首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low frequency (6 pps) stimulation of ventral tegmental area (VTA) and nucleus accumbens (NA) produced EEG synchronization and suppressed attack behavior elicited by hypothalamic stimulation. Both quiet biting and affective attack with rage were suppressed. Autonomic and non-directed somatic motor components of the attack reaction were unaffected.High frequency (60 pps) stimulation of VTA failed to suppress any components of the attack reaction; high frequency stimulation of NA, however, did produce suppression of attack.Low frequency (6 pps) sensory stimulation, delivered by photic or lateral geniculate stimulation, produced EEG synchronization but failed to cause suppression of attack. These results indicate that low frequency stimulation per se does not cause suppression of ongoing behavior.This study demonstrates that VTA and NA, components of the mesolimbic dopamine system, are involved in the inhibition of emotional-type behaviors.  相似文献   

2.
Extracellular recordings were obtained from neurons in the ventral tegmental area (VTA) of urethane-anesthetized rats. Neurons were devided into two types based on the latencies of antidromic activation following electrical stimulation of the nucleus accumbens (NAcc), and on the durations of action potentials. Type A neurons had longer latencies for antidromic activation (mean 15.9 msec) and longer durations of action potentials (2.6msec), while type B neurons had shorter latencies (mean 4.5 msec) and shorter duration of action potentials (< 2.6msec).Electrical stimulation of the medial preoptic-anterior hypothalamic areas (mPOA-AHA) and NAcc produced the following effects on the two types of VTA neurons: (i) the majority of both type A and B neurons were suppressed by mPOA-AHA stimula stimulation with onset latencies of less than 10 msec; (ii) 42% of type B neurons were also suppressed by NAcc stimulation, with onset latencies of less than 10 msec; (iii) type A neurons were suppressed (33%) or activated (43%) by NAcc stimulation, the onset latencies usually being longer than 10 msec; (iv) 71% of type A neurons tested had convergent inputs from the mPOA-AHA and NAcc, usually suppressed-suppressed or suppressed-activated, while 45% of type B neurons had convergent inputs from these two areas, usually suppressed-suppressed.  相似文献   

3.
Opiate receptors measured in vitro or in vivo with [3H]lofentanil in the rat vagus nerve were found to accumulate on both sides of a ligature, thus indicating a bidirectional axoplasmic transport of these receptors. When rats were treated with capsaicin, the accumulation of opiate receptors was tremendously reduced in the vagus whereas muscarinic receptors in ligated sciatic nerves were unaffected. Since capsaicin is known to affect sensory neurones, mostly those containing substance P, the present results support the idea that the opiate receptors in the vagus are associated with substance P neurones.  相似文献   

4.
Projection neurons of nucleus accumbens (NAC) of the rat were identified by either antidromic activation from stimulation of midbrain ventral tegmental area-substantia nigra (VTA-SN) regions, or by tracing axons of intracellularly labeled NAC neurons into the ventral pallidum. The morphology of these NAC projection neurons were determined to be medium spiny neurons similar to those identified in the caudate-putamen.  相似文献   

5.
The psychostimulant methylphenidate (MPD) is the most common medication used in treating ADHD in children. Studies have shown an increasing prevalence among adolescents without ADHD to take MPD as a cognitive booster and recreational drug, even though it is a Schedule II drug and has a high potential for abuse. The objective of this study is to explore if there is an association between the animals’ behavioral and neurophysiological responses to acute and/or chronic methylphenidate exposure within the ventral tegmental area and the nucleus accumbens, and to compare how these two brain structures fire in response to methylphenidate. Freely moving adolescent rats implanted with semimicroelectrodes within the VTA and NAc were divided into three MPD dosing groups: 0.6, 2.5, and 10 mg/kg i.p., as well as a saline control group. The animals were divided into two groups based on their behavioral responses to chronic MPD, behavioral sensitization and tolerance, and the neuronal responses of the two groups were compared for each MPD dosing. Significant differences in the proportion of neuronal units in the VTA and NAc responding to MPD were observed at the 0.6 and 10.0 mg/kg MPD dosing groups. Moreover, the same doses of 0.6, 2.5, and 10.0 mg/kg MPD elicited behavioral sensitization in some animals and behavioral tolerance in others. This specific study shows that the VTA and NAc neurons respond differently to the same doses of MPD. MPD has different neuronal and behavioral effects depending on the individual, the dosage of MPD, and the brain structure studied.  相似文献   

6.
There are some reports demonstrating the cardiovascular functions of the ventral tegmental area (VTA). About 20–30% of the VTA neurons are GABAergic, which might play a role in baroreflex modulation. This study was performed to find the effects of GABAA, GABAB receptors and reversible synaptic blockade of the VTA on baroreflex. Drugs were microinjected into the VTA of urethane anesthetized rats, and the maximum change of blood pressure and the gain of the reflex bradycardia in response to intravenous phenylephrine (Phe) injection were compared with the preinjection and the control values. Microinjection of bicuculline methiodide (BMI, 100 pmol/100 nl), a GABAA antagonist, into the VTA strongly decreased the Phe‐induced hypertension, indicating that GABA itself attenuated the baroreflex. Muscimol, a GABAA agonist (30 mM, 100 nl), produced no significant changes. Baclofen, a GABAB receptor agonist (1000 pmole/100 nl), moderately attenuated the baroreflex, however phaclofen, a GABAB receptor antagonist (1000 pmole/100 nl), had no significant effect. In conclusion, for the first time, we demonstrated that GABAA receptors of the VTA strongly attenuate and GABAB receptors of the VTA moderately attenuate baroreflex in rat. Synapse 69:592–599, 2015 . © 2015 Wiley Periodicals, Inc.  相似文献   

7.
应用荧光分光光度法和放射免疫法,在以6-羟基多巴胺(6-OHDA)单侧损毁内侧前脑束(MFB)制备的偏侧帕金森病(PD)大鼠模型身上,测定了腹侧被盖区(VTA)和伏核(Acb)中多巴胺(DA)和八胺胆囊收缩素(CCK-8)的含量,并测定了TVA和Acb区微量注射CCK-8对正常大鼠DA含量的影响。结果如下:PD大鼠模型损毁侧VTA和Acb的DA和CCK-8的含量与健康及对照组相比均减少(P〈0.0  相似文献   

8.
The hypocretin/orexin (HCRT) neuropeptide system modulates behavioral state and state-dependent processes via actions on multiple neuromodulatory transmitter systems. Recent studies indicate that HCRT selectively increases dopamine (DA) neurotransmission within the prefrontal cortex (PFC) and the shell subregion of the nucleus accumbens (NAs), but not the core subregion of the nucleus accumbens (NAc). The circuitry underlying the differential actions of HCRT across distinct DA systems is unclear. The current study examined whether HCRT preferentially activates PFC- and NAs-projecting relative to NAc-projecting DA neurons within the VTA. One week after infusion of the retrograde tracer fluorogold (FG) into the medial PFC, NAc or NAs, animals received a ventricular infusion of HCRT-1. Subsequent analyses conducted across the rostral-caudal extent of the VTA determined the degree to which: (i) Fos-immunoreactivity (ir) was observed within tyrosine hydroxylase (TH)-ir neurons; (ii) TH-ir was observed within FG-ir neurons; and (iii) Fos-ir was observed within FG-ir neurons. HCRT significantly increased Fos-ir in VTA DA (TH-ir) neurons, primarily in a restricted population of small-to-medium-sized DA neurons located within the caudomedial VTA. Furthermore, within this region of the VTA, PFC- and NAs-projecting TH-ir neurons were more likely to contain Fos-ir than were NAc-projecting TH-ir neurons. These results provide novel evidence that HCRT selectively activates PFC- and NAs-projecting DA neurons within the VTA, and suggest a potential role for HCRT in PFC- and NAs-dependent cognitive and/or affective processes. Moreover, these and other observations suggest that the dysregulation of HCRT-DA interactions could contribute to cognitive/affective dysfunction associated with a variety of behavioral disorders.  相似文献   

9.
Rats were implanted with dual dialysis probes, one in the ventral tegmental area, and another one ipsilateral in the nucleus accumbens. Infusion of cocaine (10, 100, 1000 mM) into the ventral tegmental area gradually increased extracellular dopamine to 164, 329 and 991% of baseline in the ventral tegmental area, but reduced dopamine to 76, 47 and 38% of baseline in the nucleus acumbens. These results are consistent with cocaine-induced feedback regulation of dopamine cell activity involving somatodendritec impulse-regulating dopamine D2 autoreceptors.  相似文献   

10.
In urethane anesthetized rats, excitatory postsynaptic potential (EPSP) recorded intracellularly from nucleus accumbens neurons following stimulation of the amygdala was attenuated by repetitive stimulation of the ventral tegmental area (VTA). VTA stimulation also depolarized the resting membrane potential of accumbens neurons. Attenuation of the EPSP and membrane depolarization were frequently dissociated but both were blocked by haloperidol, a dopamine antagonist.  相似文献   

11.
Extracellular recordings were obtained from single neurons in the ventral tegmental area of rats anesthetized with urethane. It was found that the area appeared to contain two groups of neurons with distinctly different spike durations, firing rates and firing patterns. One group (group A) had properties similar to those of nigral dopaminergic neurons: slow random firing rates, unusually long spike durations and slow conduction velocities. The discharge rate of the majority of these neurons was reduced by iontophoretically applied dopamine. It was concluded that neurons of this group were probably A10 dopaminergic neurons. The other group (group B) had relatively faster and rhythmical firing rates, short spike durations and faster conduction velocities and were considered to be non-dopaminergic.Forty-nine units in the ventral tegmental area were antidromically activated by electrical stimulation of the nucleus accumbens. Units antidromically activated included neurons of group A and group B, suggesting that the nucleus accumbens received dual projections of dopaminergic and non-dopaminergic fibres from the ventral tegmental area.The discharge rate of 141 out of 142 neurons tested in the ventral tegmental area (group A: 66/66, group B: 75/76) was found to be reduced by GABA. The inhibition was blocked by the simultaneous application of picrotoxin. Picrotoxin alone activated 47.7% of 155 units tested. These results provide further evidence of a GABAergic input to dopaminergic and non-dopaminergic neurons projecting to the limbic forebrain structures.  相似文献   

12.
The electrophysiological properties of neurons located in the mesencephalic ventromedial tegmentum (VMT) and the organization of the efferents of these neurons to the frontal cortex, the septum, the nucleus accumbens and the head of the striatum were studied in ketamine-anesthetized rats. The projections of the VMT cells were determined through use of the antidromic activation method. Our results show that VMT projections to different target areas originate mainly from different VMT neurons. However, in some cases single VMT neurons were found to send axon collaterals to two different areas. Three branching patterns were observed: septum-cortex, septum--nucleus accumbens and septum--striatum. The occasional observation of temporally distinct antodromic responses from a single area was considered to result from activation of different branches of the arborizing axon. The distribution of antidromic response latencies for VMT projections to each structure is discussed in relation to the question of dopaminergic versus non-dopaminergic mesolimbic and mesocortical systems.  相似文献   

13.
The goal of this study was to investigate the functional organization of the subpallidal → accumbens direct and indirect feedback loops by both anatomical and electrophysiological methods. The results of the dextran-conjugated rhodamine injections into the subpallidal area has shown three distinct projections: (1) a substantial pathway from the subpallidal area to the ventral tegmental area, (2) a more diffuse rostral projection from the subpallidal area to the core area of the nucleus accumbens, and (3) a sparse pathway projecting rostrodorsally from the subpallidal area toward the thalamic regions. Electrical or chemical stimulation of the subpallidal region, which was studied by the axonal tracer, evoked inhibitory responses in the majority (60 and 80%, respectively) of the accumbens and ventral tegmental area neurons in a standard extracellular recording study. Less than13 of the accumbens or ventral tegmental area cells showed an increase in the mean firing rate. The majority (77.5%) of all responded neurons had a latency of less than 10 ms. Furthermore, injection of glutamate into the subpallidal area not only altered the firing pattern of the accumbens neurons, but also attenuated their excitatory responses elicited by the electrical stimulation of the ventral subiculum. Our results indicate that the subpallidal area plays a predominantly inhibitory role in the ventral tegmental area-accumbens-subpallidal circuitry, presumably by its GABAeroic projections, and may also modulate subicular input into the nucleus accumbens.  相似文献   

14.
Extracellular single unit recordings were obtained from the nucleus accumbens of urethane anesthetized rats. It was found that electrical stimulation of the basal lateral and basal medial nuclei of the amygdala produced strong excitatory responses in neurons of the nucleus accumbens, in particular the medial region. Latencies of activation were relatively short with a mean of 10.7 ms.Dopamine applied iontophoretically had a marked attenuating effect on the excitatory response of nucleus accumbens neurons to amygdala stimulation. The spontaneous activity of all neurons recorded from the nucleus accumbens was also suppressed by dopamine, but the excitatory response was more sensitive to dopamine inhibition than the spontaneous activity.Neurons in the nucleus accumbens showed a variety of responses to single-pulse electrical stimulation of the ventral tegmental area (VTA). Some units in the nucleus accumbens received convergent inputs from both the amygdala and the VTA. Stimulation of the VTA also attenuated the response of nucleus accumbens neurons to excitatory inputs from the amygdala. A train of 10 pulses (0.15 ms, 200–600 αA) at 10 Hz delivered to the VTA at 100 ms before stimulation of the amygdala caused attenuation of the original excitatory response. The attenuating effect could be observed irrespective of whether individual single-pulse stimulation of the VTA elicited a response in that particular accumbens neuron or not. 6-Hydroxydopamine injected into the VTA 2 days prior to the recording experiment, or haloperidol injected intraperitoneally 1 h before the recording session, abolished this attenuating effect. However, responses to single-pulse stimulations of the VTA were not abolished. The results suggest that the attenuation of the excitatory response to amygdala stimulation was due to the release of dopamine from mesolimbic dopaminergic neurons. Responses to single-pulse stimulations of the VTA were probably due to activation of non-dopaminergic neurons projecting from the same area.It is suggested as a working hypothesis that this inhibitory effect of dopamine may be an important function of the mesolimbic dopamine pathway in modulating the extent to which limbic structures can exert an influence on the motor system through the accumbens.  相似文献   

15.
The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT‐synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT‐receptor (OTR) expressing neurons originating within the VTA, we delivered Cre‐inducible adeno‐associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre‐recombinase driven by OTR gene expression. OTR‐expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR‐expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR‐expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one‐third of OTR‐expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094–1108, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
In situ hybridization was combined with Fluoro-Gold retrograde labeling to determine if cells projecting from the forebrain to the ventral tegmental area (VTA) express D1 receptor mRNA. Cell counts were made in the prefrontal cortex, shell of the nucleus accumbens, and ventral pallidum to estimate the percentage of neurons projecting to the VTA that express D1 receptor mRNA. Retrogradely labeled cells were observed in the infralimbic and prelimbic regions of the prefrontal cortex, and up to 37% of the retrogradely labeled cells expressed D1 receptor mRNA. Double-labeled cells constituted up to 89% of retrogradely labeled neurons in the rostral shell and up to 68% in the caudal shell of the nucleus accumbens. The number of retrogradely labeled cells in the ventral pallidum that were double-labeled ranged from 13% in the rostral to less than 10% in the caudal portions. These data provide anatomical support for a role of D1 receptors in the reciprocal innervation between the forebrain and VTA. Synapse 25:205–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
The relative importance of two subcortical structures, projecting to the rat's prefrontal cortex, in mediation of delayed-alternation performance, was tested. These structures, the thalamic mediodorsal nucleus and the ventral tegmental area, were lesioned with kainic acid after the rats had learned a spatial delayed-alternation task. It was found that both structures are apparently involved to a similar degree in the performance of this task and that the behavior of both experimental groups differed from that of a sham-operated control group of rats.  相似文献   

20.
Rats orient to and approach localizable visual cues paired with food delivery. Previous studies from this laboratory show that the acquisition and expression of these learned cue-directed responses depend on integrity of a system including the central nucleus of the amygdala (CeA), the substantia nigra pars compacta (SNc) and the dorsolateral striatum (DLS). Other investigators have suggested that cue-directed behaviors may also depend on interaction between CeA and the ventral striatum, perhaps via CeA projections to the ventral tegmental area (VTA). In Experiment 1, we examined the effects of unilateral lesions of CeA and/or VTA on rats' acquisition of conditioned responses to visual cues paired with food. Contrary to the results of previous studies that examined interactions of CeA with either SNc or DLS, rats with contralateral disconnection lesions of CeA and VTA were unimpaired in their acquisition of cue-directed responses. By contrast, rats with lesions of both structures in the same hemisphere failed to learn cue-directed responses, but were normal in their acquisition of conditioned responses directed to the food cup. In Experiment 2, we attempted to characterize the influence of VTA on CeA by examining FOS induction in CeA by a visual cue for food in rats with unilateral lesions of VTA. The results suggested an excitatory influence of VTA on CeA in the presence of food cues. Implications of these results for brain circuits involved in learned orienting and incentive motivation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号