首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Background. Recently we have reported a novel myoprotective protocol “adenosine-enhanced ischemic preconditioning” (APC), which extends and amends the protection afforded by ischemic preconditioning (IPC) by both reducing myocardial infarct size and enhancing postischemic functional recovery in the mature rabbit heart. However, the efficacy of APC in the senescent myocardium was unknown.

Methods. The efficacy of APC was investigated in senescent rabbit hearts and compared with magnesium-supplemented potassium cardioplegia (K/Mg) and IPC. Global ischemia (GI) hearts were subjected to 30 minutes of global ischemia and 120 minutes of reperfusion. Ischemic preconditioning hearts received 5 minutes of global ischemia and 5 minutes of reperfusion before global ischemia. Magnesium-supplemented potassium cardioplegia hearts received cardioplegia just before global ischemia. Adenosine-enhanced ischemic preconditioning hearts received a bolus injection of adenosine in concert with IPC. To separate the effects of adenosine from that of APC, a control group (ADO) received a bolus injection of adenosine 10 minutes before global ischemia.

Results. Infarct size was significantly decreased to 18.9% ± 2.7% with IPC (p < 0.05 versus GI); 17.0% ± 1.0% with ADO (p < 0.05 versus GI); 7.7% ± 1.3% with K/Mg (p < 0.05 versus GI, IPC, and ADO); and 2.1% ± 0.6% with APC (p < 0.05 versus GI, IPC, ADO, and K/Mg; not significant versus control). Only APC and K/Mg significantly enhanced postischemic functional recovery (not significant versus control).

Conclusions. Adenosine-enhanced ischemic preconditioning provides similar protection to K/Mg cardioplegia, significantly enhancing postischemic functional recovery and decreasing infarct size in the senescent myocardium.  相似文献   


2.
Background. Ischemic preconditioning is an effective means of reducing myocardial infarct size, but its ability to attenuate stunning after an episode of surgically relevant global ischemia remains elusive. Likewise, the role played by adenosine in this setting has not been established conclusively. This study was designed to address these two issues.

Methods. Thirty isolated, crystalloid-perfused rabbit hearts were subjected to 60 minutes of normothermic potassium arrest and 60 minutes of reperfusion. They were divided into three equal groups. The first group had no prearrest intervention and served as a control. In the second group, ischemic preconditioning was achieved with 5 minutes of zero-flow ischemia followed by 5 minutes of buffer reperfusion before arrest. In the third group, the hearts were first infused for 5 minutes with the nucleoside transport inhibitor draflazine (10−6 mol/L), the efficacy of which was demonstrated by reversal of the normally high inosine to adenosine ratio in the coronary effluent. These hearts subsequently were given 2 additional minutes of ischemic (zero-flow) preconditioning followed by 5 minutes of reperfusion before arrest. During reperfusion, function was measured serially under isovolumic conditions. Myocardial necrosis was estimated from the release of creatine kinase after the initial 5 minutes of reflow, and the planimetrically determined extent of infarction was determined by triphenyltetrazolium chloride staining.

Results. Baseline hemodynamic data were comparable among the three groups. Neither ischemic preconditioning alone nor ischemic preconditioning with draflazine-induced enhancement of endogenous adenosine levels improved postischemic recovery of function over that seen in control, untreated hearts. These results correlated with a minimal amount of infarction in the control group (on average, <10% of the left ventricle), which was not reduced further by either preconditioning regimen.

Conclusions. These data support the idea that, in the absence of substantial necrosis, ischemic preconditioning does not ameliorate postischemic stunning, which leads to the question of its usefulness in clinical cardiac operations. Although, in this model, protection was not potentiated by increasing endogenous concentrations of adenosine, it remains a worthwhile goal to identify the final effectors of the signaling pathway accounting for the otherwise demonstrated cardioprotective effects of preconditioning because of the potential for these mediators to act as effective antiischemic agents.  相似文献   


3.
BACKGROUND: We recently described a novel myoprotective protocol-adenosine-enhanced ischemic preconditioning (APC)-that extends the protection of ischemic preconditioning (IPC) by both reducing myocardial infarct size and enhancing postischemic functional recovery in the isolated perfused heart. In the present report the efficacy of APC in the blood-perfused heart was investigated and compared with that of cold blood cardioplegia (CBC). METHODS: Cardiopulmonary bypass was instituted in 21 sheep hearts. The APC hearts (n = 6) received a bolus injection of adenosine through the aortic root at the immediate start of IPC (5 minutes of zero-flow global ischemia, followed by 5 minutes of reperfusion) before 30 minutes of global ischemia and 120 minutes of reperfusion. Nine other hearts received CBC. A control group (n = 6) received IPC only. RESULTS: Infarct size was significantly decreased (p<0.01) in the APC (3.0%+/-0.8%) and CBC (2.6%+/-0.2%) hearts compared with the IPC hearts (16.3%+/-1.6%). The preload recruitable stroke work relation, mean arterial pressure, and the time constant of pressure decay (tau) were significantly preserved (p<0.05) in APC and CBC hearts compared with IPC hearts. No significant differences were observed between APC and CBC hearts. CONCLUSIONS: Use of APC is as effective as CBC in significantly decreasing infarct size and enhancing post-ischemic functional recovery.  相似文献   

4.
BACKGROUND: This study examines whether the chronic administration of nipradilol, a nitric oxide-releasing beta-adrenergic blocker, decreases ischemia-reperfusion injury. METHODS: Rats were treated with nipradilol (10 mg/kg per day orally) or a vehicle alone for 4 weeks. Isolated rat hearts were assigned to one of five groups (each n = 6): global ischemia groups treated with the vehicle or with nipradilol were subjected to 20 minutes of ischemia; ischemic preconditioning groups treated with the vehicle or with nipradilol were subjected to 3 minutes of ischemic preconditioning; and the L-arginine group treated with the vehicle received 1 mmol/L of L-arginine before global ischemia. Hemodynamic variables and coronary flow were recorded continuously. Nitrites and nitrates levels were measured 60 minutes after reperfusion, and the infarct size was determined. In another series (each n = 6), lipid peroxidation was investigated. RESULTS: In the nipradilol group, significant preservation of the left ventricular pressure and coronary flow, as well as the level of nitrates and nitrites, was observed, compared with the global ischemia group. The infarct size was also significantly reduced in the ischemic preconditioning (23.5%+/-5.47%), L-arginine (25.6%+/-5.59%), and especially the nipradilol (10.7%+/-1.65%) groups. However, in the nipradilol plus ischemic preconditioning group, the protective effects were eliminated. Lipid peroxidation after nipradilol treatment was significantly reduced before and after global ischemia, compared with the global ischemia group. CONCLUSIONS: The chronic administration of nipradilol improves postischemic functional recovery and infarct size, partly by preventing the formation of lipid peroxides. These cardioprotective effects were, however, abolished by ischemic preconditioning.  相似文献   

5.
BACKGROUND: There have been numerous studies examining the role of nitric oxide (NO) in myocardial ischemia-reperfusion injury; however, few studies have included measurements of NO or related reactive nitrogen species. The purpose of this study was to determine the effects of in vivo regional myocardial ischemia on interstitial fluid (ISF) reactive nitrogen species. METHODS: Open chest pigs were submitted to one of three protocols: (1) 15 minutes coronary occlusion and 2 hours reperfusion, (2) 60 minutes coronary occlusion and 2 hours reperfusion, or (3) two-cycle ischemic preconditioning (IPC) followed by prolonged ischemia and 2 hours reperfusion. The stable NO metabolites, nitrite plus nitrate (NOx), in cardiac microdialysis samples were measured by ozone chemiluminescence. RESULTS: NOx concentration decreased 40% +/- 6% (p < 0.05) during brief ischemia but returned to baseline during reperfusion. Dialysate NOx levels decreased further after 60 minutes ischemia (60% +/- 3% of baseline, p < 0.01) but reperfusion dialysate NOx concentration increased 34% +/- 9% above baseline (p < 0.05). Preconditioning did not increase dialysate NOx but did accelerate the ischemia-induced decrease in NOx levels (p < 0.05). Reperfusion NOx levels in preconditioned pigs were significantly lower than in nonpreconditioned pigs (p < 0.05). CONCLUSIONS: These results suggest that ischemia is associated with decreased ISF NOx concentration. Reperfusion NOx levels are increased after prolonged ischemia, an effect that is significantly blunted by ischemic preconditioning.  相似文献   

6.
OBJECTIVE: This study was designed to compare ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels and Na(+)/H(+) exchange inhibition in an isolated heart model of cold storage, simulating the situation of cardiac allografts. METHODS: Sixty-seven isolated isovolumic buffer-perfused rat hearts were arrested with and stored in Celsior solution (Imtix-Sangstat) at 4 degrees C for 4 hours before a 2-hour reperfusion. Group I hearts served as controls and were arrested with and stored in Celsior solution. In group II, hearts were preconditioned by two 5-minute episodes of global ischemia, each separated by 5 minutes of reperfusion before arrest with Celsior solution. Group III hearts were arrested with and stored in Celsior solution supplemented with 100 micromol/L of the mitochondrial adenosine triphosphate-sensitive potassium channel opener diazoxide. In group IV, hearts received an infusion of diazoxide (30 micromol/L) during the first 15 minutes of reperfusion. Group V hearts underwent a protocol combining both interventions used in groups III and IV. In group VI, hearts were arrested with and stored in Celsior solution supplemented with 1 micromol/L of the Na(+)/H(+) exchange inhibitor cariporide. Group VII hearts received an infusion of cariporide (1 micromol/L) during the first 15 minutes of reperfusion. In group VIII, hearts underwent a protocol combining both interventions used in groups VI and VII. Group IX hearts were ischemically preconditioned as in group II, and sustained Na(+)/H(+) exchange inhibition during both storage and early reperfusion was used as in group VIII. RESULTS: On the basis of comparisons of postischemic left ventricular contractility and diastolic function, coronary flow, total creatine kinase leakage, and myocardial water content, values indicative of improved protection were obtained by combining ischemic preconditioning with Na(+)/H(+) exchange inhibition by cariporide given during storage and initial reperfusion. The endothelium-dependent vasodilatory postischemic responses to 5-hydroxytryptamine or acetylcholine and endothelium-independent responses to papaverine were not affected by these interventions. CONCLUSIONS: These data suggest that cardioprotection conferred by the Na(+)/H(+) exchange inhibitor cariporide is additive to that of ischemic preconditioning and might effectively contribute to improve donor heart preservation during cardiac transplantation.  相似文献   

7.
We hypothesized that the adenosine administration during the early reperfusion period might affect ischemic preconditioning (IPC) and might reduce infarct size and enhance post-ischemic functional recovery. Twenty-four anesthetized rabbits underwent 30 min. normothermic global ischemia with 120 min. reperfusion in a buffer-perfused isolated, paced heart model and divided into four groups. Global ischemic hearts (GI, n = 6) were subjected to 30 min. global ischemia without intervention. Control hearts (n=6) were subjected to perfusion without ischemia. Ischemic preconditioned hearts (IPC, n=6) were subjected to one cycle of 5 min. global ischemia and 5 min. reperfusion prior to global ischemia. IPC + Ado hearts (n=6) received IPC and adenosine administration (100 m mol/L) during 3 min. early reperfusion period. Post-ischemic functional recovery was better in IPC + Ado hearts as compared to GI and IPC hearts, but the effect of post-ischemic functional recovery in IPC + Ado hearts became weaker during 120 min. reperfusion after prolong ischemic insult. Infarct size wre 1.0 ± 0.3% in Control hearts, 32.9 ± 5.1% in GI hearts, 13.8 ± 1.3% in IPC hearts and 8.1 ± 0.9% in IPC + Ado hearts. Infarct size in IPC hearts was significantly decreased (p<0.01) as compared to GI hearts. The reduction rate against myocardial necrosis in IPC + Ado hearts versus GI hearts was higher as compared to IPC hearts versus GI hearts (p<0.001, IPC+Ado hearts vs GI hearts; p<0.01, IPC hearts vs GI hearts; p = ns, IPC + Ado hearts vs Control hearts). These data suggest that adenosine administration during the early reperfusion period reinforce IPC effect and reduce myocardial reperfusion injury. Cardiomyoprotective effects of IPC and exogenous adenosine are exerted during early reperfusion after coronary occlusion in the isolated perfused rabbit hearts.  相似文献   

8.
BACKGROUND: In the rodent, ischemic preconditioning (IPC) has been shown to improve the tolerance of the liver to ischemia-reperfusion under normothermic or hypothermic conditions. The aim of the present study was to test this hypothesis in a dog model, which may be more relevant to the human. METHODS: Beagle dogs were used in two distinct animal models of hepatic warm ischemia and orthotopic liver transplantation (hypothermic ischemia). IPC consisted of 10 minutes of ischemia followed by 10 minutes of reperfusion. In the first model, livers were exposed to 55 minutes prolonged warm ischemia and reperfused for 3 days (n = 6). In the second model, livers were retrieved and preserved for 48 hours at 4 degrees C in University of Wisconsin solution, transplanted, and reperfused without immunosuppression for 7 days (n = 5). In each model, nonpreconditioned animals served as controls (n = 5 in each group). Also, isolated dog hepatocytes were subjected to warm and cold storage ischemia-reperfusion to model the animal transplant studies using IPC. RESULTS: In the first model (warm ischemia), IPC significantly decreased serum aminotransferase activity at 6 and 24 hours post-reperfusion. After 1 hour of reperfusion, preconditioned livers contained more adenosine triphosphate and produced more bile and less myeloperoxidase activity (neutrophils) relative to controls. In the second model (hypothermic preservation), IPC was not protective. Finally, IPC significantly attenuated hepatocyte cell death after cold storage and warm reperfusion in vitro. CONCLUSIONS: IPC is effective in large animals for protecting the liver against warm ischemia-reperfusion injury but not injury associated with cold ischemia and reperfusion (preservation injury). However, the IPC effect observed in isolated hepatocytes suggests that preconditioning for preservation is theoretically possible.  相似文献   

9.
Gap junction uncoupling protects the heart against ischemia   总被引:4,自引:0,他引:4  
BACKGROUND: Many stimuli can successfully protect the heart against ischemia. We investigated whether gap junction uncoupling before ischemia was myoprotective. We also studied the function of the adenosine triphosphate-dependent potassium channel, which has been implicated in the mechanism of pharmacologic preconditioning, with respect to gap junction physiology. METHODS: Twenty-eight rabbit hearts were placed on a Langendorff perfusion apparatus. Five were given a 5-minute infusion of 1 mmol/L heptanol (a gap junction uncoupler), 5 were given 10 micromol/L 2,3-butanedione monoxime (an electromechanical uncoupler), and 6 were given no drug. The left anterior descending coronary artery was then occluded for 1 hour and reperfused for 2 hours. Six hearts received 10 micromol/L glybenclamide before heptanol to evaluate the role of the adenosine triphosphate-dependent potassium channel. Six hearts underwent ischemic preconditioning with 2 cycles of 5 minutes of global ischemia and reperfusion. Action-potential duration of the ischemic zone, left ventricular developed pressure, and coronary flow were measured continuously. Infarct size was determined at the end of reperfusion. RESULTS: Heptanol significantly reduced infarct size (from 46% +/- 2% to 22% +/- 5%, P <.01), an effect that was not prevented by glybenclamide. Butanedione monoxime decreased developed pressure but did not significantly reduce infarct size (46% +/- 5% vs 46% +/- 2%, P = not significant). There were no differences among groups with regard to developed pressure or action-potential duration. CONCLUSION: Directly blocking gap junctions preconditions the heart. This protection is not a direct result of a decrease in developed pressure before a prolonged ischemic period nor is it achieved through a mechanism involving the adenosine triphosphate-dependent potassium channel.  相似文献   

10.
OBJECTIVE: delta-Opioid receptors are involved in the cardioprotective effect of ischemic preconditioning. This study was designed (1) to assess the protective capacities of ischemic preconditioning and the synthetic delta-opioid receptor agonist D-Ala(2)-D-Leu(5) enkephalin (DADLE) in a functionally oriented experimental model of ischemia and reperfusion and (2) to assess whether the effects of both protective measures are similarly blocked by naloxone, a nonspecific delta-opioid receptor antagonist. METHODS: Sixty-four isolated working rat hearts were subjected to 45 minutes of hypothermic ischemia at 30 degrees C followed by 25 minutes of normothermic reperfusion. Rats were pretreated with DADLE (1 mg/kg body weight intravenously), naloxone (3 mg/kg body weight intravenously), or a combination thereof within 60 minutes before onset of isolated heart perfusion. During the preischemic perfusion period, 8 hearts per group were preconditioned by one cycle of 5 minutes of normothermic global ischemia and subsequent reperfusion whereas another 8 served as nonpreconditioned controls. The postischemic functional recovery of hearts and their creatine kinase leakage were determined. RESULTS: Pretreatment with DADLE and ischemic preconditioning improved the postischemic recovery of aortic flow when compared with nonpreconditioning (57.7% +/- 4.0% and 60.8% +/- 4.3% vs 40.0% +/- 4.2% of preischemic baseline value, P <.001). Combined pretreatment with DADLE before ischemic preconditioning afforded additional aortic flow recovery compared with pretreatment with DADLE alone (68.6% +/- 3.3% vs 57.7% +/- 4.0% of preischemic baseline value; P =.038). With combined pretreatment, early postischemic creatine kinase release was lower than control in hearts without pretreatment (0.48 +/- 0.11 vs 0.80 +/- 0.12 IU/5 minutes per heart; P =.001). Naloxone abolished the beneficial functional effects of pretreatment with DADLE and ischemic preconditioning. CONCLUSIONS: Pharmacologic activation of delta-opioid receptors affords improvement of functional protection in isolated working rat hearts similar to that conferred by classic ischemic preconditioning. The combination of both pretreatments reduces ischemic cellular damage and further adds to postischemic functional recovery. These changes are reversed by naloxone, an observation providing evidence that ischemic preconditioning involves signaling through opioid receptors.  相似文献   

11.
BACKGROUND: Mitochondrial K(ATP) channel activation is an essential component of ischemic preconditioning. These channels are selectively opened by diazoxide and may be up-regulated by adenosine and nitric oxide. Therefore, pharmacological preconditioning with diazoxide in combination with adenosine and a nitric oxide donor (triple-combination pharmacological preconditioning) may enhance cardioprotection. METHODS AND RESULTS: Isolated and perfused rat hearts underwent ischemic preconditioning with 3 cycles of 5 minutes of ischemia and 5 minutes of reperfusion before 5 minutes of oxygenated potassium cardioplegia and 35 minutes of ischemia. Pharmacological preconditioning was performed by adding adenosine, diazoxide, and a nitric oxide donor S-nitroso-N-acetyl-penicillamine each alone or in combinations for 25 minutes followed by 10 minutes washout before cardioplegic arrest. Only triple-combination pharmacological preconditioning conferred significant cardioprotection as documented by highly improved left ventricular function and limited creatine kinase release during reperfusion that was comparable to that afforded by ischemic preconditioning. Mitochondrial K(ATP) channel activity assessed by flavoprotein oxidation was increased by diazoxide, but no further increase in flavoprotein oxidation was obtained by ischemic preconditioning and triple-combination pharmacological preconditioning. Significant activation of protein kinase C-epsilon was observed in only ischemic preconditioning and triple-combination pharmacological preconditioning. Pretreatment with the mitochondrial K(ATP) channel inhibitor 5-hydroxydecanoate or the protein kinase C inhibitor chelerythrine abrogated activation of protein kinase C-epsilon and cardioprotection afforded by ischemic preconditioning and triple-combination pharmacological preconditioning. CONCLUSIONS: Integrated pharmacological preconditioning is not simply mediated by enhanced mitochondrial K(ATP) channel activation, but is presumably mediated through amplified protein kinase C signaling promoted by coordinated interaction of adenosine, mitochondrial K(ATP) channel activation, and nitric oxide.  相似文献   

12.
Sniecinski R  Liu H 《Anesthesiology》2004,100(3):589-597
BACKGROUND: Ischemic preconditioning and anesthetic preconditioning (APC) are reported to decrease myocardial infarct size during ischemia-reperfusion injury. However, the beneficial effects of ischemic preconditioning have been shown to decrease with advancing age. Although the mechanisms of ischemic preconditioning and APC are thought to be similar, it is not known whether the beneficial effects of APC are also reduced in the aged myocardium. METHODS: Male Fischer 344 rats of three age groups (2-4, 10-12, and 20-24 months) were used. Hearts were Langendorff perfused. Six hearts in each age group were pretreated with 10 min of sevoflurane and a 5-min washout before 25 min of ischemia and 60 min of reperfusion. Six control hearts in each age group received no treatment before ischemia. Nuclear magnetic resonance was used to measure intracellular Na, intracellular Ca, and intracellular pH, respectively. Left ventricular developed pressure, creatine kinase, and infarct size were measured. RESULTS: Ischemia decreases intracellular pH and increases intracellular Na and intracellular Ca in all age groups. APC blunts the pH decreases in young adult and middle-aged rats, but not in aged rats. APC decreased intracellular Na and intracellular Ca accumulation during ischemia in young adult and middle-aged hearts. APC improved adenosine triphosphate recovery in young rats but not in aged rats. Creatine kinase and infarct sizes were significantly reduced and left ventricular developed pressure was improved with APC in the young adult and middle-aged groups but not the aged group. CONCLUSIONS: The benefits of APC are significantly reduced with advanced age in an isolated rat heart model.  相似文献   

13.
Preconditioning protects against ischemia/reperfusion injury of the liver   总被引:14,自引:0,他引:14  
Ischemic preconditioning (IPC) of an organ may induce protection against the injury caused by longer duration of ischemia and subsequent reperfusion. In a standardized model of such injury in the rat liver, we used the following protocol to investigate whether adenosine played a role in IPC by preventing its enzymatic degradation by dipyridamole pretreatment according to the following protocol: group 1, non-ischemic control rats; group 2, ischemic control rats subjected to 60 minutes of ischemia by clamping of the common hepatic artery followed by 60 minutes of reperfusion; group 3, IPC with 10 minutes of ischemia followed by 15 minutes of reperfusion, prior to the ischemia/reperfusion period as in group 2; group 4, pharmacologic preconditioning with administration of dipyridamole prior to the ischemia/reperfusion period as in group 2. Peripheral liver blood flow was significantly reduced during clamping (groups 2 to 4). After unclamping, blood flow was still reduced in the ischemic rats (group 2) but had returned to preclamp values in the animals that had been subjected to ischemic (group 3) or pharmacologic (group 4) preconditioning. Liver cell injury was significantly increased in the ischemia group (group 2) only. In our experimental model of ischemia/reperfusion injury in the rat liver, we found an equally beneficial effect with ischemic and pharmacologic preconditioning. Adenosine appears to be a crucial factor in IPC.  相似文献   

14.
Background: Brief ischemic periods render the myocardium resistant to infarction from subsequent ischemic insults by a process called ischemic preconditioning. Volatile anesthetics have also been shown to be cardioprotective if administered before ischemia. The effect of preconditioning alone and combined with halothane or isoflurane on hemodynamic recovery and preservation of adenosine triphosphate content in isolated rat hearts was evaluated.

Methods: Seven groups of isolated rat hearts (n = 6 each) were perfused in a retrograde manner at constant temperature and pressure. A latex balloon was placed in the left ventricle to obtain isovolumetric contraction. Heart rhythm, coronary flow, left ventricular pressure and its derivative dP/dt (positive and negative), and developed pressure were monitored. The hearts were paced at 300 beats per minute. Each heart was randomly allocated to (1) a time-control group that received no ischemia, (2) an untreated group that received 25 min of normothermic ischemia only, (3 and 4) an isoflurane group and a halothane group that received 40 min of anesthetic (2.2% and 1.5%, respectively) before ischemia; (5) a preconditioning group that received two 5-min periods of ischemia separated by 10 min of reperfusion before ischemia; or (6 and 7) a isoflurane + preconditioning group and a halothane + preconditioning group that received anesthetic for 10 min at concentrations of 2.2% or 1.5%, respectively, before two 5-min periods of ischemia separated by 10 min of reperfusion. All treated groups received 25 min of normothermic ischemia followed by 30 min of reperfusion.

Results: The time-control group remained hemodynamically stable for the entire experiment, and the adenosine triphosphate content was 18.3 +/- 1.7 (SEM) micro Meter/g at the end of 115 min. The untreated group had depressed recovery after 25 min of normothermic ischemia, and the developed pressure was significantly depressed and recovered only 30 +/- 9% (P < 0.001) of its preischemic value. There was also a significant increase in the incidence of ventricular fibrillation (P < 0.001). Adenosine triphosphate content was significantly lower in this group than in all other groups. Five minutes of ischemia in the preconditioning group had little effect on hemodynamics and decreased developed pressure only 6.4%. Halothane depressed developed pressure by 16 +/- 5% (P < 0.001), and isoflurane increased coronary flow by 145 +/- 9% (P < 0.001) but had no significant hemodynamic effect. The treated groups had significantly better recovery of postischemic function than did the untreated group. In the preconditioning group, developed pressure recovered to 85% of control and dP/dt+ to 87% of control. The addition of halothane or isoflurane to preconditioning did not provide additional functional recovery but did increase the level of adenosine triphosphate preservation (13.1 +/- 1.1 and 12.4 +/- 1.1 micro Meter/g, respectively).  相似文献   


15.
PURPOSE: Ischemic preconditioning protects the heart against subsequent prolonged ischemia by opening of adenosine triphosphate-sensitive potassium (K(ATP)) channels. Thiopentone blocks K(ATP) channels in isolated cells. Therefore, we investigated the effects of thiopentone on ischemic preconditioning. METHODS: Isolated rat hearts (n=56) were subjected to 30 min of global no-flow ischemia, followed by 60 min of reperfusion. Thirteen hearts underwent the protocol without intervention (control, CON) and in 11 hearts (preconditioning, PC), ischemic preconditioning was elicited by two five-minute periods of ischemia. In three additional groups, hearts received 1 (Thio 1, n=11), 10 (Thio 10, n=11) or 100 microg x mL(-1) (Thio 100, n=10) thiopentone for five minutes before preconditioning. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial performance and cellular injury, respectively. RESULTS: Recovery of LV developed pressure was improved by ischemic preconditioning (after 60 min of reperfusion, mean +/- SD: PC, 40 +/- 19% of baseline) compared with the control group (5 +/- 6%, P <0.01) and this improvement of myocardial function was not altered by administration of thiopentone (Thio 1, 37 +/- 15%; Thio 10, 36 +/- 16%; Thio 100, 38 +/- 16%, P=0.87-0.99 vs PC). Total CK release over 60 min of reperfusion was reduced by preconditioning (PC, 202 +/- 82 U x g(-1) dry weight) compared with controls (CON, 383 +/- 147 U x g(-1), P <0.01) and this reduction was not affected by thiopentone (Thio 1, 213 +/- 69 U x g(-1); Thio 10, 211 +/- 98 U x g(-1); Thio 100, 258 +/- 128 U x g(-1), P=0.62-1.0 vs PC). CONCLUSION: These results indicate that thiopentone does not block the cardioprotective effects of ischemic preconditioning in an isolated rat heart preparation.  相似文献   

16.
OBJECTIVE: Carvedilol is an alpha-and beta-blocking agent with antioxidant properties. We examined if treatment with carvedilol in vivo protected the heart against ischemic injury ex vivo. METHODS: Isolated hearts from treated rats (80 mg/kg/day) were subjected to 30 min regional ischemia. Hearts from non-treated animals received either no drug, 10 min carvedilol (1 microM) acute or ischemic preconditioning (IP) by 5 min ischemia +5 min reperfusion prior to regional ischemia. In separate experiments isolated hearts were subjected to 15 min global ischemia and 30 min reperfusion. RESULTS: Infarct size was significantly reduced by ischemic preconditioning or by chronic carvedilol treatment (9.0+/-0.9% and 7.2+/-1.9% of risk zone infarcted, respectively, vs. 33.8+/-6.4% in control hearts, mean+/-SEM, p < 0.05). Recovery of left ventricular developed pressure after global ischemia was not improved by carvedilol. Post-ischemic rise in left ventricular end diastolic pressure was, however, attenuated by chronic carvedilol treatment. CONCLUSION: Chronic in vivo but not acute ex vivo pretreatment with carvedilol significantly limited infarct size in isolated rat hearts.  相似文献   

17.
Background: Ischemic preconditioning and anesthetic preconditioning (APC) are reported to decrease myocardial infarct size during ischemia-reperfusion injury. However, the beneficial effects of ischemic preconditioning have been shown to decrease with advancing age. Although the mechanisms of ischemic preconditioning and APC are thought to be similar, it is not known whether the beneficial effects of APC are also reduced in the aged myocardium.

Methods: Male Fischer 344 rats of three age groups (2-4, 10-12, and 20-24 months) were used. Hearts were Langendorff perfused. Six hearts in each age group were pretreated with 10 min of sevoflurane and a 5-min washout before 25 min of ischemia and 60 min of reperfusion. Six control hearts in each age group received no treatment before ischemia. Nuclear magnetic resonance was used to measure intracellular Na, intracellular Ca, and intracellular pH, respectively. Left ventricular developed pressure, creatine kinase, and infarct size were measured.

Results: Ischemia decreases intracellular pH and increases intracellular Na and intracellular Ca in all age groups. APC blunts the pH decreases in young adult and middle-aged rats, but not in aged rats. APC decreased intracellular Na and intracellular Ca accumulation during ischemia in young adult and middle-aged hearts. APC improved adenosine triphosphate recovery in young rats but not in aged rats. Creatine kinase and infarct sizes were significantly reduced and left ventricular developed pressure was improved with APC in the young adult and middle-aged groups but not the aged group.  相似文献   


18.
《Liver transplantation》2002,8(11):990-999
In an in vivo rat model of liver ischemia followed by reperfusion a consistent appearance of necrosis and activation of biochemical pathways of apoptosis was reproduced and monitored after 30 minutes reperfusion. Preconditioning by application of a short cycle of ischemia-reperfusion (10 minutes + 10 minutes) positively conditioned recovery of the organ at reperfusion, attenuating both necrotic and apoptotic events. Preconditioning at least halved cell oxidative damage occurring early at reperfusion, and as a major consequence, the increase of cytolysis and apoptosis occurring at reperfusion was about 50% less. The attenuation of both pathways of cell death by preconditioning appeared at least partly related to its modulate action on H2O2 and 4-hydroxy-2,3-trans-nonenal production. The overall data point to a marked diminished oxidant generation and oxidative reactions as one major possible mechanism through which ischemic preconditioning exerts protection against necrotic and apoptotic insult to the postischemic liver. (Liver Transpl 2002;8:990-999.)  相似文献   

19.
The aim of this study is to investigate whether atrial natriuretic peptide can mimic preconditioning to protect ischemia or reperfusion injury in rabbit hearts. New Zealand white rabbits were randomized into 3 groups: (1) Controls. Hearts received a 60 minute-occlusion of the left anterior descending artery, followed by a 180 minute-reperfusion. (2) Preconditioning. Two 5-minute periods of ischemia separated by a 10-minute reperfusion, followed by a 60-minute ischemia and a 180-minute reperfusion. (3) Atrial natriuretic peptide treatment. Bolus injection of exogenous atrial natriuretic peptide (2.5 microg/kg) given intravenously at 15 minutes prior to 60 minute-ischemia followed by a 180-minute reperfusion. Myocardial necrotic area and area at risk of necrosis were determined by triphenyltetrazolium chloride staining. Ratio of necrotic area to area at risk was 49.95% +/- 1.15%, 7.95% +/- 0.33%, and 8.36% +/- 0.61% in the controls, preconditioning group, and atrial natriuretic peptide group, respectively. Both preconditioning and atrial natriuretic peptide significantly reduced the size of infarct caused by ischemia (preconditioning vs controls, P < .05; atrial natriuretic peptide vs controls, P < .05). Atrial natriuretic peptide can mimic ischemic preconditioning to protect rabbit hearts from prolonged ischemia and reperfusion injury. It may be involved in the cardioprotective mechanisms of preconditioning.  相似文献   

20.
OBJECTIVE: The heart possesses an extraordinary ability to remember short episodes of sublethal ischemia and reperfusion (angina), which protects the myocardium and coronary vasculature from a subsequent lethal insult, a phenomenon known as ischemic preconditioning. A therapeutic goal for more than 2 decades has been to develop a pharmacologic mimetic comparable with ischemic preconditioning. Our aim was to investigate the preconditioning effect of a new combinatorial therapy targeting adenosine A1 receptors and voltage-dependent sodium fast channels in the in vivo rat model of regional ischemia. METHODS: Ischemia-reperfusion was achieved by placing a reversible tie around the left coronary artery in anesthetized and ventilated Sprague-Dawley rats (n = 37). Rats were randomly assigned to 1 of 5 groups: (1) saline control (n = 13); (2) ischemic preconditioning (n = 6); (3) lidocaine only (608 microg . kg -1 . min -1 , n = 5); (4) adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 5 microg/kg, n = 7); and (5) CCPA plus lidocaine (n = 6). Ischemic preconditioning was achieved by using 3 cycles of ischemia and reperfusion lasting 3 minutes each. Lidocaine was infused continuously 5 minutes before and throughout 30 minutes of ischemia and ceased at reperfusion. A bolus of CCPA was infused 5 minutes before ligation along with a constant infusion of lidocaine (as above). All animals were reperfused for 120 minutes for infarct size measurement. RESULTS: Fifty-four percent of saline control rats, 17% of ischemic preconditioning-treated rats, and 29% of CCPA-treated rats died during ischemia from ventricular fibrillation. Infarct size of saline control animals was 61% +/- 5%. Pretreating with CCPA and lidocaine infusion resulted in no deaths, no severe arrhythmias, and significant infarct size reduction compared with that seen in saline control animals (P < .05). Remarkably, infarct size reduction in CCPA plus lidocaine-treated rats (12% +/- 4%) was equivalent to that achieved with ischemic preconditioning (11% +/- 3%), whereas infarct size in rats undergoing CCPA-only and lidocaine-only treatments was 42% +/- 7% and 60% +/- 6%, respectively. Although CCPA plus lidocaine treatment reduced heart rate, mean arterial pressure, and systolic pressure during ischemia, no correlation was found between these variables and infarct size reduction. CONCLUSION: We conclude that activating adenosine A1 receptor subtype with CCPA and concomitantly modulating sodium fast channels with lidocaine was comparable with ischemic preconditioning and might offer a new therapeutic window to minimize myocardial damage during surgical ischemia and reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号