首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bioactive bone cement, designated GBC, has been developed. It consists of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler. The bioactive beads, consisting of MgO--CaO--SiO(2)--P(2)O(5)--CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to evaluate the effects on mechanical properties and osteoconductivity of adding a phosphoric ester (PE) monomer to the cement as an adhesion-promoting agent. Four kinds of cements were prepared: GBC, GBC with PE (designated GBC/PE), a cement consisting of the same PMMA used in GBC with apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC), and AWC with PE (designated AWC/PE). Each filler was added to the cement at 70 wt %. Adding PE to either GBC or AWC resulted in increases in the bending strength and decreases in the Young's modulus compared with the unmodified cements. Cements were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after operation. The affinity index (length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface) was calculated for each cement. Adding PE to either GBC or AWC resulted in significant increases in the affinity index compared with the unmodified cements. The affinity index for GBC was significantly higher than that of AWC, and that for GBC/PE was also significantly higher than that of AWC/PE. The affinity indices for each cement increased significantly with time up to 8 weeks. Our study revealed that the higher osteoconductivity of GBC/PE was due to the large alkyl group in the PE monomer, to the hydrophilicity of the phosphoric acid in the PE monomer, and to the higher bioactivity of the bioactive glass beads at the cement surface. GBC/PE shows promise as an alternative bone cement with improved properties compared with conventional PMMA bone cement.  相似文献   

2.
A new bioactive bone cement (designated GBC), consisting of bioactive glass beads as an inorganic filler and polymethylmethacrylate (PMMA) as an organic matrix, has been developed. The purpose of the present study was to examine the effect of the amount of glass bead filler added to GBC on its mechanical and biological properties, and to decide the most suitable content of filler. Serial changes in GBC with time were also examined. The newly designed bioactive beads, consisting of MgO-CaO-SiO2-P2O5-CaF2 glass, were added to the cement in the proportions 30, 40, 50, 60, and 70 wt %. These cements were designated GBC30, GBC40, GBC50, GBC60, and GBC70, respectively. The compressive strength and the elastic modulus of bending of GBC increased as the glass bead content increased. The various types of GBC were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface. Rats were killed at 4 and 8 weeks after the operation and the affinity index was calculated for each type of GBC. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks, even in GBC30 containing only 30 wt % of glass beads. At each time interval studied, there was a trend for the affinity index of GBC to increase as the glass bead filler content increased. There was no significant increase of affinity index between GBC60 and GBC70. The affinity indices for all types of GBC increased significantly with time up to 8 weeks. The handling properties of GBC were comparable to those of conventional PMMA bone cement. We conclude that when mechanical properties and osteoconductivity are both taken into consideration, GBC60 is the most suitable formulation; it shows excellent osteoconductivity and sufficient mechanical strength for clinical use.  相似文献   

3.
A new bioactive bone cement (designated GBC) consisting of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler has been developed. The bioactive beads, consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to compare this new bone cement GBC's mechanical properties in vitro and its osteoconductivity in vivo with cements consisting of the same matrix as GBC and either apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC) or sintered hydroxyapatite (HA) powder (HAC). Each filler added to the cements amounted to 70 wt %. The bending strength of GBC was significantly higher than that of AWC and HAC (p < 0.0001). Cements were packed into intramedullar canals of rat tibiae in order to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 2, 4, and 8 weeks after operation. An affinity index, which equaled the length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface, was calculated for each cement. At each time interval studied, GBC showed a significantly higher affinity index than AWC or HAC up to 8 weeks after implantation (p < 0.03). The value for GBC increased significantly with time up to 8 weeks (p < 0.006). The handling property of GBC was comparable with that of PMMA bone cement. Our study revealed that the higher osteoconductivity of GBC was due to the higher bioactivity of the bioactive glass beads at the cement surface and the lower solubility of the new PMMA powder to MMA monomer. In addition, it was found that the smaller spherical shape and glassy phase of the glass beads gave GBC strong enough mechanical properties to be useful under weight-bearing conditions. GBC shows promise as an alternative with improved properties to the conventionally used PMMA bone cement.  相似文献   

4.
A bioactive bone cement (designated GBC), consisting of bioactive glass beads as an inorganic filler and poly(methyl methacrylate) (PMMA) as an organic matrix, has been developed. The purpose of the present study was to examine the effect of the size of the glass beads added as a filler to GBC on its mechanical properties and osteoconductivity. Serial changes in GBC with time were also examined. Four different sizes of beads (mean diameters 4, 5, 9, and 13 microm) consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass were added to four GBC mixes in a proportion of 70 wt %. The bending strength of GBC increased as the mean size of the glass beads decreased. The four GBC mixes were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after surgery. The affinity index, which equaled the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface, was calculated for each cement at each interval. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks. At each time interval, there was a trend for the affinity index of GBC to increase as the mean glass bead size decreased. The affinity indices for all types of GBC increased significantly with time up to 8 weeks. The handling properties of GBC were comparable to those of conventional PMMA bone cement. We concluded that, considering both mechanical properties and osteoconductivity, GBC made with smaller sized glass beads as filler was the most suitable cement. GBC shows promise as an alternative bone cement with improved properties compared to conventional PMMA bone cement.  相似文献   

5.
A new bioactive bone cement (designated GBC), which is a polymethyl methacrylate (PMMA)-based composite consisting of bioactive glass beads as an inorganic filler and high molecular-weight PMMA as an organic matrix, has been developed. The purpose of the present study was to evaluate the effect of the filler content on the mechanical properties and osteoconductivity of GBC, to decide the most suitable filler proportion, and to evaluate the degree of cement degradation with time. The bioactive beads, consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass, were added to the cement in various proportions (40-70 wt %). The bending strength of GBC did not differ among the proportions (approximately 136 MPa), but the elastic modulus of bending of GBC increased as the glass bead filler content increased (approximately 4.1-7.2 GPa). The all types of GBC were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface. Rats were sacrificed at 4, 8, 25, and 39 weeks after implantation, and the affinity index was calculated for each type of GBC at each time point. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks, even in GBC containing only 40 wt % of glass beads. The affinity indices of GBC tended to increase as the proportion of glass bead filler increased and as the implantation period increased. In GBC containing 60 or 70 wt % of glass beads, significant rapid increases in the affinity indices were found from 4 to 8 weeks, and the high values (approximately 70%) were maintained up to 39 weeks. A sign of glass bead degradation was observed at the bone-cement interface in the rat tibiae at 39 weeks. We conclude that, when mechanical properties and osteoconductivity are both taken into consideration, GBC containing 60 or 70 wt % of glass beads is the most suitable formulation, but that further studies are needed to investigate and overcome the degradation.  相似文献   

6.
A new bioactive bone cement (designated GBC), which is a polymethyl methacrylate- (PMMA-) based composite consisting of bioactive glass beads as an inorganic filler and high-molecular-weight PMMA (hPMMA) as an organic matrix, has been developed. The bioactive glass beads consist of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass. The purpose of the present study was to evaluate the effect of CaF(2) on osteoconductivity and to evaluate the degree of cement degradation with time. Three different types of cement were prepared. GBC(F +), which has been previously described, consisted of CaF(2)-containing bioactive glass beads and hPMMA. GBC(F -) consisted of CaF(2)-free bioactive glass beads and hPMMA. The third cement was hPMMA itself (as a reference material). These three types of cement were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface. Rats were killed at 4, 8, 25, and 52 weeks after implantation, and the affinity index was calculated for each type of cement at each time point. Histologically, new bone had formed along the surface of both GBC(F +) and GBC(F -) within 4 weeks, whereas hPMMA had little contact with bone, and an intervening soft tissue layer between bone and cement was detected. No significant difference in affinity index was found between GBC(F +) and GBC(F -) at any of the time points studied, although GBC(F -) showed higher affinity indices than GBC(F +) at 8, 25, and 52 weeks. The affinity indices for GBC(F +) and GBC(F -) were significantly higher than those for hPMMA at all time points. With GBC(F +) and GBC(F -), significant increases in the affinity indices were found as the implantation period increased, and the affinity index values at 52 weeks reached more than 70%. In hPMMA, no significant increase in affinity index was observed up to 52 weeks, and the value at 52 weeks was less than 30%. Although no significant difference in affinity index was found between GBC(F +) and GBC(F -), GBC(F -) is conclusively better than GBC(F +) because diseases such as chronic fluorosis might be caused by CaF(2)-containing glass beads. Regarding the cement degradation of both GBC(F +) and GBC(F -), the degree of the degradation at 25 weeks was the same as that at 52 weeks. Therefore, the cement degradation does not appear to proceed rapidly. Further studies are needed to better understand the degradation process.  相似文献   

7.
We have developed two types of polymethylmethacrylate (PMMA)-based bioactive bone cements containing bioactive glass beads (designated GBC) or apatite-wollastonite containing glass-ceramic powder (designated AWC) as the filler. A new method was used to evaluate the bone-cement interfacial strength of these bioactive bone cements. Two types of bioactive bone cements (GBC and AWC) and PMMA cement (CMW-1) were put in a frame attached to the smooth tibial metaphyseal cortex of the rabbit and polymerized in situ. The load required to detach the cement from the bone was measured at 4, 8, and 16 weeks after implantation. The interfacial tensile strength of GBC and AWC showed significantly higher values than PMMA cement from 4 weeks, and increased with time. For GBC, strength reached a maximum value of 12.39 +/- 1.79 kgf 16 weeks after implantation. Histological examination of rabbit tibiae up to 16 weeks demonstrated no intervening layer between the bioactive bone cements and the bone, whereas fibrous tissue was observed at the interface between the PMMA cement and the bone. From this study, we conclude that PMMA-based bioactive bone cements have a relatively higher adhesiveness at the interface than the conventionally used PMMA cement, showing potential as a promising alternative.  相似文献   

8.
New bioactive composites consisting of partially crystallized glass beads as inorganic fillers and poly(methyl methacrylate) (PMMA) as an organic matrix were developed. Two kinds of partially crystallized glass beads, designated Cry820 and Cry850, were newly prepared by the heating of MgO-CaO-SiO(2)-P(2)O(5) glass at 820 and 850 degrees C, respectively. The glass beads were mixed with PMMA to form two new composites designated Cry820C and Cry850C, respectively. The goal of this study was to produce a highly osteoconductive and mechanically strong composite cement with these new fillers. A previously reported composite cement designated AWC, which was composed of apatite- and wollastonite-containing glass ceramic (AW-GC) as a powder filler and the same PMMA polymer used in the new composites, was used as a reference material. The quantity of filler added to each composite was 70 wt %. The bending strength of Cry820C was significantly higher than that of Cry850C. Composites were packed into intramedullary canals of rat tibiae to evaluate their osteoconductivity, as determined by an affinity index. The affinity index, which equaled the length of bone in direct contact with the composite surface expressed as a percentage of the total length of the composite surface, was calculated for each composite. The rats were euthanized at 4, 8, and 25 weeks after implantation. At each time interval studied, Cry820C showed a significantly higher affinity index than AWC up to 25 weeks after implantation. Cry850C showed a significantly higher affinity index than AWC up to 8 weeks and a higher affinity index than AWC at 25 weeks, although the difference was not significant. The values for each composite increased significantly with time up to 25 weeks. Our study revealed that the higher osteoconductivity of the new composites was due to the larger quantity of the glassy phase of the crystallized glass beads at the composite surface and the lower solubility of the PMMA powder to methyl methacrylate monomer. In addition, the spherical shape of the crystallized glass beads gave the new composites strong enough mechanical properties to be useful under weight-bearing conditions. The new composites show promise as alternatives, with improved properties, to conventional PMMA bone cement.  相似文献   

9.
We took three types of bioactive bone cement (designated AWC, HAC, and TCPC), each with a different bioactive filler, and evaluated the influence of each filler on the mechanical properties and osteoconductivity of the cement. The cements consisted of bisphenol-a-glycidyl methacrylate-based (Bis-GMA based) monomers as an organic matrix, with a bioactive filler of apatite/wollastonite containing glass-ceramic (AW-GC) or sintered hydroxyapatite (HA) or beta-tricalcium phosphate (beta-TCP) powder. Each filler was mixed with the monomers in proportions of 50, 70, and 80% (w/w), giving a total of nine cement subgroups. The nine subgroups were designated AWC50, AWC70, AWC80, HAC50, HAC70, HAC80, TCPC50, TCPC70, and TCPC80. The compressive and bending strengths of AWC were found to be higher than those of HAC and TCPC for all bioactive filler contents. We also evaluated the cements in vivo by packing them into the intramedullary canals of rat tibiae. To compare the osteoconductivity of the cements, an affinity index was calculated for each cement; it equaled the length of bone in direct apposition to the cement, expressed as a percentage of the total length of the cement surface. Microradiographic examination up to 26 weeks after implantation revealed that AWC showed a higher affinity index than HAC and TCPC for each filler content although the affinity indices of all nine subgroups (especially the AWC and HAC subgroups) increased with time. New bone had formed along the AWC surface within 4 weeks, even in the cement containing AW-GC filler at only 50% (w/w); observation of the cement-bone interfaces using a scanning electron microscope showed that all the cements had directly contacted the bone. At 4 weeks the AWC had bonded to the bone via a 10 micron-thick reactive layer; the width of the layer, in which partly degraded AW-GC particles were seen, became slightly thicker with time. On the other hand, in the HAC- and TCPC-implanted tibiae, some particles on the cement surface were surrounded by new bone and partly absorbed or degraded. The results suggest that the stronger bonding between the inorganic filler and the organic matrix in the AWC cements gave them better mechanical properties. The results also indicate that the higher osteoconductivity of AWC was caused by the higher reactivity of the AW-GC powder on the cement surface.  相似文献   

10.
The degradation of a new bioactive bone cement (GBC), comprised of an inorganic filler (bioactive MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass beads) and an organic matrix [high-molecular-weight polymethyl methacrylate (PMMA)], was evaluated in an in vivo aging test. Hardened rectangular specimens (20 x 4 x 3 mm) were prepared from two GBC formulations (containing 50% w/w [GBC50] or 60% w/w [GBC60] bioactive beads) and a conventional PMMA bone cement control (CMW-1). Initial bending strengths were measured with the use of the three-point bending method. Specimens of all three cements were then implanted into the dorsal subcutaneous tissue of rats, removed after 3, 6, or 12 months, and tested for bending strength. The bending strengths (MPa) of GBC50 at baseline (0 months), 3, 6, and 12 months were 136 +/- 1, 119 +/- 3, 106 +/- 5 and 104 +/- 5, respectively. Corresponding values were 138 +/- 3, 120 +/- 3, 110 +/- 2 and 109 +/- 5 for GBC60, and 106 +/- 5, 97 +/- 5, 92 +/- 4 and 88 +/- 4 for CMW-1. Although the bending strengths of all three cements decreased significantly from 0 to 6 months, those of GBC50 and GBC60 did not change significantly thereafter, whereas that of CMW-1 declined significantly between 6 and 12 months. Thus, degradation of GBC50 and GBC60 does not appear to continue after 6 months, whereas CMW-1 degrades progressively over 12 months. Moreover, the bending strengths of GBC50 and GBC60 (especially GBC60) were significantly higher than that of CMW-1 throughout. It is believed that GBC60 is strong enough for use under weight-bearing conditions and that its mechanical strength is retained in vivo; however, its dynamic fatigue behavior will need assessment before application in the clinical setting.  相似文献   

11.
A new composite bone cement designated "G2B1" was developed for percutaneous transpedicular vertebroplasty. G2B1 contains beta tricalcium phosphate particles and methylmethacrylate-methylacrylate copolymer as the powder components, and methylmethacrylate, urethane dimethacrylate, and tetrahydrofurfuryl methacrylate as the liquid components. Biocompatibility and osteoconductivity were evaluated using scanning electron microscopy, contact microradiography, and Giemsa surface staining 4, 8, 12, 26, and 52 weeks after implantation into rat tibiae. To evaluate osteoconductivity, affinity indices (%) were calculated. Scanning electron microscopy and contact microradiography revealed that bone contact with G2B1 was attained within 4 weeks (affinity index: 50.2 +/- 11.8 at 4 weeks) and at most of the margin within 26 weeks (affinity index: 87.4 +/- 7.2 at 26 weeks). Specifically, G2B1 contacted bone via a wide calcium-phosphate-rich layer, and its degradation started within 8 weeks, mainly in the marginal area. Giemsa surface staining showed that there was almost no inflammatory reaction around the G2B1. These results indicate that G2B1 is a biocompatible and osteoconductive bone cement.  相似文献   

12.
Biological and mechanical properties of PMMA-based bioactive bone cements   总被引:6,自引:0,他引:6  
We reported previously that a bioactive PMMA-based cement was obtained by using a dry method of silanation of apatite-wollastonite glass ceramic (AW-GC) particles, and using high molecular weight PMMA particles. But handling and mechanical properties of the cement were poor (Mousa et al., J Biomed Mater Res 1999;47:336-44). In the present study, we investigated the effect of the characteristics of PMMA powder on the cement. Different cements containing different PMMA powders (CMW1, Surgical Simplex, Palacos-R and other two types of PMMA powders with Mw 270,000 and 1,200,000) and AW-GC filler in 70 wt% ratio except Palacos-R (abbreviated as B-CMW1 and B-Surg Simp, B-Palacos 50 [50 wt% AW-GC filler] and B-Palacos 70 [70 wt% AW-GC filler], B-270 and B-1200) were made. Dough and setting times of B-CMW1, B-Surg Simp B-270 and B-1200 were similar to the commercial CMW1 cement which did not contain bioactive powder (C-CMW1), but B-palacos which contained large PMMA beads with high Mw had delayed setting time. B-270 had the highest bending strength among the tested cements. After 4 and 8 weeks of implantation in the medullary canals of rat tibiae, the bone-cement interface was examined using SEM. The affinity index of B-1200 was significantly higher than the other types of cements. B-270 showed good combination of handling properties, high mechanical properties and showed higher bioactivity with minimal soft tissue interposition between bone and cement compared with commercial PMMA bone cement. This may increase the strength of the bone-cement interface and increase the longevity of cemented arthroplasties.  相似文献   

13.
Three types of bioactive polymethylmethacrylate (PMMA)-based bone cement containing nano-sized titania (TiO2) particles were prepared, and their mechanical properties and osteoconductivity are evaluated. The three types of bioactive bone cement were T50c, ST50c, and ST60c, which contained 50 wt% TiO2, and 50 and 60 wt% silanized TiO2, respectively. Commercially available PMMA cement (PMMAc) was used as a control. The cements were inserted into rat tibiae and allowed to solidify in situ. After 6 and 12 weeks, tibiae were removed for evaluation of osteoconductivity using scanning electron microscopy (SEM), contact microradiography (CMR), and Giemsa surface staining. SEM revealed that ST60c and ST50c were directly apposed to bone while T50c and PMMAc were not. The osteoconduction of ST60c was significantly better than that of the other cements at each time interval, and the osteoconduction of T50c was no better than that of PMMAc. The compressive strength of ST60c was equivalent to that of PMMAc. These results show that ST60c is a promising material for use as a bone substitute.  相似文献   

14.
Three composites consisting of alumina powder dispersed in a bisphenol-a-glycidyl methacrylate (Bis-GMA) matrix were prepared and evaluated to assess the effect of alumina powder content on the mechanical properties and osteoconductivity of the composite. The alumina powder composites (APC) consisted of alumina powder (AL-P) as the inorganic filler dispersed in a Bis-GMA matrix that was solidified by a radical polymerization process. Prior to polymerization the AL-P was mixed with the monomers in proportions of 50%, 70%, and 80% by weight (APC50, APC70, and APC80). A fused silica-glass-filled composite containing 70% glass by weight (SGC70) was used as a control. The compressive and bending strengths, the elastic modulus in bending, and the bending strain of the composites increased as the AL-P content increased. We also evaluated the composites in vivo by implanting them into the medullary canals of rat tibiae. To compare the osteoconductivity of the composites, an affinity index was calculated for each composite; the affinity index equals the length of a bone in direct apposition to the composite and is expressed as a percentage of the total length of the composite surface. Microradiographic examination for periods of up to 26 weeks after implantation revealed that APC50, APC70, and APC80 all exhibited excellent osteoconductivity and made direct contact with the bone with no interposed soft tissues. However, the higher the AL-P content of the composite, the higher the osteoconductivity, especially at 4 weeks after the operation. Moreover, the amount of bone directly apposed to the composite surface increased with time. In contrast, little bone formation was seen on the surface of SGC70, even after 26 weeks. Observation by scanning electron microscope-energy dispersive X-ray microanalysis demonstrated that bone made direct contact with the APC surface through a layer containing calcium, phosphorus, and alumina powder. These results suggest that APC shows promise as a basis for developing mechanically strong and highly osteoconductive composites.  相似文献   

15.
One of the challenges of using bioactive bone cements is adjusting their handling properties for clinical application. To resolve the poorer handling properties of bioactive bone cements we developed a novel bioactive bone cement containing a unique polymethylmethacrylate (PMMA) powder, termed SPD-PMMA (40 μm in diameter), composed of cohered minute particles of PMMA (0.5 μm). The present study aimed to examine the mechanical and handling properties and the in vivo bone bonding strength of this cement. The titania content of the cement varied from 10 to 30 wt.% (Ts10, Ts20, and Ts30). The mechanical and thermal properties of Ts10 and Ts20 exceeded those of commercially available PMMA cements (PMMAc). The setting properties of Ts20, including a shorter dough time and a working time that was comparable with that of PMMAc, were adequate for clinical application. Hardened cylindrical cement specimens were inserted into rabbit femurs and the interfacial shear strengths were measured by a push-out test at 6, 12, and 26 weeks after the operation. The interfacial shear strength values (in Newtons per square millimeter) of Ts10, Ts20, and Ts30 at 12 weeks and those of Ts20 and Ts30 at 26 weeks were significantly higher than that of PMMAc (P < 0.05). These results show that a bioactive titania–PMMA composite bone cement modified by SPD-PMMA particles possesses adequate mechanical and handling properties, as well as osteoconductivity and in vivo bone bonding ability, and can be used for prosthesis fixation.  相似文献   

16.
Composite bone cements were formulated with bioactive glass (MgO--SiO(2)--3CaO. P(2)O(5)) as the filler and hydrophilic matrix. The matrix was composed of a starch/cellulose acetate blend (SCA) as the solid component and a mixture of methylmethacrylate/acrylic acid (MMA/AA) as the liquid component. The curing parameters, mechanical properties, and bioactive behavior of these composite cements were determined. The addition of up to 30 wt % of glass improved both compressive modulus and yield strength and kept the maximum curing temperature at the same value presented by a typical acrylic-based commercial formulation. The lack of a strongly bonded interface (because no coupling agent was used) had important effects on the swelling and mechanical properties of the novel bone cements. However, bone cements containing AA did not show a bioactive behavior, because of the deleterious effect of this monomer on the calcium phosphate precipitation on the polymeric surfaces. Formulations without AA were prepared with MMA or 2-hydroxyethyl methacrylate (HEMA) as the liquid component. Only these formulations could form an apatite-like layer on their surface. These systems, therefore, are very promising: They are bioactive, hydrophilic, partially degradable, and present interesting mechanical properties. This combination of properties could facilitate the release of bioactive agents from the cement, allow bone ingrowth in the cement, and induce a press-fitting effect, improving the interfaces with both the prosthesis and the bone.  相似文献   

17.
We developed a new calcium phosphate cement containing succinic acid and carboxymethyl-chitin in the liquid component. In this study, the biocompatibility and osteoconductivity of this new cement were investigated. After mixing, cement in putty form was implanted immediately between the periosteum and parietal bone and in the subcutaneous tissues of rats. In control cement, distilled water was used instead of the liquid component. In addition to histological evaluations, analyses with X-ray diffraction and Fourier transform infrared were performed for the subcutaneously implanted cements. Histological examination showed slight inflammation around the new cement on the bone and in the subcutaneous tissue at 1 week after surgery. At 2 weeks, the cement was partially bound to the parietal bone. The extent of the surface of the new cement directly in contact with the bone increased with time, and most of the undersurface of the new cement bound to the host parietal bone by 8 weeks. Analysis by X-ray diffraction showed that the new cement in the subcutaneous tissue was transformed into hydroxyapatite by 8 weeks. These results indicate that this new calcium phosphate cement is useful as a bone substitute material.  相似文献   

18.
The effect of surface modification of polymer filler on the static mechanical properties of acrylic bone cement was studied. The surface of polymer beads was modified with carboxylic and amino groups by photochemical reaction with azide compounds. Monomer modifiers (maleic anhydride, methacrylic acid and p-aminostyrene) are attached to the functionalized surface of polymer beads. Functional allyl groups, which are capable of the graft polymerisation reaction, are attached to the surface via photochemical reaction with N-(2-nitro-4-azidophenyl)-N-(-propen) amine. This approach to bone cement provides the additional covalent bonds between the polymer beads and the inter-bead matrix. The static mechanical properties of bone cements containing modified polymer beads were investigated and compared with the static mechanical properties of unmodified cements. The absolute values of compressive strength for the modified and unmodified cements were found to be similar. An increase in flexural strength for the modified cements (dry and after water storage) was observed. The structure of the surface functional groups affects the methyl methacrylate grafting resulting in a higher value of flexural strength for the maleic anhydride- and p-aminostyrene-modified cements. The scanning electron microscopy examination of the fracture surface of the cement samples showed an improvement of the adhesion between the beads and the matrix after modification.  相似文献   

19.
The effect of surface modification of polymer filler on the static mechanical properties of acrylic bone cement was studied. The surface of polymer beads was modified with carboxylic and amino groups by photochemical reaction with azide compounds. Monomer modifiers (maleic anhydride, methacrylic acid and p-aminostyrene) are attached to the functionalized surface of polymer beads. Functional allyl groups, which are capable of the graft polymerisation reaction, are attached to the surface via photochemical reaction with N-(2-nitro-4-azidophenyl)-N-(-propen) amine. This approach to bone cement provides the additional covalent bonds between the polymer beads and the inter-bead matrix. The static mechanical properties of bone cements containing modified polymer beads were investigated and compared with the static mechanical properties of unmodified cements. The absolute values of compressive strength for the modified and unmodified cements were found to be similar. An increase in flexural strength for the modified cements (dry and after water storage) was observed. The structure of the surface functional groups affects the methyl methacrylate grafting resulting in a higher value of flexural strength for the maleic anhydride- and p-aminostyrene-modified cements. The scanning electron microscopy examination of the fracture surface of the cement samples showed an improvement of the adhesion between the beads and the matrix after modification.  相似文献   

20.
Gentamicin-loaded acrylic beads are loosely placed in infected bone cavities, whereas gentamicin-loaded acrylic bone cement is used as a mechanical filler in bone to anchor prosthetic components. Both drug delivery systems are used to decrease infection rates by gentamicin release. The objective of this study is to investigate the effects of pulsed ultrasound on gentamicin release from both materials. Gentamicin release from gentamicin-loaded beads (Septopal) and from three commercially-available brands of gentamicin-loaded bone cement (CMW 1, Palacos R-G, and Palamed G) was measured after 18 h of exposure in PBS to an ultrasonic field of 46.5 kHz in a 1:3 duty cycle with an average acoustic intensity of 167 mW/cm(2). Samples not exposed to ultrasound were used as controls. Pulsed ultrasound significantly enhanced gentamicin release from gentamicin-loaded beads, whereas gentamicin release from the gentamicin-loaded bone cements was not significantly enhanced. Mercury intrusion porosimetry revealed an increased distribution of pores between 0.1 and 0.01 microm in beads after gentamicin release, while in bone cements no increase in the number of pores was found. Increased gentamicin release in beads due to ultrasound may be explained by micro-streaming in a porous structure, whereas the absence of changes in pore structure after gentamicin release in bone cement is concurrent with the lack of an enhanced release of the antibiotic by ultrasound. As an effective treatment of infections requires high local concentrations of antibiotic, increased gentamicin release due to ultrasound may be of clinical significance, especially since ultrasound has been demonstrated to increase bacterial killing by antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号