首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ammonia and GABAergic neurotransmission hypotheses of the pathogenesis of hepatic encephalopathy (HE) have appeared to be unrelated and perhaps mutually exclusive. Observations in animal models of fulminant hepatic failure, that are consistent with increased GABAergic inhibitory neurotransmission contributing to the manifestations of HE, include: (i) abnormal visual evoked potential waveforms that resemble those induced by GABAA/benzodiazepine (BZ) receptor complex agonists; (ii) GABAA/BZ receptor complex antagonist-induced ameliorations of encephalopathy; (iii) increased resistance to drugs which decrease GABAergic tone; and (iv) hypersensitivity of CNS neurons to depression by GABAA/BZ receptor complex agonists. Mechanisms of increased GABAergic tone in HE may include the following: (i) increased brain concentrations of natural BZs; and (ii) increased GABA concentrations in synaptic clefts, possibly due to increased blood-brain-barrier permeability to GABA and a decrease in GABAB receptor density. Both neuroelectrophysiological and behavioral data indicate that ammonia concentrations in the range 0.75-2 mM induce increased excitatory neurotransmission. In contrast, recently, ammonia concentrations in the range 0.15-0.75 mM, i.e. concentrations that commonly occur in plasma in precoma HE, have been shown: (i) to increase GABA-induced chloride current in cultured neurons; and (ii) to enhance synergistically the binding of GABAA/BZ receptor agonists. In addition, increased ammonia concentrations enhance synthesis of neurosteroids in astrocytes, and some neurosteroids potently augment GABAergic neurotransmission. Thus, the modestly elevated concentrations of ammonia, that commonly occur in liver failure, may contribute to the manifestations of HE by enhancing GABAergic inhibitory neurotransmission. This concept appears to unify the ammonia and GABAergic neurotransmission hypotheses.  相似文献   

2.
Pathogenesis of hepatic encephalopathy   总被引:4,自引:0,他引:4  
Hepatic encephalopathy is considered to be a reversible metabolic encephalopathy, which occurs as a complication of hepatocellular failure and is associated with increased portal-systemic shunting of gut-derived nitrogenous compounds. Its manifestations are most consistent with a global depression of CNS function, which could arise as a consequence of a net increase in inhibitory neurotransmission, due to an imbalance between the functional status of inhibitory (e.g., GABA) and excitatory (e.g., glutamate) neurotransmitter systems. In liver failure, factors that contribute to increased GABAergic tone include increased synaptic levels of GABA and increased brain levels of natural central benzodiazepine (BZ) receptor agonists. Ammonia, present in modestly elevated levels, may also augment GABAergic tone by direct interaction with the GABAA receptor, synergistic interactions with natural central BZ receptor agonists, and stimulation of astrocytic synthesis and release of neurosteroid agonists of the GABAA receptor. Thus, there is a rationale for therapies of HE that lower ammonia levels and incrementally reduce increased GABAergic tone towards the physiologic norm.  相似文献   

3.
Astroglial Dysfunction in Hepatic Encephalopathy   总被引:3,自引:0,他引:3  
While the pathogenesis of hepatic encephalopathy (HE) remains elusive, there is considerable evidence pointing to a key role of ammonia-induced dysfunction of astrocytes in this condition. Deficits in the ability of astrocytes to take up glutamate from the extracellular space may lead to abnormal glutamatergic neurotransmission. Furthermore, excessive stimulation of neuronal and glial glutamate receptors by elevated extracellular levels of glutamate may lead to excitotoxicity and greater glial dysfunction. Ammonia also causes upregulation of astroglial peripheral-type benzodiazepine receptors (PBRs) which is associated with increased production of neurosteroids. These neurosteroids have potent positive modulatory effects on the neuronal GABAA receptor which, combined with an ammonia-induced astroglial defect in GABA uptake, may result in enhanced GABAergic tone. Brain edema, associated with fulminant hepatic failure, may also result from astroglial abnormalities as the edema appears to be principally caused by swelling of these cells. Increased amounts of glutamine in astrocytes resulting from elevated brain ammonia levels may be a factor in this swelling. Other osmolytes such as glutathione may also be involved. Glial swelling may also result from NH4 +- and K+-mediated membrane depolarization as well as by the actions of PBR agonists and neurosteroids. These findings show that an ammonia-induced gliopathy is a major factor in the pathogenesis of HE.  相似文献   

4.
The earliest hypothesis of the pathogenesis of HE implicated ammonia, although effects of appreciable concentrations of this neurotoxin did not resemble HE. Altered eurotransmission in the brain was suggested by similarities between increased GABA-mediated inhibitory neurotransmission and HE, specifically decreased consciousness and impaired motor function. Evidence of increased GABAergic tone in models of HE has accumulated; potential mechanisms include increased synaptic availability of GABA and accumulation of natural benzodiazepine receptor ligands with agonist properties. Pathophysiological concentrations of ammonia associated with HE, have the potential of enhancing GABAergic tone by mechanisms that involve its interactions with the GABAa receptor complex.  相似文献   

5.
Hepatic encephalopathy (HE) is a neuropsychiatric disorder associated with either acute or chronic liver failure. More than two decades ago, the role of altered GABAergic neurotransmission was proposed following evidence of "increased GABAergic tone" in HE. Increased GABAergic tone was based on several observations: (i) Similarity of visual evoked response potential patterns between rabbits with galactosamine-induced fulminant hepatic failure and animals treated with various allosteric agonists of the GABA receptor complex (GRC). (ii) Spontaneous activities of isolated Purkinje neurons from rabbits with galactosamine-induced fulminant hepatic failure are more depressed by GRC modulator compounds compared to normal animals. (iii) Flumazenil, a high selective benzodiazepine antagonist at the GRC, ameliorates behavioral symptoms and EEG activity in some HE patients. Pathophysiological mechanisms put forward to explain increased GABAergic tone in HE include (1) increase in brain GABA content due to increased brain GABA uptake through altered permeability of the blood brain barrier, (2) alteration of the integrity of constituents of the GRC, and (3) increase of endogenous GRC modulators such as benzodiazepines (and more recently neurosteroids) with potent agonist properties at the GRC. Studies performed subsequently excluded alterations of either GABA content or GRC integrity in favor of increased brain concentrations of endogenous agonists. While the role of endogenous benzodiazepines remains controversial, the presence of neurosteroids with GABA agonist properties affords a plausible explanation for increased GABAergic tone in HE.  相似文献   

6.
-Aminobutyric acid (GABA) is the main inhibitory amino acid in the central nervous system (CNS). Experiments with animal models of HE, and with brain slices or cultured CNS cells treated with ammonia, have documented changes in GABA distribution and transport, and modulation of the responses of both the GABA(A)–benzodiazepine receptor complex and GABA(B) receptors. Although many of the data point to an enhancement of GABAergic transmission probably contributing to HE, the evidence is not unequivocal. The major weaknesses of the GABA theory are (1) in a vast majority of HE models, there were no alterations of GABA content in the brain tissue and/or extracellular space, indicating that exposure of neurons to GABA may not have been altered, (2) changes in the affinity and capacity of GABA receptor binding were either absent or qualitatively different in HE models of comparable severity and duration, and (3) no sound changes in the GABAergic system parameters were noted in clinical cases of HE. Taurine (Tau) is an amino acid that is thought to mimic GABA function because of its agonistic properties towards GABA(A) receptors, and to contribute to neuroprotection and osmoregulation. These effects require Tau redistribution between the different cell compartments and the extracellular space. Acute treatment with ammonia evokes massive release of radiolabeled or endogenous Tau from CNS tissues in vivo and in vitro, and the underlying mechanism of Tau release differs from the release evoked by depolarizing conditions or hypoosmotic treatment. Subacute or chronic HE, and also long-term treatment of cultured CNS cells in vitro with ammonia, increase spontaneous Tau leakage from the tissue. This is accompanied by a decreased potassium- or hypoosmolarity-induced release of Tau and often by cell swelling, indicating impaired osmoregulation. In in vivo models of HE, Tau leakage is manifested by its increased accumulation in the extrasynaptic space, which may promote inhibitory neurotransmission and/or cell membrane protection. In chronic HE in humans, decreased Tau content in CNS is thought to be one of the causes of cerebral edema. However, understanding of the impact of the changes in Tau content and transport on the pathogenic mechanisms of HE is hampered by the lack of clear-cut evidence regarding the various roles of Tau in the normal CNS.  相似文献   

7.
Ruscito BJ  Harrison NL 《Blood》2003,102(4):1525-1528
Liver failure is often accompanied by cognitive impairment and coma, a syndrome known as hepatic encephalopathy (HE). The administration of flumazenil, a benzodiazepine (BZ) antagonist, is effective in reversing the symptoms of HE in many patients. These clinical observations gave rise to notions of an endogenous BZ-like mechanism in HE, but to date no viable candidate compounds have been characterized. We show here that the hemoglobin (Hb) metabolites hemin and protoporphyrin IX (PPIX) interact with the BZ site on the gamma-aminobutyric acid (GABA(A)) receptor and enhance inhibitory synaptic transmission in a manner similar to diazepam and zolpidem. This finding suggests that hemin and PPIX are neuroactive porphyrins capable of acting as endogenous ligands for the central BZ site. The accumulation of these porphyrins under pathophysiologic conditions provides a potentially novel mechanism for the central manifestations of HE.  相似文献   

8.
Both acute and chronic liver failure induce cerebral complications known as hepatic encephalopathy (HE) and thought to selectively involve brain astrocytes. Alterations of astrocytic-neuronal cross talk occurs affecting brain function. In acute liver failure, astrocyte undergo swelling, which results in increased intracranial pressure and may lead to brain herniation. In chronic liver failure, Alzheimer-type II astrocytosis is a characteristic change. Neurosteroids (NS) synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) are suggested to play a role in HE. NS bind and modulate different types of membrane receptors. Effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA-A receptors. As a consequence of modulation of these receptors, NS are well-known to modulate inhibitory neurotransmission in the central nervous system. Some NS bind to intracellular receptors, and in this way may also regulate gene expression. In HE, it has been well documented that neurotransmission and gene expression alterations occur during the progression of the disease. This review summarizes findings of relevance for the involvement of NS in human and experimental HE.  相似文献   

9.
Benzodiazepine receptor ligands are suggested to play a role in the pathogenesis of hepatic encephalopathy (HE). Accumulation of these ligands in brain was suggested to explain in part the notion of“increased GABAergic tone,” the rational for which aroseinitially from reports of a beneficial effect of the selective benzodiazepine antagonist flumazenil in HE patients. It was suggested on the basis of the effect of flumazenil in human HE that liver failuremay result in alterations of the density and/or affinity of the benzodiazepine-associated GABA-A receptor site. Subsequent controlled-clinical trials showed that fumazenil had a transient beneficial effect in only a subpopulation of HE patients. In contrast to the antagonists, partial inverse agonists of the benzodiazepine receptor have unequivocal beneficial effects on behavioral and electrophysiologicalperformance in all experimental models of HE studied so far. Benzodiazepine-associated GABA-A receptors have consistently been demonstrated to be unaltered in both human and experimental HE. Contrary to initial reports, the so-called “endogenous benzodiazepines” do not appear to be significantly related to the pathogenesis of HE. On the other hand, nonbenzodiazepine GABA-A receptor complex modulators, such as neurosteroids, recently identified in brain in human and experimental HE, may provide a new mechanistic basis for this disorder and lead to novel treatments for human HE.  相似文献   

10.
Hepatic encephalopathy is seen as a clinical manifestation of a chronic low grade cerebral edema, which is thought to trigger disturbances of astrocyte function, glioneuronal communication, and finally HE symptoms. In cultured astrocytes, hypoosmotic swelling triggers a rapid oxidative stress response, which involves the action of NADPH oxidase isoenzymes, followed by tyrosine nitration of distinct astrocytic proteins. Oxidative stress and protein tyrosine nitration (PTN) are also observed in response to ammonia, inflammatory cytokines, such as TNF-ά or interferons, and benzodiazepines with affinity to the peripheral benzodiazepine receptor (PBR). NMDA receptor activation was identified as upstream event in protein tyrosine nitration (PTN). Cerebral PTN is also found in vivoafter administration of ammonia, benzodiazepines or lipopolysaccharide and in portocaval shunted rats. PTN predominantly affects astrocytes surrounding cerebral vessels with potential impact on blood-brain-barrier permeability. Among the tyrosine-nitrated proteins, glutamine synthetase, GAPDH, extracellular signal-regulated kinase and the PBR were identified. PTN of glutamine synthetase is associated with inactivation of the enzyme. Thus, factors known to trigger hepatic encephalopathy induce oxidative/nitrosative stress on astrocytes with protein modifications through PTN. The pathobiochemical relevance of astrocytic PTN for the development of HE symptoms remains to be established.  相似文献   

11.
Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABA(A) receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5alpha-reductase (5alpha-R) type I and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). This study evaluates 5alpha-R type I and 3alpha-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100beta immunohistochemistry. We demonstrate that 5alpha-R type I and 3alpha-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5alpha-R type I nor 3alpha-HSD mRNAs are expressed in S100beta- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5alpha-R type I and 3alpha-HSD in cortical and hippocampal GABAergic interneurons. However, 5alpha-R type I and 3alpha-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABA(A) receptors, either with an autocrine or a paracrine mechanism or by reaching GABA(A) receptor intracellular sites through lateral membrane diffusion.  相似文献   

12.
It has been suggested that alterations of GABAergic neurotransmission are implicated in the pathophysiology of hepatic encephalopathy (HE). Increased concentrations of endogenous benzodiazepines with positive allosteric modulatory properties at the GABA-A receptor complex were proposed as a pathophysiological mechanism to explain increased GABAergic tone in HE. However, results of controlled trials with benzodiazepine receptor antagonists have yielded equivocal results and increases in benzodiazepine levels in body fluids of cirrhotic patients were suggested to be largely accounted for by previous pharmaceutical benzodiazepine intake. In the present study the issue of benzodiazepine receptor ligands in brains of cirrhotic patients, and their contribution to alterations of GABA-A receptor complex in HE are addressed. "Benzodiazepine-like" ligands were present in trace amounts in autopsied brain tissue from control subjects (0.2 +/- 0.2 ng/g tissue), and from cirrhotic patients not previously exposed to benzodiazepine medication (0.8 +/- 0.4 ng/g tissue). In contrast, these ligands accumulate in brain extracts from cirrhotic patients previously exposed to benzodiazepines by up to 200-fold (161.5 +/- 93.2 DE ng/g tissue). Brain extracts from cirrhotic patients increased the binding of the GABA-A receptor agonist [3H]muscimol. This increase was minimal with brain extracts from controls (6.8 +/- 2.8%), but was significant with brain extracts from cirrhotic patients without (29.4 +/- 2.7%), or with (55.1 +/- 7.6%) previous exposure to benzodiazepines. Addition of flumazenil, a selective benzodiazepine receptor antagonist did not significantly modify the increase of [3H]muscimol binding by brain extracts from patients without prior exposure to benzodiazepines and only partially inhibited the increase of [3H]muscimol binding in presence of brain extracts from cirrhotic patients previously exposed to benzodiazepines. These findings suggest the presence of nonbenzodiazepine substances (possibly neurosteroids) with positive allosteric modulatory properties at the GABA-A receptor complex in brain in hepatic encephalopathy.  相似文献   

13.
Background: Ammonia and endogenous benzodiazepines (BDZs) are two of the most important agents among those taken into consideration in the pathogenesis of hepatic encephalopathy (HE). Methods: Venous ammonia and endogenous BDZs sera levels were assayed in 58 liver cirrhosis patients (34 male, 24 female) free of commercial BDZs. Endogenous BDZs were measured by binding assay after high-performance liquid chromatography purification. Ammonia was assessed by colorimetric test. Results: Endogenous BDZs and ammonia were significantly higher in Child-Pugh class C than in class B and class A (P < 0.05), correlating to the severity of the liver dysfunction but not with the degree of HE. A significant difference, in fact, was noted between degree 0 (no HE) versus III-IV of HE (P < 0.05), but not between degrees I-II versus III-IV. Regression analysis performed to find a correlation between the ammonia and BDZ levels in HE resulted negative. Conclusion: Clinical evidence is provided in cirrhotic patients that ammonia and endogenous BDZ levels do not correlate with each other in the outcome of HE.  相似文献   

14.
Most of the actions of neurosteroids on the central nervous system are mediated through allosteric modulation of the gamma-aminobutyric acid type A (GABA(A)) receptor, but a direct effect of GABA on the regulation of neurosteroid biosynthesis has never been investigated. In the present report, we have attempted to determine whether 3beta-hydroxysteroid dehydrogenase (3beta-HSD)-containing neurons, which secrete neurosteroids in the frog hypothalamus, also express the GABA(A) receptor, and we have investigated the effect of GABA on neurosteroid biosynthesis by frog hypothalamic explants. Double immunohistochemical labeling revealed that most 3beta-HSD-positive neurons also contain GABA(A) receptor alpha(3) and beta(2)/beta(3) subunit-like immunoreactivities. Pulse-chase experiments showed that GABA inhibited in a dose-dependent manner the conversion of tritiated pregnenolone into radioactive steroids, including 17-hydroxy-pregnenolone, progesterone, 17-hydroxy-progesterone, dehydroepiandrosterone, and dihydrotestosterone. The effect of GABA on neurosteroid biosynthesis was mimicked by the GABA(A) receptor agonist muscimol but was not affected by the GABA(B) receptor agonist baclofen. The selective GABA(A) receptor antagonists bicuculline and SR95531 reversed the inhibitory effect of GABA on neurosteroid formation. The present results indicate that steroid-producing neurons of the frog hypothalamus express the GABA(A) receptor alpha(3) and beta(2)/beta(3) subunits. Our data also demonstrate that GABA, acting on GABA(A) receptors at the hypothalamic level, inhibits the activity of several key steroidogenic enzymes, including 3beta-HSD and cytochrome P450(C17) (17alpha-hydroxylase).  相似文献   

15.
GABA(A) receptors are the major ionotropic inhibitory neurotransmitter receptors. The endocannabinoid system is a lipid signaling network that modulates different brain functions. Here we show a direct molecular interaction between the two systems. The endocannabinoid 2-arachidonoyl glycerol (2-AG) potentiates GABA(A) receptors at low concentrations of GABA. Two residues of the receptor located in the transmembrane segment M4 of β(2) confer 2-AG binding. 2-AG acts in a superadditive fashion with the neurosteroid 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) and modulates δ-subunit-containing receptors, known to be located extrasynaptically and to respond to neurosteroids. 2-AG inhibits motility in CB(1)/CB(2) cannabinoid receptor double-KO, whereas β(2)-KO mice show hypermotility. The identification of a functional binding site for 2-AG in the GABA(A) receptor may have far-reaching consequences for the study of locomotion and sedation.  相似文献   

16.
Increased benzodiazepine (BZ) receptor density has been reported in brains of rabbits with hepatic encephalopathy (HE) due to galactosamine (GalN)-induced fulminant hepatic failure (FHF). These data were generated using detergent-Triton X-100-treated neural membranes. While performing further studies it was noted that the increase in BZ receptor density was not demonstrable when Triton X-100 preparation was not employed. Accordingly the binding of [3H] flunitrazepam, a BZ ligand, to neural membranes from cortices of normal rabbits and rabbits with HE due to (GalN)-induced FHF was studied with and without detergent preparation. Scatchard plot analysis of the binding data indicated that when no detergent was employed, the apparent affinity and density of BZ receptors were similar for control membranes and membranes from animals in HE. BZ receptors from animals in HE were shown to be more resistant to solubilization by Triton than control membranes. These findings (a) afford a potential explanation for the apparent increase in density of BZ receptors in this model when Triton treatment of neural membranes is utilized and (b) suggest that recent evidence for increased GABAergic tone in the syndrome of HE is not dependent on an increased density of BZ receptors.  相似文献   

17.
Hepatic Encephalopathy (HE) is a serious neuropsychiatric condition of both acute and chronic liver failure. Acute liver failure is characterized by rapid evolution of HE and by brain edema. Portal-Systemic encephalopathy (PSE) is particularly prevalent following treatment of portal hypertension or ascites by the TIPS procedure. Available evidence currently suggests that neurotransmission changes rather than brain energy failure are the primary cause of HE. Recent studies both in autopsied brain tissue from HE patients as well as in experimental animal models of HE reveal that liver failure results in altered expression of several genes coding for proteins having key roles in the control of neuronal excitability. Such alterations include decreased expression of the glutamate transporter GLT-1, and increased expression of monoamine oxidase (MAO-A isoform), the peripheral-type benzodiazepine receptor (PTBR) as well as constitutive neuronal nitric oxide synthase (nNOS). Such changes result in altered protein expression and in increased extracellular brain glutamate, increased degradation of monoamine neurotransmitters, increased synthesis of neurosteroids with inhibitory properties, and increased production of nitric oxide (respectively) in brain in chronic liver failure. In the case of GLT-1, PTBR, and nNOS, alterations in expression result from exposure to ammonia and/or manganese, two neurotoxic agents shown previously to be increased in brain in liver failure.  相似文献   

18.
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has multiple receptors. In mammals, the GABA(A) receptor subtype is modulated by neurosteroids. However, whether steroid interaction with the GABA(A) receptor is unique to mammals or a conserved feature in vertebrates is unknown. Thus, neurosteroid modulation of the GABA(A) receptor was investigated in the brain of the bullfrog (Rana catesbeiana) using the mammalian GABA(A) receptor agonist [(3)H]muscimol. Two neurosteroids, allopregnanolone and pregnenolone sulfate, affected [(3)H]muscimol specific binding in bullfrog brain membrane preparations. Allopregnanolone significantly increased [(3)H]muscimol specific binding in a dose- and time-dependent manner. The pattern of allopregnanolone modulation supports the hypothesis that the bullfrog brain possesses both high-affinity and low-affinity [(3)H]muscimol binding sites. Unlike allopregnanolone, pregnenolone sulfate showed biphasic modulation with increased [(3)H]muscimol specific binding at low nanomolar concentrations and decreased specific binding at micromolar concentrations. Additionally, three cDNA fragments with significant homology to mammalian GABA(A) receptor subunits were isolated from the bullfrog brain. These fragments belong to the alpha1, beta1, and gamma2 subunit families. In mammals, GABA(A) receptors composed of these specific subunit isoforms are effectively modulated by neurosteroids, including allopregnanolone. Neurosteroid modulation of the amphibian brain GABA(A) receptor is therefore supported by both [(3)H]muscimol binding studies and subunit sequences. Allopregnanolone and pregnenolone sulfate modulation of this receptor may thus represent a significant mechanism for steroid influence on amphibian brain and behavior.  相似文献   

19.
High circulating ammonia concentrations are common in patients with acute liver failure (ALF) and are associated with hepatic encephalopathy (HE) and intracranial hypertension (ICH). Other risk factors are poorly characterized. We evaluated the relation of the admission arterial ammonia concentration and other clinical variables with the development of HE and ICH. Arterial ammonia was measured on admission to the intensive care unit in 257 patients; 165 had ALF and severe HE, and there were 3 control groups: acute hepatic dysfunction without severe HE (n = 50), chronic liver disease (n = 33), and elective surgery (n = 9). Variables associated with ICH and HE were investigated with regression analysis. Ammonia was higher in ALF patients than controls. An independent risk factor for the development of severe HE and ICH, a level greater than 100 mumol/L predicted the onset of severe HE with 70% accuracy. The model for end-stage liver disease (MELD) score was also independently predictive of HE, and its combination with ammonia increased specificity and accuracy. ICH developed in 55% of ALF patients with a level greater than 200 mumol/L, although this threshold failed to identify most cases. After admission, ammonia levels remained high in those developing ICH and fell in those who did not. Youth, a requirement for vasopressors, and renal replacement therapy were additional independent risk factors. Conclusion: Ammonia is an independent risk factor for the development of both HE and ICH. Additional MELD scoring improved the prediction of HE. Factors other than ammonia also appear important in the pathogenesis of ICH. Ammonia measurements could form part of risk stratification for HE and ICH, identifying patients for ammonia-lowering therapies and invasive monitoring.  相似文献   

20.
BACKGROUND: Ammonia and endogenous benzodiazepines (BDZs) are two of the most important agents among those taken into consideration in the pathogenesis of hepatic encephalopathy (HE). METHODS: Venous ammonia and endogenous BDZs sera levels were assayed in 58 liver cirrhosis patients (34 male, 24 female) free of commercial BDZs. Endogenous BDZs were measured by binding assay after high-performance liquid chromatography purification. Ammonia was assessed by colorimetric test. RESULTS: Endogenous BDZs and ammonia were significantly higher in Child-Pugh class C than in class B and class A (P < 0.05), correlating to the severity of the liver dysfunction but not with the degree of HE. A significant difference, in fact, was noted between degree 0 (no HE) versus III-IV of HE (P < 0.05), but not between degrees I-II versus III-IV. Regression analysis performed to find a correlation between the ammonia and BDZ levels in HE resulted negative. CONCLUSION: Clinical evidence is provided in cirrhotic patients that ammonia and endogenous BDZ levels do not correlate with each other in the outcome of HE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号