovery after peripheral nerve injury.  相似文献   

7.
In the present study, we assessed IL-17 levels at 3 and 8 days following various forms of injuries to the sciatic nerve and related the cytokine levels to the pain behaviors associated with the injuries. The four experimental models employed were chronic constriction injury (CCI), partial sciatic ligation (PSL), complete sciatic transection (CST) and perineural inflammation (Neuritis). Behavior withdrawal thresholds for mechanical stimulus and withdrawal latency for thermal stimulation were used to measure mechanical allodynia and thermal hyperalgesia. IL-17 levels of the affected, contralateral and naïve rats’ sciatic nerve were assessed employing enzyme-linked immunosorbent assay (ELISA). Rats exposed to CCI and Neuritis displayed significant mechanical allodynia and thermal hyperalgesia 3, 5 and 8 days following the procedure, rats exposed to PSL displayed significant mechanical allodynia 5 and 8 days following the procedure and rats exposed to CST developed significant hypoesthesia. Three days following the procedure, IL-17 levels increased significantly compared to naïve rats only in the PSL model. Eight days following the procedure, IL-17 levels in nerves exposed to CCI, CST, PSL and Neuritis were significantly elevated compare to intact nerve levels. It is likely that IL-17 has a limited role in the acute phase of nerve injury and the associated acute pain, but may have a role in later phases of the processes of the development of neuropathic pain.  相似文献   

8.
S O Ha  J K Kim  H S Hong  D S Kim  H J Cho 《Neuroscience》2001,107(2):301-309
Chronic constriction injury of the sciatic nerve and lumbar L5 and L6 spinal nerve ligation provide animal models for pain syndromes accompanying peripheral nerve injury and disease. In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat L4 and L5 dorsal root ganglia (DRG) and areas where afferents from the DRG terminates (the L4/5 spinal cord and gracile nuclei) in these experimental models of neuropathic pain. Chronic constriction injury induced significant increase in the percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral L4 and L5 DRG. Following spinal nerve ligation, the percentage of large BDNF-immunoreactive neurons increased significantly, and that of small BDNF-immunoreactive neurons decreased markedly in the ipsilateral L5 DRG, while that of BDNF-immunoreactive L4 DRG neurons of all sizes showed marked increase. Both chronic constriction injury and spinal nerve ligation induced significant increase in the number of BDNF-immunoreactive axonal fibers in the superficial and deeper laminae of the L4/5 dorsal horn and the gracile nuclei on the ipsilateral side.Considering that BDNF may modulate nociceptive sensory inputs and that injection of antiserum to BDNF significantly reduces the sympathetic sprouting in the DRG and allodynic response following sciatic nerve injury, our results also may suggest that endogenous BDNF plays an important role in the induction of neuropathic pain after chronic constriction injury and spinal nerve ligation. In addition, the increase of BDNF in L4 DRG may contribute to evoked pain which is known to be mediated by input from intact afferent from L4 DRG following L5 and L6 spinal nerve ligation.  相似文献   

9.
Although neuroimmune interactions associated with the development of pain sensitization in models of neuropathic pain have been widely studied, there are some aspects that require further investigation. Thus, we aimed to evaluate whether the local intraneural or perineural injections of dexamethasone, an efficacious anti-inflammatory and immunosuppressant drug, delays the development of both thermal hyperalgesia and mechanical allodynia in an experimental model of neuropathic pain in rats. Hargreaves and electronic von Frey tests were applied. The chronic constriction injury (CCI) of right sciatic nerve was performed. Single intraneural dexamethasone administration at the moment of constriction delayed the development of sensitization for thermal hyperalgesia and mechanical allodynia. However, perineural administration of dexamethasone, at the highest dose, did not delay experimental pain development. These results show that inflammation/immune response at the site of nerve lesion is an essential trigger for the pathological changes that lead to both hyperalgesia and allodynia. In conclusion, this approach opens new opportunities to study cellular and molecular neuroimmune interactions associated with the development of pain derived from peripheral neuropathies.  相似文献   

10.
The saphenous partial ligation (SPL) model is a new, easily performed, rodent model of neuropathic pain that consists of a unilateral partial injury to the saphenous nerve. The present study describes behavioral, pharmacological and molecular properties of this model. Starting between 3 and 5 days after surgery, depending on the modality tested, animals developed clear behaviors indicative of neuropathic pain such as cold and mechanical allodynia, and thermal and mechanical hyperalgesia compared with naive and sham animals. These pain behaviors were still present at 1 month. Signs of allodynia also extended to the sciatic nerve territory. No evidence of autotomy or bodyweight loss was observed. Cold and mechanical allodynia but not thermal and mechanical hyperalgesia was reversed by morphine (4 mg/kg i.p.). The cannabinoid receptor agonist WIN 55,212-2 (5 mg/kg i.p.) improved signs of allodynia and hyperalgesia tested except for mechanical hyperalgesia. Gabapentin (50 mg/kg i.p.) was effective against cold and mechanical allodynia but not hyperalgesia. Finally, amitriptyline (10 mg/kg i.p.) failed to reverse allodynia and hyperalgesia and its administration even led to hyperesthesia. Neurobiological studies looking at the expression of mu opioid receptor (MOR), cannabinoid CB(1) and CB(2) receptors showed a significant increase for all three receptors in ipsilateral paw skin, L3-L4 dorsal root ganglia and spinal cord of neuropathic rats compared with naive and sham animals. These changes in MOR, CB(1) and CB(2) receptor expression are compatible with what is observed in other neuropathic pain models and may explain the analgesia produced by morphine and WIN 55,212-2 administrations. In conclusion, we have shown that the SPL is an adequate model that will provide a new tool for clarifying peripheral mechanisms of neuropathic pain in an exclusive sensory nerve.  相似文献   

11.
As CRPS I frequently develops after tissue trauma, we proposed that an exaggerated inflammatory response to tissue trauma may underlie CRPS I. Therefore, we studied the vascular inflammatory, nociceptive and apoptotic sequelae of (i) soft tissue trauma and (ii) exaggerated soft tissue trauma in comparison to those of (iii) sciatic nerve chronic constriction injury, modeling CRPS II. Standardized soft tissue trauma (TR) was induced by means of a controlled impact injury technique in the hind limb of pentobarbital-anesthetized rats. Additional animals received soft tissue trauma and femoral arterial infusion of mediator-enriched supernatant achieved by homogenization and centrifugation of traumatized muscle tissue in order to provoke an exaggerated trauma response (ETR). Infusion of supernatant of non-traumatized muscle served as control intervention (STR, sham trauma response). Neuropathy was induced by chronic constriction injury of the sciatic nerve (CCI). Untreated animals served as controls (CO). Detailed nociceptive testing showed temporarily decreased mechanical pain thresholds in ETR animals that resolved within 14 days, while TR and STR animals, i.e. those with singular limb trauma, and controls remained free of pain. Neither cold- nor heat-evoked allodynia developed in post-traumatic animals, whereas CCI animals presented the well-known pattern of ongoing neuropathic pain. Using high-resolution in vivo multifluorescence microscopy, muscle tissue of traumatized animals revealed an enhanced inflammatory response that was found most pronounced in ETR animals. CCI of the sciatic nerve was not accompanied by tissue inflammation; however, induced myocyte apoptosis. Collectively, these data indicate that exaggeration of trauma response induces signs and symptoms of acute CRPS I. Pain perception displays differences to that in CRPS II. Apoptosis turns out to be a distinctive marker for CRPS, warranting further evaluation in clinical studies.  相似文献   

12.
Recent studies have revealed that T lymphocytes play a role in neuropathic pain following nerve injury in rats through releasing several cytokines. Sirolimus is an immunosuppressive antibiotic inhibiting T cell activation. This study aimed to determine the effect of sirolimus on hyperalgesia and allodynia and on serum and spinal cord TNF-α, IL-1β and IL-6 levels in rat neuropathic pain. Neuropathic pain was induced by loose ligation of the sciatic nerve and evaluated by tests measuring the mechanical hyperalgesia and allodynia. Sirolimus (0.75 and 1.5 mg/kg) was administered intraperitoneally once every 3 days for 2 weeks (7 doses totally). This dosing regimen revealed acceptable blood concentrations in neuropathic rats. Chronic constriction injury of the sciatic nerve resulted in hyperalgesia and allodynia. Serum levels of cytokines remained unchanged in neuropathic rats. However, TNF-α, but not IL-1β or IL-6, protein level was increased in the spinal cord tissue as evaluated by Western blotting analysis. Treatment with sirolimus resulted in antihyperalgesic and antiallodynic effects and prevented the increased spinal cord TNF-α level. It seems that sirolimus could be a promising immunosuppressive agent in the treatment of neuropathic pain.  相似文献   

13.
Sciatic nerve ligation in rats (chronic constriction injury (CCI)) induces signs and symptoms that mimic human conditions of neuropathy. The central mechanisms that have been implicated in the pathogenesis of neuropathic pain include increased neuronal excitability, possibly a consequence of decreased availability of spinal GABA. GABA availability is regulated by the presence of the GABA-transporters (GATs). This study investigates the dorsal horn expression of the transporter GAT-1 and its functional involvement towards pain behaviour in the CCI model. Male Lewis rats (total n=37) were subjected to CCI or to a sham procedure. A sub-group of animals was treated with the GAT-1 antagonist NO-711. Behavioural testing was performed pre-surgery and at 7 days post-surgery. Testing included evaluation of mechanical allodynia using Von Frey filaments, thermal allodynia with a hot-plate test and observational testing of spontaneous pain behaviour. Subsequently, spinal protein expression of GAT-1 was assessed by Western blotting. Animals were sacrificed 7 days following surgery. CCI markedly increased mechanical and thermal allodynia and spontaneous pain behaviour after 7 days, while the sham procedure did not. GAT-1 was increased in spinal cord homogenates compared contralateral to the ligation side after 7 days. NO-711 treatment significantly reduced all tested pain behaviour. These data provide evidence for possible functional involvement of GAT-1 in the development of experimental neuropathic pain. The latter can be derived from observed analgesic effects of early treatment with NO-711, a selective GAT-1 inhibitor. The obtained insights support the clinical employment of GAT-1 inhibitors to treat neuropathic pain.  相似文献   

14.
Chronic pain conditions for which treatment is sought are characterized usually by complex behavioural disturbances as well as pain. We review here evidence that although chronic constriction injury (CCI) of the sciatic nerve evokes allodynia and hyperalgesia in all rats, persistent social behavioural and sleep disruption occurs only in a subpopulation of animals. The finding that the 'degree of pain', as defined by allodynia and hyperalgesia, is the same in all animals suggests that the complex behavioural disabilities are independent of the level of sensory dysfunction. An absence of correlation between disability and sensory dysfunction is characteristic also of human neuropathic pain. These findings indicate that: (i). in a subpopulation of rats sciatic injury evokes disabilities characteristic of human neuropathic pain conditions; and (ii). testing for sensory dysfunction alone cannot detect this subpopulation.  相似文献   

15.
The recent identification of receptors sensitive to cold stimuli increased the significance of using mice to study cold allodynia, one of the important features of neuropathic pain. However, commonly used techniques (simple cold plate and acetone technique) may be inappropriate to study cold allodynia in mice because of problems of interpretation. We have developed a new method for assessing aversion to a cold non-noxious stimulus. It consists of calculating the time that mice spend on a non-noxious cold plate during their explorative behavior versus a thermoneutral one. We used three different models of neuropathic pain: chronic constriction injury of the sciatic nerve (CCI), partial sciatic nerve ligation (PSL) and chronic constriction of the saphenous nerve (CCS) with their respective sham groups and naive animals to assess the double plate in comparison to the acetone drop technique. All operated mice displayed cold allodynia with both methods. The response to acetone and the time spent on the cold plate were correlated (r = −0.93) and we also showed that the CCI mice were more sensitive to cold. Pharmacological validation of this technique showed that CCI induced cold allodynia was alleviated by gabapentin. In conclusion, the double plate technique provides a new, relevant method for assessing cold allodynia in mice. The advantages and drawbacks with the other techniques are discussed.  相似文献   

16.
Partial peripheral nerve injury often leads to chronic pain states, including allodynia and hyperalgesia. The purpose of this study was to investigate the involvement of the N-methyl-D-aspartate and opioid receptors in the behavioural responses following chronic constriction nerve injury (CCI). The animals were injected a combination of MK-801 (0.3 mg/kg, 20 min before, and 6 h after the operation) and morphine (8 mg/kg, 30 min prior to the operation) and were tested for allodynia and hyperalgesia reactions at 0, 3, 7, 14, 21 and 28 days after CCI. Compound action potentials were also recorded from the injured nerve 2 weeks post-operation to indicate nerve injury state electrophysiologically. Our results indicate that the CCI model importantly influences the behavioural responses to both the thermal and mechanical stimulations. Also, the pre-emptive co-administration of MK-801 and morphine has suppressive effects on the cold allodynia but a slight alleviation on the mechano-allodynia and heat hyperalgesia.  相似文献   

17.
Previous studies have shown that spinal L-type, N-type, and P-type Ca2+-channel blockers are effective in modulating pain behavior caused nerve injury. In the present work, using the loose ligation of the sciatic nerve model, we characterized the time course of the appearance of tactile and cold allodynia and the corresponding spinal expression of the N-type Ca2+ channel α1B-subunit after nerve ligation. Within 1 week after ligation, the majority of rats developed a unilateral sensitivity to mechanical stimulation (von Frey filaments), as well as sensitivity to cold, which persisted for 30 days. Immunocytochemical analysis of the spinal cord in sham-operated animals for the α1B-subunit showed a smooth, moderate staining pattern in the superficial laminae I–II, as well as in ventral α-motoneurons. In nerve-ligated animals, an intense, dot-like immunoreactivity in the ipsilateral dorsal horn was observed from 5–20 days after nerve ligation. The most prominent α1B-subunit upregulation was found in the outer as well as the inner part of lamina II (IIo, IIi), extending from the medial toward the lateral region of the L4 and L5 spinal segments. The behavioral changes which developed after chronic constriction injury directly correlated with the α1B-subunit upregulation in the corresponding spinal cord segments. These data suggest that upregulation of the spinal α1B-subunit may play an important role in the initiation and maintenance of pain state after peripheral nerve injury. Electronic Publication  相似文献   

18.
It is well known that following peripheral nerve injury, there are numerous changes in neurotransmitter and neuropeptide expression in the superficial dorsal horn, the dorsal root ganglion and the periphery. Of particular interest are the relative contributions of two sub-types of unmyelinated C-fibers in the initiation and maintenance of chronic pain, the peptidergic, and the non-peptidergic. Evidence gathered in recent years has led researchers to believe that the non-peptidergic nociceptive primary afferents are functionally distinct from their peptidergic counterpart. For our study, we used a well-established animal model of constriction neuropathy (the Kruger model) and studied Wistar rats at 5, 7, 10, 15 and 21 days after nerve lesion caused by the application of a fixed-diameter polyethylene cuff to the left sciatic nerve. Animals were assessed for the onset and evolution of mechanical allodynia using calibrated von Frey filaments and were additionally tested for thermal (heat and cold) hypersensitivity. Immunocytochemical detection of calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) binding was used to visualize the dorsal horn distribution of the boutons from the peptidergic and non-peptidergic fibers respectively. Using confocal microscopy and image analysis, we detected a significant decrease in the density of IB4-labeled boutons, ipsilateral to the lesion, at seven and 10 days following nerve injury. The density of IB4-labeled varicosities retuned to control levels by 15 days. There were no significant changes in the density of CGRP-labeled varicosities at all time points examined. Applying electron microscopy, we initially detected degenerative changes in the central elements of type I glomeruli and then a considerable reduction in their number followed by recovery at 15 days post-lesion. As the central boutons of type Ia represent varicosities from the fibers which bind IB4, the ultrastructural changes confirmed that there was a bona fide transient loss of varicosities, not simply a loss of IB4 binding. These data indicate that, in this animal model, morphological changes in the nociceptive C-fiber input of the rat dorsal horn are restricted to the non-peptidergic sub-population and are transient in nature. Furthermore, such changes do not correlate with the time-course of the allodynia.  相似文献   

19.
Kim SM  Kim J  Kim E  Hwang SJ  Shin HK  Lee SE 《Neuroscience letters》2008,433(3):199-204
Whether modulation of C afferent fiber activities could relieve peripheral neuropathic pain was tested. After establishment of neuropathic pain induced by L5 and 6 spinal nerve transection (SNT), the sciatic nerve was treated with 2% capsaicin at the level of the midthigh. Mechanical hyperalgesia (von Frey filaments) was significantly alleviated from 7 days to 4 weeks after capsaicin treatment, but cold allodynia (acetone) was unchanged. Immunohistochemical studies showed a significant increase in the number of calcitonin gene-related peptide (CGRP)-positive neurons, but not TRPV1-positive neurons in intact L4 dorsal root ganglia after SNT. Capsaicin treatment decreased TRPV1- and CGRP-positive neurons in L4 DRG of the treated side, but not the opposite side. These results suggest that local application of capsaicin onto the sciatic nerve can alleviate mechanical hyperalgesia, but not cold allodynia, in a peripheral neuropathic pain model and the pain alleviation may result from a decrease of TRPV1- and CGRP-positive sensory neurons of which fibers pass through the sciatic nerve.  相似文献   

20.
We examined neural plasticity in mice in vivo using optical coherence tomography (OCT) of primary somatosensory (S1) and motor (M1) cortices of mice under the influence of sciatic nerve chronic constriction injury (CCI), a model of neuropathic pain widely utilized in rats. The OCT system used in this study provided cross-sectional images of the cortical tissue of mice up to a depth of about 1mm with longitudinal resolution up to 11 microm. This is the first study to evaluate neural plasticity in vivo using OCT. CCI mice exhibited cold allodynia and spontaneous pain behaviors, which are signs of neuropathic pain, 30 days after sciatic nerve ligation, when OCT observation of S1 and M1 cortices was carried out. The scattering intensity of near-infrared light within the hind paw area of S1 and M1 regions in the contralateral hemisphere was significantly higher than in the ipsilateral hemisphere. These CCI-induced increases in scattering intensity within cortical regions associated with the hind paw probably reflect elevated neural activity associated with neuropathic pain. Synapses and mitochondria are believed to have high light scattering coefficients, since they contain remarkably high concentrations of proteins and complicated membrane structure. Number densities of mitochondria and synapses are known to increase in parallel with increases in neural activity. Our findings thus suggest that neuropathic pain gives rise to neural plasticity within the hind paw area of S1 and M1 contralateral to the ligated sciatic nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号