首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we have studied the distribution of mRNA for tyrosine kinase B (trkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF) amongst serotonergic cell bodies of the raphe nuclei and their ascending projections into the dorsal hippocampus in the rat brain. Previous studies have shown that BDNF has got trophic action on serotonergic neurons. In the present study, we provide evidence that serotonergic neurons express mRNA for the functional receptor of BDNF, trkB. Intracerebro-ventricular (i.c.v.) injection of the 5-HT-specific neurotoxin, 5,7-dihydroxytryptamine, which lesions serotonergic cell bodies in the raphe nuclei as well as their ascending projections into the dorsal hippocampus, caused a dramatic loss of trkB mRNA from serotonergic cell bodies of the dorsal raphe nucleus. In contrast, there was no change in the abundance of trkB mRNA within the dorsal hippocampus. These findings provide direct evidence for the expression of trkB mRNA by serotonergic neurons and suggest distinct mechanisms of action of BDNF upon serotonergic neurons at the levels of their cell bodies and terminal projection sites.  相似文献   

2.
In the rat hippocampus, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are synthesized by neurons in an activity-dependent manner. Glutamate receptor activation increases whereas GABAergic stimulation decreases NGF and BDNF mRNA levels. Here we demonstrate that NGF and BDNF mRNA and NGF protein are up-regulated in the rat hippocampus by the activation of muscarinic receptors. Conversely, NGF and BDNF enhance the release of acetylcholine (ACh) from rat hippocampal synaptosomes containing the nerve endings of the septal cholinergic neurons. NGF also rapidly increases the high-affinity choline transport into synaptosomes. The reciprocal regulation of ACh, NGF and BDNF in the hippocampus suggests a novel molecular framework by which the neurotrophins might influence synaptic plasticity.  相似文献   

3.
We examined the effect of fibroblast growth factor (FGF)-9 on primary cultures of rat basal forebrain cholinergic neurons (BFCN) obtained at embryonic day 17. FGF-9 enhanced survival of AChE-positive neurons, increased their mean soma size, and up-regulated their choline acetyltransferase (ChAT) activity. The ChAT-promoting effect of FGF-9 was approximately as potent as that of nerve growth factor (NGF) and was greater than those of basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glia-derived neurotrophic factor (GDNF). Simultaneous addition of FGF-9 and NGF induced extremely high ChAT levels, suggesting that FGF-9 and NGF may enhance cholinergic properties in BFCN via different pathways that can act synergistically. In immunocytochemical and in situ hybridization studies in cultured cells and also in sections of adult rat brain, BFCN showed cytoplasmic immunostaining for FGF-9 and expressed FGF-9 messenger RNA; thus, we concluded that FGF-9 acts on BFCN in an autocrine and/or paracrine manner. Although effective delivery of exogenous FGF-9 into the central nervous system remains a problem to be solved, FGF-9 may be a promising candidate for therapeutic trials in Alzheimer disease.  相似文献   

4.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the vasointestinal polypeptide gene family for which neurotrophic activity has been postulated. PACAP mRNA is expressed in the developing and adult hippocampus, which is the principal target region of septal cholinergic neurons. We therefore studied the effects of PACAP on septal cholinergic neurons. In primary cultures from septum of embryonic and postnatal rats, PACAP increased the number of neurons immunohistochemically stained for the low-affinity nerve growth factor (NGF) receptor p75 and for the enzyme choline acetyltransferase (ChAT). PACAP also caused a corresponding increase in ChAT activity. In comparison, NGF had a greater effect than PACAP on the number of p75- and ChAT-positive neurons in these cultures. In vivo, following fimbria fornix transection, the number of immunohistochemically stained septal cholinergic neurons fell significantly to 18% in rats given continuous intracerebroventricular infusion of vehicle, whereas in rats given NGF the number of these neurons did not differ significantly from unoperated controls. In PACAP-treated rats the number was 48% of unoperated values, which represented a significant increase compared with vehicle-treated rats and a significant decrease compared with NGF-treated rats or unoperated controls. Double-staining experiments revealed that most ChAT-positive neurons in rat medial septum also express PACAP receptor 1. Together the results show that PACAP promotes the survival of septal cholinergic neurons in vitro, and after injury in vivo, suggesting that PACAP acts as a neurotrophic factor influencing the development and maintenance of these neurons.  相似文献   

5.
Fetal rat (E17-E19) septal neurons were cultured in a defined, serum-free medium for 6-8 days with or without nerve growth factor (NGF) and transplanted into the hippocampus or the surrounding ventricle of 28 adult rats denervated of its septal input by a fimbria-fornix transection. The cholinergic septal neurons, which were visualized by acetylcholinesterase (AChE) histochemistry, always survived in transplantation to the adult brains from nearly pure neuronal cultures. Although choline acetyltransferase (ChAT) activity of septal neurons in culture was greatly increased (5.59-fold) by the addition of NGF to the defined medium, this ChAT induction appeared to have little effect on the subsequent survival or growth of the septal neurons after transplantation. These results demonstrate that survival of cultured fetal septal cholinergic neurons following transplantation is not dependent upon the presence of NGF or serum- or glia-derived factors during the preliminary culture. Postnatal rat (P4) septal neurons cultured for 5 days in serum-containing medium with NGF were also successfully transplanted in one of 3 cases.  相似文献   

6.
We examined the expression of fibroblast growth factor-18 (FGF-18) in the rat brain during postnatal development by in situ hybridization. FGF-18 was transiently expressed at the early postnatal stages in various regions of the rat brain including the cerebral cortex and hippocampus. FGF-18 in the brain was preferentially expressed in neurons but not in glial cells. To elucidate the role of FGF-18 in the brain, we examined the ligand-specificity of FGF-18 by the BIAcore system. FGF-18 was found to bind to FGF receptors (FGFRs)-3c and -2c but not to FGFR-1c, suggesting that FGF-18 acts on glial cells but not on neurons. Therefore, we examined the mitogenic activity of FGF-18 for cultured rat astrocytes and microglia. FGF-18 was found to have mitogenic activity for both astrocytes and microglia. We also examined the neurotrophic activity of FGF-18 for cultured rat cortical neurons. FGF-18 was found to have no neurotrophic activity. The present findings indicated that FGF-18 is a unique FGF that plays a role as a neuron-derived glial cell growth factor in early postnatal development when gliogenesis occurs.  相似文献   

7.
Previous studies have demonstrated that the viability of developing cholinergic basal forebrain neurons is dependent upon the integrity of neurotrophin-secreting target cells. In the present study, we examined whether infusions of nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) could prevent the loss of cholinergic septal/diagonal band neurons following excitotoxic lesions of their target neurons within the hippocampus. Postnatal Day 10 rat pups received unilateral intrahippocampal injections of ibotenic acid. Rats then received intracerebroventricular (icv) injections of nerve growth factor (30 μg/injection), brain-derived neurotrophic factor (60 μg/injection), or saline immediately following the lesion and continuing every third day for 27 days. Both saline- and BDNF-treated rats displayed a significant loss of septal/diagonal band neurons expressing the protein and mRNA for choline acetyltransferase (ChAT) and p75 low-affinity nerve growth factor receptor ipsilateral to the lesion. The magnitude of this loss was significantly attenuated in BDNF-treated rats. Many remaining neurons were atrophic with stunted dendritic processes. In contrast, NGF treatment completely rescued these cells and prevented the shrinkage of remaining cholinergic septal neurons. In addition, both NGF and BDNF induced a sprouting of cholinergic processes within the residual hippocampal remnant ipsilateral to the infusions. The present study demonstrates that icv injections of NGF, and to a lesser extent BDNF, prevent the loss of developing basal forebrain neurons which occurs following removal of normal target cells. Diffusion studies revealed relatively poor penetration of BDNF into brain parenchyma. Thus, it remains to be determined whether the failure of BDNF to provide optimal trophic support for these cells is biological or due to restricted bioavailability of this trophic factor.  相似文献   

8.
C W Gray  A J Patel 《Brain research》1992,574(1-2):257-265
When dissociated subcortical cells were cultured in the presence of conditioned medium of relatively differentiated astrocytes (ACM), a marked increase was observed in the expression of choline acetyltransferase (ChAT), an enzyme required for the synthesis of the neurotransmitter acetylcholine. Astrocytes from the target regions of subcortical neurons, the hippocampus and the cerebral cortex, produced neurotrophic factor consistently more than those derived from the nontarget region, the cerebellum. The production of cholinergic trophic activity was increased with the maturation of astrocytes. Even though, nerve growth factor (NGF) and ciliary neurotrophic factor (CNTF) are known cholinergic trophic compounds produced by astrocytes in vitro, a large part of the neurotrophic activity in our ACM was not related to either of these 2 factors. This is because (i) ACM and NGF produced an additive effect on ChAT activity, (ii) only a small proportion of the cholinergic trophic activity in ACM was abolished by anti-NGF antibody, and (iii) treatment with CNTF had no effect on ChAT activity of basal forebrain cholinergic neurons. On the other hand, when cholinergic neurons are cultured on a preformed layer of astrocytes, addition of basal fibroblast growth factor (bFGF) failed to increase further the ChAT activity. Similarly the effects of ACM and bFGF were not additive. A large proportion of the cholinergic trophic activity in ACM was neutralized by anti-bFGF antibody. These findings would suggest that the trophic activity on septal cholinergic neurons in our ACM was due to bFGF or a bFGF-like compound.  相似文献   

9.
1. The authors developed a primary culture technique for neuronal cells from postnatal rat brains and studied the effects of neurotrophic factors on the naturally developed neurons. 2. We demonstrated changes in the neurotrophic role of nerve growth factor (NGF) during the developmental stages of the rat: NGF was shown to act as a differentiation factor in the early stages and as a survival factor later. 3. It appeared that interleukin-6 (IL-6) supported the survival of septal cholinergic neurons obtained from 10-day-old rats. IL-6, however, did not induce the differentiation of embryonic rat septal cholinergic neurons. IL-6 improved the survival of mesencephalic catecholaminergic neurons from postnatal and embryonic rat brains, which have known not to be response to NGF.  相似文献   

10.
11.
Bone morphogenetic proteins (BMPs), growth and differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) are members of the transforming growth factor-beta superfamily that have been implicated in tissue growth and differentiation. Several BMPs are expressed in embryonic and adult brain. We show now that BMP-2, -6 and -7 and GDF5 are expressed in the embryonic rat hindbrain raphe. To start to define roles for BMPs in the regulation of serotonergic (5-HT) neuron development, we have generated serum-free cultures of 5-HT neurons isolated from the embryonic (E14) rat raphe. Addition of saturating concentrations (10 ng/mL) of BMP-6 and GDF5 augmented numbers of tryptophan hydroxylase (TpOH) -immunoreactive neurons and cells specifically taking up 5, 7-dihydroxytryptamine (5,7-DHT) by about two-fold. Alterations in 5-HT neuron numbers were due to the induction of serotonergic markers rather than increased survival, as shown by the efficacy of short-term treatments. Importantly, BMP-7 selectively induced 5, 7-DHT uptake without affecting TpOH immunoreactivity. BMP-6 and -7 also promoted DNA synthesis and increased numbers of cells immunoreactive for vimentin and glial fibrillary acidic protein (GFAP). Pharmacological suppression of cell proliferation or glial development abolished the induction of serotonergic markers by BMP-6 and -7, suggesting that BMPs act indirectly by stimulating synthesis or release of glial-derived serotonergic differentiation factors. Receptor bodies for the neurotrophin receptor trkB, but not trkC, abolished the BMP-mediated effects on serotonergic development, suggesting that the glia-derived factor is probably brain-derived neurotrophic factor (BDNF) or neurotrophin-4. In support of this notion, we detected increased levels of BDNF mRNA in BMP-treated cultures. Together, these data suggest both distinct and overlapping roles of several BMPs in regulating 5-HT neuron development.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) enhances synaptic plasticity and neuron function. We have reported that voluntary exercise increases BDNF mRNA levels in the hippocampus; however, mechanisms underlying this regulation have not been defined. We hypothesized that medial septal cholinergic and/or gamma amino butyric acid (GABA)ergic neurons, which provide a major input to the hippocampus, may regulate the baseline gene expression and exercise-dependent gene upregulation of this neurotrophin. Focal lesions were produced by medial septal infusion of the saporin-linked immunotoxins 192-IgG-saporin or OX7-saporin. 192-IgG-saporin produced a selective and complete loss of medial septal cholinergic neurons with no accompanying GABA loss. Baseline BDNF mRNA was reduced in the hippocampus of sedentary animals, but exercise-induced gene upregulation was not impaired, despite complete loss of septo-hippocampal cholinergic afferents. OX7-saporin produced a graded lesion of the medial septum characterized by predominant GABA neuron loss with less reduction in the number of cholinergic cells. OX7-saporin lesion reduced baseline hippocampal BDNF mRNA and attenuated exercise-induced gene upregulation, in a dose-dependent manner. These results suggest that combined loss of septal GABAergic and cholinergic input to the hippocampus may be important for exercise-dependent BDNF gene regulation, while cholinergic activity on its own is not sufficient. These results are discussed in relation to their implications for aging and Alzheimer's disease.  相似文献   

13.
Hippocampal levels of mRNA encoding nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are rapidly induced by enhanced neuronal activity following seizures and glutamate or muscarinic receptor activation. However, the levels of neurotrophin-3 (NT-3) mRNA acutely decrease after limbic seizures suggesting that a different mode of regulation may exist for these neurotrophins. Here we show that BDNF and neurotrophin-4 (NT-4), but not NT-3 itself, up-regulate NT-3 mRNA in cultured hippocampal neurons. In the rat hippocampus, the muscarinic receptor agonist, pilocarpine increased BDNF mRNA levels rapidly and those of NT-3 with a delay of several hours. Injection of BDNF into neonatal rats elevated NT-3 mRNA in the hippocampus which demonstrates that BDNF is able to enhance NT-3 expression in vivo. The regulation of NT-3 by BDNF and NT-4 enlargens the neurotrophic spectrum of these neurotrophins to include neuron populations responsive primarily to NT-3.  相似文献   

14.
About 45% of the serotonergic raphe neurons are reported to express nerve growth factor (NGF) receptors. We therefore investigated whether selective serotonergic lesions of the median or dorsal raphe nuclei are associated with changes in NGF protein levels of the brain and whether the loss of serotonergic function alters the vulnerability of cholinergic septohippocampal neurons. In adult rats the hippocampal NGF content changed in a biphasic way after lesion of the median raphe nucleus by 5,7-dihydroxytryptamine (5,7-DHT), with a significant increase after 2-3 weeks of up to 35%, followed by a significant reduction of 22% below control levels after 7 weeks, and a return to control levels within the following 4 weeks. By contrast, the decrease in hippocampal serotonin and 5-hydroxyindoleacetic acid remained throughout the observation period of 11 weeks, being still reduced to 15 and 30% of the control levels, respectively. In the frontal cortex the partial loss of the serotonergic innervation projecting from the median raphe was associated 5 weeks after 5,7-DHT injection with an increase in NGF protein of 39.7+/-9.6% (P<0.05), which remained elevated up to 11 weeks. At 9 weeks after 5,7-DHT, the lesion of the septohippocampal cholinergic neurons induced by the cholinotoxin ethylcholine aziridinium (AF64A) was exaggerated (P<0.05) as compared to AF64A-treated rats with intact serotonergic innervation. The present data indicate that a serotonergic lesion of the median raphe nucleus results in biphasic changes of NGF protein content and in a delayed increase in the vulnerability of septohippocampal cholinergic neurons.  相似文献   

15.
Alzheimer's disease is a progressive neurodegenerative disorder of the central nervous system. One pathological characteristic is excessive neuronal loss in specific regions of the brain. Among the areas most severely affected are the basal forebrain cholinergic neurons and their projection regions, the hippocampus and cortex. Neurotrophic factors, particularly the neurotrophins nerve growth factor and brain-derived neurotrophic factor, play an important role in the development, regulation and survival of basal forebrain cholinergic neurons. Furthermore, brain-derived neurotrophic factor regulates the function of hippocampal and cortical neurons. Neurotrophins are synthesized in hippocampus and cortex and retrogradely transported to the basal forebrain. Decreased levels of neurotrophic factors are suspected to be involved in the neurodegenerative changes observed in Alzheimer's disease. We examined autopsied parietal cortex samples from age- and gender-matched Alzheimer's diseased and neurologically non-impaired individuals using the quantitative technique of competitive RT-PCR. We demonstrate a 3.4-fold decrease in brain-derived neurotrophic factor mRNA levels in the parietal cortex of patients with Alzheimer's disease compared to controls (p<0.004). A decrease in brain-derived neurotrophic factor synthesis could have detrimental effects on hippocampal, cortical and basal forebrain cholinergic neurons and may account for their selective vulnerability in Alzheimer's disease.  相似文献   

16.
Trophic factors play important roles in survival and nerve fiber growth of cholinergic interneurons in the striatum in vivo and in vitro. In this study an organotypic slice model was used to investigate the effects of nerve growth factor and the novel factors glial cell line-derived neurotrophic factor and neurturin as well as other trophic factors on the striatal acetylcholine tissue levels. During culturing over 2 weeks acetylcholine tissue levels markedly decreased, representing degeneration of cholinergic neurons. When striatal slices were cultured for 2 weeks in the presence of 100 ng\ml nerve growth factor tissue levels of acetylcholine and the expression of choline acetyltransferase-like immunoreactivity and mRNA, as well as the muscarinic M2 autoreceptor mRNA were markedly enhanced compared to slices cultured without or with 10 ng\ml nerve growth factor. A single administration of nerve growth factor had no effect on acetylcholine tissue levels suggesting that nerve growth factor does not directly increase acetylcholine synthesis. All other trophic factors (glial cell line-derived neurotrophic factor, neurturin, brain-derived neurotrophic factor, neurotrophin-3 and -4\5, fibroblast growth factor-2, insulin like growth factor-I) had no effects on acetylcholine tissue levels. Thus, the organotypic slice model is a suitable system to study the effects of trophic factors and it is concluded that nerve growth factor selectively enhances acetylcholine tissue levels, indicating protection of cholinergic interneurons in the dorsal striatum.  相似文献   

17.
Fibroblast growth factor (FGF)-2 is an established neurotrophic factor for dopaminergic (DAergic) neurons in the ventral midbrain. Its survival and differentiation-promoting effects on DAergic neurons in vitro and in vivo are crucially dependent on the presence, numerical expansion and maturation of astroglial cells. We show now that transforming growth factor (TGF)-β, an established trophic factor for DAergic neurons and product of astroglial cells, mediates the trophic effect of FGF-2 on DAergic neurons cultured from the embryonic rat midbrain floor. Antibodies to TGF-β that neutralize the isoforms -β1, -β2 and -β3 abolish the trophic effect of FGF-2. FGF-2 increases TGF-β3 mRNA and amounts of biologically active TGF-β determined in a mink lung epithelial cell assay in a time-dependent manner. FGF-2 also induces levels of active TGF-β in neonatal rat astrocytes cultured from midbrain, striatum and cortex. We conclude that TGF-β is required for mediating the survival promoting effect of FGF-2 on DAergic and, possibly, cortical and striatal neurons grown in the presence of glial cells.  相似文献   

18.
Nerve growth factor (NGF), a well-characterized target-derived growth factor, has been postulated to promote neuronal differentiation and survival of the basal forebrain cholinergic neurons. In the present paper, we demonstrate that a developmental change in NGF action occurs in postnatal rat basal forebrain cholinergic neurons in culture. Firstly, NGF acts as maturation factor by increasing choline acetyltransferase (ChAT) activity and acts later as a survival factor. In dissociated cell cultures of septal neurons from early postnatal (P1-4) rats, ChAT activities were increased by the addition of NGF. That is, ChAT activities in P1 septal cells cultured for 7 days was increased 4-fold in the presence of NGF at a concentration of 100 ng/ml. However, the number of the acetylcholinesterase (AChE)-positive neurons was not significantly different between these groups. In contrast, septal neurons from P8 to P14 rats showed different responses to NGF. Although the P14 septal neurons in culture for 7 days without NGF lost about half of the ChAT activity during a 7-day cultivation, cells cultured with NGF retained the activity at the initial level. The number of AChE-positive neurons counted in cultures with NGF was much greater than the number without NGF. These results suggest that, during the early postnatal days, the action of NGF on the septal cholinergic neurons in culture changes from induction of ChAT activity to the promotion of cholinergic neuronal cell survival. During this developmental period in vivo, septal neurons are terminating their projections to the hippocampal formation. Similar NGF-regulated changes in cholinergic neurons were observed in cultured postnatal neurons from vertical limb of diagonal band. An analogy has been pointed out between the neuronal death of the basal forebrain cholinergic neurons and a similar neuronal death in senile dementia, especially Alzheimer's type. The work reported here might present a possibility that NGF could play a role in preventing the loss of the basal forebrain cholinergic neurons in this disease.  相似文献   

19.
Serotonin (5-HT) is an important factor controlling survival, differentiation, and plasticity of neurons in serotonergic target regions of the brain and has been implicated in major psychiatric and autonomic disorders. Relatively little is known, however, of factors controlling differentiation and plasticity of developing and adult 5-HT neurons. We show now that 5-HT, the 5-HT1(A) receptor, brain-derived neurotrophic factor (BDNF), and its receptor, trkB, form an auto/paracrine loop for the regulation of the serotonergic phenotype. Serotonin applied to cultures from E14 rat raphe increased numbers of neurons expressing serotonergic markers in a dose-dependent manner. Agonists of the 5-HT1(A) receptor, BP-554 and 8-OH-DPAT, but not agonists of the 5-HT1(B) and 5-HT1(D) receptors, mimicked this effect, while the specific 5-HT1(A) antagonist, WAY-100635, inhibited it. Serotonin also increased BDNF mRNA and protein in embryonic raphe cultures. Induction of serotonergic markers by serotonin was suppressed by a trkB-IgG fusion protein but not by trkC-IgG. Taken together, our data indicate that serotonin acts on 5-HT1(A) autoreceptors, causing up-regulation of BDNF, which activates trkB to promote serotonergic phenotype-specific markers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号