首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND PURPOSE: Nitric oxide (NO) acts on receptors coupled to guanylyl cyclase (GC), leading to cGMP accumulation. The NO binding site is a haem group, oxidation or loss of which diminishes NO-stimulated activity. Agonists reportedly engaging both these NO-insensitive forms have emerged. Here we characterize the effect of a prototype compound (BAY 58-2667) and use it to assess the haem status of cellular GC. EXPERIMENTAL APPROACH: GC activity measurements were made on the purified protein and on rat platelets. KEY RESULTS: Experiments on purified GC showed that the target for BAY 58-2667 is the haem-free GC, not the haem-oxidized form. The efficacy of BAY 58-2667 was about half that shown normally by NO. In platelets, BAY 58-2667 was a potent GC activator (EC50 approximately 15 nM) but the maximum effect was only about 1% of that achievable with NO. Nevertheless, it was enough to evoke cGMP-dependent protein phosphorylation. Profound (85 %) desensitization of NO-evoked GC activity did not alter the effectiveness of BAY 58-2667. Haem oxidation, however, increased the efficacy of BAY 58-2667 by 22-fold, implying that about half the cellular GC was then haem-free. Oxidation appeared to enhance the rate of haem dissociation from purified GC. CONCLUSIONS AND IMPLICATIONS: Compounds such as BAY 58-2667 are useful for probing the occupancy of the haem pocket of NO receptors in cells but not for distinguishing oxidized from reduced haem. In vivo, such compounds are likely to be particularly effective in conditions where there is deficient haem incorporation or enhanced haem loss.  相似文献   

2.

Background and purpose:

In endothelial dysfunction, signalling by nitric oxide (NO) is impaired because of the oxidation and subsequent loss of the soluble guanylyl cyclase (sGC) haem. The sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino)methyl[benzoic]acid (BAY 58-2667) is a haem-mimetic able to bind with high affinity to sGC when the native haem (the NO binding site) is removed and it also protects sGC from ubiquitin-triggered degradation. Here we investigate whether this protection is a unique feature of BAY 58-2667 or a general characteristic of haem-site ligands such as the haem-independent sGC activator 5-chloro-2-(5-chloro-thiophene-2-sulphonylamino-N-(4-(morpholine-4-sulphonyl)-phenyl)-benzamide sodium salt (HMR 1766), the haem-mimetic Zn-protoporphyrin IX (Zn-PPIX) or the haem-dependent sGC stimulator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272).

Experimental approach:

The sGC inhibitor 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) was used to induce oxidation-induced degradation of sGC. Activity and protein levels of sGC were measured in a Chinese hamster ovary cell line as well as in primary porcine endothelial cells. Cells expressing mutant sGC were used to elucidate the molecular mechanism underlying the effects observed.

Key results:

Oxidation-induced sGC degradation was prevented by BAY 58-2667 and Zn-PPIX in both cell types. In contrast, the structurally unrelated sGC activator, HMR 1766, and the sGC stimulator, BAY 41-2272, did not protect. Similarly, the constitutively haem-free sGC mutant β1H105F was stabilized by BAY 58-2667 and Zn-PPIX.

Conclusions:

The ability of BAY 58-2667 not only to activate but also to stabilize oxidized/haem-free sGC represents a unique example of bimodal target interaction and distinguishes this structural class from non-stabilizing sGC activators and sGC stimulators such as HMR 1766 and BAY 41-2272, respectively.  相似文献   

3.
The heterodimeric heme-protein soluble guanylyl cyclase (sGC) is the only proven receptor for nitric oxide (NO). Recently, two different types of NO-independent soluble guanylyl cyclase stimulators have been discovered. The heme-dependent stimulator 2-[1-[2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-5(4-morpholinyl)-4,6-pyrimidinediamine (BAY 41-8543) stimulates the enzyme in a synergistic fashion when combined with NO, requires the presence of the heme group and can be blocked by the soluble guanylyl cyclase inhibitor 1H-(1,2,4)-Oxadiazole-(4,3-a)-quinoxalin-1-one (ODQ). The heme-independent activator 4-[((4-carboxybutyl)[2-[(4-phenethylbenzol) oxy]phenethyl]amino)methyl[benzoic]acid (BAY 58-2667) activates soluble guanylyl cyclase even in the presence of ODQ or rendered heme-deficient. In the present study, BAY 41-8543, BAY 58-2667 and NO strongly increased V(max). Combination of BAY 58-2667 and NO increased V(max) in an additive manner, whereas the synergistic effect of BAY 41-8543 and NO on enzyme activation was reflected in an overadditive increase of V(max). ODQ potentiated V(max) of BAY 58-2667-stimulated soluble guanylyl cyclase. BAY 41-8543 prolonged the half-life of the nitrosyl-heme complex of NO-activated enzyme, an effect that was not observed with BAY 58-2667. These results show the different activation patterns of both compounds and demonstrate their value as tools to investigate the mechanisms that underlie soluble guanylyl cyclase activation.  相似文献   

4.
The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5'-guanosine monophosphate (cGMP) pathway plays an important role in cardiovascular regulation by promoting vasodilation and inhibiting vascular smooth muscle cell growth, platelet aggregation, and leukocyte adhesion. In pathophysiological states with endothelial dysfunction this signaling pathway is impaired. Activation of sGC has traditionally been achieved with nitrovasodilators; however, these drugs are associated with the development of tolerance and potentially deleterious cGMP-independent actions. In this review the actions of BAY 41-2272, the prototype of a new class of NO-independent sGC stimulators, in cardiovascular disease models is discussed. BAY 41-2272 binds to a regulatory site on the alpha-subunit of sGC and stimulates the enzyme synergistically with NO. BAY 41-2272 had antihypertensive actions and attenuated remodeling in models of systemic arterial hypertension. It also unloaded the heart in experimental congestive heart failure. BAY 41-2272 reduced pulmonary vascular resistance in acute and chronic experimental pulmonary arterial hypertension. Furthermore, BAY 41-2272 inhibited platelet aggregation in vitro and leukocyte adhesion in vivo.These findings make direct sGC stimulation with BAY 41-2272 a promising new therapeutic strategy for cardiovascular diseases and warrant further studies. Finally, the significance of the novel NO- and heme-independent sGC activator BAY 58-2667, which activates two forms of NO-insensitive sGC, is briefly discussed.  相似文献   

5.
1. Chronic renal disease is associated with oxidative stress, reduced nitric oxide (NO) availability and soluble guanylate cyclase (sGC) dysfunction. Recently, we discovered BAY 58-2667, a compound activating heme-deficient or oxidized sGC in a NO-independent manner. 2. We assessed potential of BAY 58-2667 in preventing cardiac and renal target organ damage in rats with 5/6 nephrectomy. 3. Male Wistar rats were allocated to three groups: 5/6 nephrectomy, 5/6 nephrectomy treated with BAY 58-2667 and sham operation. Study period was 18 weeks: blood pressure and creatinine clearance were assessed repeatedly. At study end blood samples were taken and hearts and kidneys harvested for histological studies. 4. BAY 58-2667 markedly lowered blood pressure in animals with 5/6 nephrectomy (untreated versus treated animals: 189+/-14 versus 146+/-11 mmHg, P<0.001). Left ventricular weight, cardiac myocyte diameter as well as cardiac arterial wall thickness significantly decreased in comparison to untreated animals with 5/6 nephrectomy. Natriuretic peptide plasma levels were also improved by BAY 58-2667. Kidney function and morphology as assessed by creatinine clearance, glomerulosclerosis, interstitial and perivascular fibrosis of intrarenal arteries were likewise significantly improved by BAY 58-2667. 5. This is the first study showing that BAY 58-2667 effectively lowers blood pressure, reduces left ventricular hypertrophy and slows renal disease progression in rats with 5/6 nephrectomy by targeting mainly oxidized sGC. Therefore, BAY 58-2667 represents a novel pharmacological principle with potential clinical value in treatment of chronic renal disease.  相似文献   

6.
Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO has been implicated in the pathogenesis of cardiovascular and other diseases. Current therapies that involve the use of organic nitrates and other NO donors have limitations, including non-specific interactions of NO with various biomolecules, lack of response and the development of tolerance following prolonged administration. Compounds that activate sGC in an NO-independent manner might therefore provide considerable therapeutic advantages. Here we review the discovery, biochemistry, pharmacology and clinical potential of haem-dependent sGC stimulators (including YC-1, BAY 41-2272, BAY 41-8543, CFM-1571 and A-350619) and haem-independent sGC activators (including BAY 58-2667 and HMR-1766).  相似文献   

7.
The purpose of the present study was to determine whether an activator of soluble guanylyl cyclase (sGC), BAY 58-2667, inhibits platelet aggregation and to clarify its mechanism of action. Blood was collected from anesthetized WKY rats. The aggregation of washed platelet was measured and the production of cAMP and cGMP was determined. BAY 58-2667 produced a partial inhibition of the ADP- and collagen-induced platelet aggregation, but did not significantly affect thrombin-induced aggregation. In ADP-induced platelet aggregation, the inhibitory effects of BAY 58-2667 were associated with an increased level of both cGMP and cAMP while that of the prostacyclin analogue, beraprost, was correlated only with an increase in cAMP. The inhibitor of sGC, ODQ, enhanced the effects of BAY 58-2667. The presence of L-nitroarginine, an inhibitor of NO-synthase, hydroxocobalamin, a scavenger of NO, or that of three different NO-donors did not affect the anti-aggregating effect of BAY 58-2667. However, the anti-aggregating effects of beraprost were potentiated by BAY 58-2667. Therefore, the platelet inhibitory effects of BAY 58-2667 are associated with the generation of cGMP and a secondary increase in cAMP, both being totally NO-independent. When the sGC is oxidized, BAY 58-2667 becomes a relevant anti-aggregating agent, which synergizes with the cAMP-dependent pathway.  相似文献   

8.
BAY 41-8543 is a novel, highly specific and so far the most potent NO-independent stimulator of sGC. Here we report the effects of BAY 41-8543 on the isolated enzyme, endothelial cells, platelets, isolated vessels and Langendorff heart preparation. BAY 41-8543 stimulates the recombinant sGC concentration-dependently from 0.0001 microM to 100 microM up to 92-fold. In combination, BAY 41-8543 and NO have synergistic effects over a wide range of concentrations. Similar results are shown in implying that BAY 41-8543 stimulates the sGC directly and furthermore makes the enzyme more sensitive to its endogenous activator NO. In vitro, BAY 41-8543 is a potent relaxing agent of aortas, saphenous arteries, coronary arteries and veins with IC(50)-values in the nM range. In the rat heart Langendorff preparation, BAY 41-8543 potently reduces coronary perfusion pressure from 10(-9) to 10(-6) g ml(-1) without any effect on left ventricular pressure and heart rate. BAY 41-8543 is effective even under nitrate tolerance conditions proved by the same vasorelaxing effect on aortic rings taken either from normal or nitrate-tolerant rats. BAY 41-8543 is a potent inhibitor of collagen-mediated aggregation in washed human platelets (IC(50)=0.09 microM). In plasma, BAY 41-8543 inhibits collagen-mediated aggregation better than ADP-induced aggregation, but has no effect on the thrombin pathway. BAY 41-8543 is also a potent direct stimulator of the cyclic GMP/PKG/VASP pathway in platelets and synergizes with NO over a wide range of concentrations. These results suggest that BAY 41-8543 is on the one hand an invaluable tool for studying sGC signaling in vitro and on the other hand its unique profile may offer a novel approach for treating cardiovascular diseases.  相似文献   

9.
We report here the in vitro characterization of 1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-one (BAY 73-6691), the first potent and selective inhibitor of phosphodiesterase 9 (PDE9), which is currently under preclinical development for the treatment of Alzheimer's disease. This compound selectively inhibits human (IC50 = 55 nM) and murine (IC50 = 100 nM) PDE9 activity in vitro and shows only moderate activity against other cyclic nucleotide-specific phosphodiesterases. We also report the generation and characterization of a stably transfected PDE9 Chinese hamster ovary cell line, additionally expressing soluble guanylate cyclase (sGC), the olfactory cyclic nucleotide-gated cation channel CNGA2 and the photoprotein aequorin. In this cell line, intracellular cGMP levels can be monitored in real-time via aequorin luminescence induced by Ca2+ influx through CNGA2, acting as the intracellular cGMP sensor. This simple and sensitive assay system was used for the characterization of the cellular activity of the new PDE9 inhibitor. BAY 73-6691 alone did not significantly increase basal cGMP levels in this experimental setting. However, in combination with submaximal stimulating concentrations of the sGC activator 4-[((4-carboxybutyl)[2-[(4-phenethyl-benzyl)oxy]phenethyl]amino)methyl] benzoic acid (BAY 58-2667), the compound induced concentration-dependent luminescence signals and intracellular cGMP accumulation. The PDE9 inhibitor significantly potentiated the cGMP signals generated by sGC activating compounds such as BAY 58-2667 or 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and induced leftward shifts of the corresponding concentration-response curves. Using our newly generated PDE9 reporter cell line, we could show that BAY 73-6691 is able to efficiently penetrate cells and to inhibit intracellular PDE9 activity.  相似文献   

10.
Soluble guanylyl cyclase (sGC) is one of the key enzymes of the nitric-oxide (NO)/cyclic 3',5'-guanosine monophosphate (cGMP) pathway. Located in virtually all mammalian cells, it controls the vessel tone, smooth muscle cell growth, platelet aggregation, and leukocyte adhesion. In vivo sGC activity is mainly regulated by NO which in turn is released from L-arginine by nitric oxide synthases. One of the main diseases of the cardiovascular system, endothelial dysfunction, leads to a diminished NO synthesis and thus increases vessel tone as well as the risk of thrombosis. The predominant therapeutic approach to this condition is a NO replacement therapy, as exemplified by organic nitrates, molsidomin, and other NO releasing substances. Recent advances in drug discovery provided a variety of other approaches to activate sGC, which may help to circumvent both the tolerance problem and some non-specific actions associated with NO donor drugs. Substances like BAY 41-2272 stimulate sGC in a heme-dependent fashion and synergize with NO, allowing to enhance the effects both of endogenous NO and of exogenous NO donors. On the other hand, heme-independent activators like BAY 58-2667 allow to activate sGC even if it is rendered unresponsive to NO due to oxidative stress or heme loss. Furthermore, a few substances have been described as specific inhibitors of sGC that allow to alleviate the effects of excess NO production as seen in shock. This review discusses the cardiovascular effects of heme-dependent and heme-independent activators as well as of inhibitors of sGC.  相似文献   

11.
Nitric oxide (NO) plays an important role in cardiovascular homeostasis, particularly in the regulation of vascular tone and the reactivity of platelets and circulating cells. Soluble guanylate cyclase (sGC) acts as the principal biological target for NO and catalyses the formation of the intracellular second messenger cyclic GMP (cGMP); activation of this enzyme is thought to be responsible for the majority of cardiovascular actions of NO. In the present study, we have evaluated the antiplatelet effects of a novel non-NO-based sGC activator, BAY 41-2272, in vitro and in vivo. BAY 41-2272 produced a marked inhibition of platelet aggregation in washed platelets with a potency (IC(50) approximately 100 nM) some threefold less than the NO donor S-nitrosoglutathione. BAY 41-2272 also prevented aggregation in platelet-rich plasma (PRP), albeit with a much lower potency. Both NO and prostacyclin exhibited synergistic activity with BAY 41-2272 to inhibit platelet aggregation. In vivo, at doses of BAY 41-2272 that significantly reduced blood pressure, the compound had little effect on FeCl(3)-induced thrombosis. These data confirm that intraplatelet sGC activation results in inhibition of aggregation and suggests that novel non-NO-based sGC activators, which possess both hypotensive and antiplatelet activities, may be useful as therapeutic agents.  相似文献   

12.

Background

The most important receptor for nitic oxide is the soluble guanylate cyclase (sGC), a heme containing heterodimer. Recently, a pyrazolopyridine derivative BAY 41-2272, structurally related to YC-1, was identified stimulating soluble guanylate cyclase in an NO-independent manner, which results in vasodilatation and antiplatelet activity. The study described here addresses the identification of the NO-independent site on soluble guanylate cyclase.

Results

We developed a photoaffinity label (3H-meta-PAL) for the direct and NO-independent soluble guanylate cyclase (sGC) stimulator BAY 41-2272 by introducing an azido-group into the tritium labeled compound. The synthesized photoaffinitylabel directly stimulates the purified sGC and shows in combination with NO a synergistic effect on sGC activity. Irradiation with UV light of 3H-meta-PAL together with the highly purified sGC leads to a covalent binding to the α1-subunit of the enzyme. This binding is blocked by unlabeled meta-PAL, YC-1 and BAY 41-2272. For further identification of the NO-independent regulatory site the 3H-meta-PAL labeled sGC was fragmented by CNBr digest. The 3H-meta-PAL binds to a CNBr fragment, consisting of the amino acids 236–290 of the α1-subunit. Determination of radioactivity of the single PTH-cycles from the sequencing of this CNBr fragment detected the cysteines 238 and 243 as binding residues of the 3H-meta-PAL.

Conclusions

Our data demonstrate that the region surrounding the cysteines 238 and 243 in the α1-subunit of the sGC could play an important role in regulation of sGC activity and could be the target of this new type of sGC stimulators.  相似文献   

13.
BAY 41-2272 is a heme-dependent nitric oxide-independent soluble guanylate cyclase (sGC) stimulator, but its relaxant effect in vascular, respiratory and urogenital tissue is only partially dependent on sGC activation. As its mechanism of action has not been studied in the gastrointestinal tract, it was investigated in mouse gastric fundus and colon. Circular smooth muscle strips were mounted in organ baths under non-adrenergic non-cholinergic (NANC) conditions for isometric force recording and cGMP levels were determined using an enzyme immunoassay kit. BAY 41-2272 induced concentration-dependent relaxation in both tissues and increased cGMP levels. The sGC inhibitor ODQ totally inhibited this BAY 41-2272-induced increase of cGMP, but only partially reduced the corresponding relaxation. The PDE-5 inhibitor sildenafil had no effect on BAY 41-2272-induced responses. The NO synthase inhibitor L-NAME caused a significant decrease in BAY 41-2272-induced responses in colonic strips. Electrical field stimulation in the presence of BAY 41-2272 induced increased NANC relaxation in fundus, while in colon, rebound contraction at the end of the stimulation train was no longer visible. This suggests synergy with endogenously released NO. Responses to BAY 41-2272 were not significantly influenced by apamin, charybdotoxin or ouabain, excluding interaction with small, intermediate and large conductance Ca(2+)-activated K(+) channels and with Na(+)-K(+)-ATPase. Under depletion of intracellular calcium, CaCl(2)-induced contractions were significantly reduced by BAY 41-2272 in an ODQ-insensitive way. The present study demonstrates that BAY 41-2272 exerts its relaxing effect in mouse gastric fundus and colon partially through a cGMP-dependent mechanism and at least one additional cGMP-independent mechanism involving Ca(2+)-entry blockade.  相似文献   

14.
5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent soluble guanylyl cyclase stimulator in a nitric oxide (NO)-independent manner. The relaxant effect of BAY 41-2272 was investigated in rabbit and human corpus cavernosum in vitro. BAY 41-2272 (0.01-10 microM) relaxed both rabbit (pEC(50)=6.82+/-0.06) and human (pEC(50)=6.12+/-0.10) precontracted cavernosal strips. The guanylyl cyclase inhibitor (ODQ, 10 microM) caused significant rightward shifts in the concentration-response curves for BAY 41-2272 in rabbit (4.7-fold) and human (2.3-fold) tissues. The NO synthesis inhibitor (N-nitro-L-arginine methyl ester (L-NAME), 100 microM) also produced similar rightward shifts, revealing that BAY 41-2272 acts synergistically with endogenous NO to elicit its relaxant effect. The results also indicate that ODQ is selective for the NO-stimulated enzyme, since relaxations evoked by BAY 41-2272 were only partly attenuated by ODQ. The present study shows that both BAY 41-2272 and sildenafil evoke relaxations independent of inhibition of haem in soluble guanylate cyclase. Moreover, there is no synergistic effect of the two compounds in corpus cavernosum.  相似文献   

15.
The nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), is commonly manipulated pharmacologically in two ways. Inhibition of activity is achieved using 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-l-one (ODQ) which oxidizes the haem prosthetic group to which NO binds, while the compound 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1) is considered an 'allosteric' activator. Knowledge of how these agents function and interact in a normal cellular environment is limited. These issues were addressed using rat cerebellar cells. Inhibition by ODQ was not simply competitive with NO. The rate of onset was ODQ concentration-dependent and developed in two kinetic phases. Recovery from inhibition occurred with a half-time of approximately 5 min. YC-1 slowed the rate at which sGC deactivated on removal of NO by 45 fold, consistent with YC-1 increasing the potency of NO for sGC. YC-1 also enhanced the maximal response to NO by 2 fold. Furthermore, when added to cells in which sGC was 90% desensitized, YC-1 abruptly enhanced sGC activity to a degree that indicated partial reversal of desensitization. After pre-exposure to YC-1, sGC became resistant to inhibition by ODQ. In addition, YC-1 rapidly reversed inhibition by ODQ in cells and for purified sGC, suggesting that YC-1 either increases the NO affinity of the oxidized sGC haem or reverses haem oxidation. It is concluded that the actions of ODQ and YC-1 on sGC are broadly similar in cells and purified preparations. Additionally, YC-1 transiently reverses sGC desensitization in cells. It is hypothesized that YC-1 has multiple actions on sGC, and thereby both modifies the NO binding site and enhances agonist efficacy.  相似文献   

16.
BAY 41-8543 is a novel non-NO-based stimulator of sGC. This study investigates the acute effects of BAY 41-8543 on haemodynamics in anaesthetized rats and dogs, its long-term effects in conscious hypertension rat models and its antiplatelet effects. In anaesthetized dogs, intravenous injections of BAY 41-8543 (3 - 100 microg kg(-1)) caused a dose-dependent decrease in blood pressure and cardiac oxygen consumption as well as an increase in coronary blood flow and heart rate. In anaesthetized normotensive rats, BAY 41-8543 produced a dose-dependent and long-lasting blood pressure lowering effect after intravenous (3 - 300 microg kg(-1)) and oral (0.1 - 1 mg kg(-1)) administration. A dose-dependent and long-lasting decrease in blood pressure was also observed in conscious spontaneously hypertensive rats with a threshold dose of 0.1 mg kg(-1) p.o. After 3 mg kg(-1) the antihypertensive effect lasted for nearly 24 h. After multiple dosages, BAY 41-8543 did not develop tachyphylaxis in SHR. BAY 41-8543 prolonged the rat tail bleeding time and reduced thrombosis in the FeCl(3) thrombosis model after oral administration. In a low NO, high renin rat model of hypertension, BAY 41-8543 prevented the increase in blood pressure evoked by L-NAME and reveals a kidney protective effect. In this model, the overall beneficial effects of BAY 41-8543 manifested as both antiplatelet effect and vasodilatation were reflected in a significant reduction in mortality. The pharmacological profile of BAY 41-8543 suggests therefore that this compound has the potential to be an important research tool for in vivo investigations in the sGC/cGMP field and it also has the potential of being a unique clinical utility for treatment of cardiovascular diseases.  相似文献   

17.
The ubiquitously expressed nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in signal transduction. Binding of NO to the N-terminal prosthetic heme moiety of sGC results in approximately 200-fold activation of the enzyme and an increased conversion of GTP into the second messenger cGMP. sGC exists as a heterodimer the dimerization of which is mediated mainly by the central region of the enzyme. In the present work, we constructed deletion mutants within the predicted dimerization region of the sGC alpha(1)- and beta(1)-subunit to precisely map the sequence segments crucial for subunit dimerization. To track mutation-induced alterations of sGC dimerization, we used a bimolecular fluorescence complementation approach that allows visualizing sGC heterodimerization in a noninvasive manner in living cells. Our study suggests that segments spanning amino acids alpha(1)363-372, alpha(1)403-422, alpha(1)440-459, beta(1)212-222, beta(1)304-333, beta(1)344-363, and beta(1)381-400 within the predicted dimerization region are involved in the process of heterodimerization and therefore in the expression of functional sGC.  相似文献   

18.
BAY 41-2272 is a guanylyl cyclase (GC) stimulator derived from YC-1 (3-[(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole]). Previous studies by our group showed that BAY 41-2272 activates human monocytes via soluble guanylyl cyclase (sGC) and cGMP. In this study, we investigated the effect of BAY 41-2272 on human neutrophil function and found that 30 μM BAY 41-2272 inhibits neutrophil migration (1.82-fold lower than FMLP, P < 0.05 by one-way ANOVA followed by Tukey's test), oxidative burst (1.70-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test), and IL-8 cytokine production (1.80-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test). Our results suggest that these effects are independent of the sGC pathway but dependent instead on cGMP production, as the response induced by 30 μM BAY 41-2272 was 6.40-fold greater than that observed in our negative control (P < 0.05 by parametric t-test). 1H-[1, 2, 4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), which is an irreversible inhibitor of sGC, was unable to reverse the effects of BAY 41-2272 on human neutrophils, indicating that this drug acts independently of sGC. Our results confirm the immunomodulatory effect of BAY 41-2272 on human neutrophils.  相似文献   

19.
The benzylindazole derivative 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) is an allosteric stimulator of soluble guanylate cyclase (sGC) that sensitizes the enzyme to the gaseous ligands carbon monoxide (CO) and nitric oxide (NO). In this study, we examined whether YC-1 also promotes the production of these gaseous monoxides by stimulating the expression of the inducible isoforms of heme oxygenase (HO-1) and NO synthase (iNOS) in vascular smooth muscle cells (SMCs). YC-1 increased HO-1 mRNA, protein, and promoter activity and potentiated cytokine-mediated expression of iNOS protein and NO synthesis by SMCs. The induction of HO-1 by YC-1 was unchanged by the sGC inhibitor, 1H-(1,2,4)oxadiazolo[4,3-alpha]quinozalin-1-one (ODQ) or by the protein kinase G inhibitors (8R,9S,11S)-(-)-2-methyl-9-methoxyl-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo(a,g)cyclocta9(cde)trinen-1-one (KT 5823) and YGRKKRRQRRRPPLRKKKKKH-amide (DT-2) and was not duplicated by 8-bromo-cGMP or the NO-independent sGC stimulator 5-cyclopropyl-2[1-(2-fluorobenzyl)-1H-pyrazolo [3,4-b] pyridine-3-yl] pyrimidin-4-ylamine (BAY 41-2272). However, the YC-1-mediated induction of HO-1 was inhibited by the phosphatidylinositol-3-kinase (PI3K) inhibitors wortmannin and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002). In contrast, the enhancement of cytokine-stimulated iNOS expression and NO production by YC-1 was prevented by ODQ and the protein kinase A inhibitor (9S,10S, 12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9, 12-epoxy-1H-diindolo(1,2,3-fg:3',2',1'-kl)pyrrolo(3,4-i)(1,6)-benzodiazocine-10-carboxylic acid hexyl ester (KT 5720) and was mimicked by 8-bromo-cGMP and BAY 41-2272. In conclusion, these studies demonstrate that YC-1 stimulates the expression of HO-1 and iNOS in vascular SMCs via the PI3K and sGC-cGMP-protein kinase A pathway, respectively. The ability of YC-1 to sensitize sGC to gaseous monoxides and simultaneously stimulate their production through the induction of HO-1 and iNOS provides a potent mechanism by which the cGMP-dependent and -independent biological actions of this agent are amplified.  相似文献   

20.
Novel non-nucleosidic compounds have recently been identified as potent inhibitors of the human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) in vitro. We have now investigated the antiviral activity of these compounds in MCMV-infected NOD/LtSz-scid/j mice that lack functional T, B and, in contrast to C.B-17/Icr scid/scid mice, natural killer cells, and represent a novel model for cytomegalovirus infection in immunocompromised hosts. BAY 38-4766 (3-hydroxy-2,2-dimethyl-N-[4(([5-(dimethylamino)-1-naphthyl]sulfonyl)amino)- phenyl]propanamide) was identified as the most potent representative of this class of antiviral compounds. Per os administration of BAY 38-4766 at dosages > or = 10 mg/kg body weight led to antiviral effects that were comparable to ganciclovir 9-(1,3-dihydroxy-2-propoxymethyl)-guanine (Cymevene) as measured by survival and levels of viral DNA in organs of infected mice. In order to assess the anti-HCMV activity of BAY 38-4766 in vivo, we used a model, in which HCMV-infected human cells were entrapped in hollow fibers and subsequently transplanted into immunodeficient mice. Using this model, we demonstrated antiviral activity of BAY 38-4766 similar to that of ganciclovir. We conclude that BAY 38-4766 shows potential as an anti-HCMV drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号