首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The development of genetically modified adenoviral vectors capable of specifically transducing a given cell population requires the addition and functional presentation of particular tropism determinants within the virus capsid, together with the abrogation of the molecular determinants that dictate their natural tropism in vivo. The human adenovirus serotype 5 (Ad5) first attaches to the cell surface following high-affinity binding of the C-terminal knob of the fiber capsid protein to the coxsackie and adenovirus receptor (CAR). Here we have assessed whether genetic shortening of the fiber shaft (virus BS1), or replacing the Ad5 fiber shaft and knob with their Ad3 counterparts (virus DB6), could cripple this interaction in vitro and in vivo. A 10-fold decrease in the binding of the modified capsids to soluble CAR was evidenced, which correlated with a similar reduction of their ability to transduce CAR-positive cells in vitro. The ability of BS1 to interact with cellular integrins was also impaired, suggesting that the penton base and the short-shafted fiber when embedded in the capsid preclude each other from efficiently interacting with their cognate cell surface receptors (CAR and integrins respectively). BS1 and DB6 intravenous injections in mice further supported a profound impairment of the ability of the capsid-modified viruses to transduce the liver as demonstrated by a 10-fold reduction of intracellular viral DNA and transgene expression. Interestingly enough, the host humoral response was also specifically weakened in BS1- and DB6-inoculated animals. Taken together, these observations indicate that (i) fiber shortening and (ii) pseudo-typing of Ad5-based vectors with the shaft and knob from non-CAR-binding serotypes constitute two promising strategies to successfully attenuate their native tropism in vitro and most importantly in vivo.  相似文献   

2.
Adenovirus (Ad) vectors are widely used in gene therapy and in vitro/in vivo gene transfer because of their high transduction efficiency. However, Ad vector application in the gene therapy field is limited by poor transduction into cells not expressing the primary receptor, coxsackievirus and adenovirus receptor. To overcome this problem, several types of capsid-modified Ad vectors have been developed. The HI loop or C-terminus of the fiber knob, the C-terminus of the protein IX (pIX) and the hypervariable region 5 of the hexon are promising candidate locations for displaying foreign peptide sequences. In the present study, we constructed Ad vectors in which each of the above region was modified by a simple in vitro ligation-based method, and examined the characterization of each Ad vector containing the FLAG tag (DYKDDDDK) or RGD (CDCRGDCFC) peptide. Enzyme-linked immunosorbent assay examining the surface expression of foreign peptides on the virus suggested that foreign peptides are exposed on virion surfaces in all types vectors and that the hexon was the most efficiently reacted, reflecting the copy number of the modification. However, in the case of the transduction efficiency of Ad vectors containing the RGD peptides, the modification of pIX and the hexon showed no effect. The modification of the HI loop of the fiber knob was the most efficient, followed by the modification of the C-terminus region of the fiber knob. These comparative analyses, together with a simple construction method for each modified Ad vector, could provide basic information for the generation of capsid-modified Ad vectors.  相似文献   

3.
The development of novel therapeutic strategies is imperative for the treatment of advanced cancers like ovarian cancer and glioma, which are resistant to most traditional treatment modalities. In this regard, adenoviral (Ad) cancer gene therapy is a promising approach. However, the gene delivery efficiency of human serotype 5 recombinant adenoviruses (Ad5) in cancer gene therapy clinical trials to date has been limited, mainly due to the paucity of the primary Ad5 receptor, the coxsackie and adenovirus receptor (CAR), on human cancer cells. To circumvent CAR deficiency, Ad5 vectors have been retargeted by creating chimeric fibers possessing the knob domains of alternate human Ad serotypes. Recently, more radical modifications based on 'xenotype' knob switching with non-human adenovirus have been exploited. Herein, we present the characterization of a novel vector derived from a recombinant Ad5 vector containing the canine adenovirus serotype 1 (CAV-1) knob (Ad5Luc1-CK1), the tropism of which has not been previously described. We compared the function of this vector with our other chimeric viruses displaying the CAV-2 knob (Ad5Luc1-CK2) and Ad3 knob (Ad5/3Luc1). Our data demonstrate that the CAV-1 knob can alter Ad5 tropism through the use of a CAR-independent entry pathway distinct from that of both Ad5Luc1-CK2 and Ad5/3-Luc1. In fact, the gene transfer efficiency of this novel vector in ovarian cancer cell lines, and more importantly in patient ovarian cancer primary tissue slice samples, was superior relative to all other vectors applied in this study. Thus, CAV-1 knob xenotype gene transfer represents a viable means to achieve enhanced transduction of low-CAR tumors.  相似文献   

4.
Adenovirus (Ad)-mediated gene transfer to blood vessels is relatively inefficient, probably because binding of adenovirus to the endothelium and adventitia seems to be limited. Association of calcium phosphate (CaPi) precipitates with adenovirus improves efficiency of gene transfer to some cells in culture and to mouse lung in vivo. In this study, we tested the hypothesis that CaPi is useful for adenovirus-mediated gene transfer to blood vessels. In fibroblast and endothelial cells in culture, Ad:CaPi coprecipitates greatly increased transgene expression. Ad:CaPi also enhanced transgene expression in both adventitia and endothelium of carotid arteries and aortae from rabbits studied ex vivo. After injection of Ad:CaPi into the cisterna magna of rabbits in vivo, the transgene product was markedly increased in leptomeninges of the ventral brain stem, including the adventitia of the basilar artery. We also examined mechanisms of enhanced gene transfer. Binding of adenovirus to fibroblast and endothelial cells in culture, and to the basilar artery in vivo, as determined using Southern blot analysis, was augmented by CaPi. Antibody to adenoviral fiber knob did not inhibit augmented transgene expression by Ad:CaPi. The finding suggests that improved adenoviral binding occurs primarily via a fiber-independent pathway. Thus, CaPi precipitates are useful for improvement of adenovirus-mediated gene transfer to blood vessels in vitro and in vivo.  相似文献   

5.
Approaches to alter the native tropism of adenoviruses (Ads) are beneficial to increase their efficacy and safety profile. Liver tropism is important with regard to potential clinical toxicity in humans. Ad5/3 chimeras in which the Ad5 knob is substituted by the Ad3 knob, such as Ad5/3luc1, have been recently shown to increase infectivity of ovarian cancer cell lines and primary tumor cells, which express low levels of the coxsackie-adenovirus receptor (CAR), without increasing infectivity of liver cells. A novel strategy to address the problem of liver uptake and improve the tumor/liver ratio is genetic replacement of the Ad fiber shaft. Ad5.Ad3.SH.luc1 is an Ad5-based vector that contains the fiber shaft from Ad serotype 3 but the fiber knob from Ad serotype 5. To compare tumor/liver of Ad5.Ad3.SH.luc1 and Ad5/3luc1 in vivo, we created three different tumor and treatment models of ovarian cancer in mice, simulating intraperitoneal and intravenous administration of tumors. Ad5.Ad3.SH.luc1 displayed the lowest liver tropism of all viruses in all models tested. Intravenous administration of all viruses resulted in higher tumor transduction rates compared to intraperitoneal administration. Genetic shortening of the Ad5 fiber shaft significantly increases relative tumor/liver gene transfer. This could improve the effective tumor dose and reduce side effects, thereby increasing the bioavailability of therapeutic agents.  相似文献   

6.
Malignant gliomas remain refractory to adenovirus serotype 5 (Ad5) gene therapy because of the lack of the primary adenoviral receptor, the coxsackie-adenovirus receptor (CAR), on tumor cells. To bypass the dependence on CAR, we investigated the expression of adenovirus serotype 3 (Ad3) receptor, or CD46, on glioma cells. First, we analyzed the expression of CD46 by RT-PCR on primary and passaged glioma cells. We then performed immunofluorescence studies to examine protein expression of CAR and CD46 on the same tumor lines. Finally, we constructed a replication-defective Ad vector that binds to CD46 and contains a luciferase transgenic cassette in place of the deleted E1 region: Ad5/3 (containing tail/shaft domain of Ad5 and knob domain of Ad3). These vectors were analyzed in vitro and in vivo against malignant glioma and compared with wild-type Ad5 or control vector Ad3/5 (containing tail of Ad5, shaft of Ad3, and knob of Ad5). The chimeric vector Ad5/3 showed a significant increase in the transduction efficiency of glioma tumor cells. At the same time, blocking the CD46 receptor caused a 65% inhibition of adenoviral infection when using Ad5/3. Taken together, these results indicate that CD46 is overexpressed by malignant glioma. Retargeting to the Ad3 receptor enhances gene transfer and offers a novel target for gene therapy of malignant brain tumors.  相似文献   

7.
Targeted gene delivery to the tissue of interest by recombinant adenovirus (Ad) vectors is limited by the relatively broad expression of the primary receptor, the coxsackievirus and adenovirus receptor (CAR), and the secondary receptor, alphav integrin. This problem could be overcome by mutating the fiber and penton base, which bind with CAR and alphav integrin, respectively. In this study, we constructed CAR-binding ablated Ad vectors and alphav integrin-binding ablated Ad vectors by mutation in the FG loop of fiber knob and in the RGD motif of penton base, respectively, and compared the gene transfer properties of their vectors into various types of cultured cells and mice with conventional Ad vectors. We also generated Ad vectors containing RGD peptide in the HI loop of the fiber knob. CAR-binding ablated Ad vectors mediated about 1% of gene transfer activity into CAR-positive cultured cells, compared with conventional Ad vectors, while alphav integrin-binding ablated Ad vectors maintained at least 76% of gene transfer activity into cultured CAR-positive cells. Inclusion of the RGD peptide into the HI loop of the fiber knob of CAR-binding ablated Ad vectors restored gene transfer activity in vitro. On the other hand, systemically administered CAR-binding ablated Ad vectors, as well as alphav integrin-binding ablated Ad vectors mediated similar levels of gene transfer into mouse liver with the conventional Ad vectors. These results suggest that continued interaction of either the fiber with CAR or the penton base with alphav integrin offers an effective route of virus entry into mouse liver in vivo. Inhibition of the interaction of both the fiber with CAR and the penton base with alphav integrin is likely to be crucial to the development of targeted Ad vectors.  相似文献   

8.
The clinical course of sarcoma warrants the development of new therapeutic options, such as gene therapy. However, the lack of coxsackievirus-adenovirus receptor (CAR) on sarcoma cells limits the efficacy of adenovirus type 5 (Ad5)-based gene therapy. In this study we evaluated 20 different adenoviral types and 1 Ad5 vector with RGD-containing fiber for their internalization efficiency in sarcoma cells. We demonstrated that adenovirus types 35, 3, 7, 11, 9, and 22 and Ad5lucRGD virions (ranked in descending order) have significantly higher internalization efficiency in the tested sarcoma cells when compared with Ad5. On the basis of these results we developed a conditionally replication-competent adenoviral vector, Ad5Delta24.Ki.COX, and compared its oncolytic efficacy with that of Ad5/35Delta24.Ki.COX, an Ad5-based vector with the Ad35 fiber shaft and knob domains. Because both vectors differed only in the fiber, we were able to assess whether the adenoviral type with the most efficient internalization resulted also in enhanced treatment efficacy. We evaluated the antineoplastic activity of the oncolytic adenoviral vectors alone or in combination with the expression of measles virus fusogenic membrane glycoproteins and/or ifosfamide. The findings of our xenograft model were as follows: animals that received Ad5/35-based therapy had significantly smaller tumors than animals treated with the homologous Ad5-based vectors. In addition, we demonstrated that the combination of virotherapy, intratumoral expression of fusogenic membrane glycoproteins, and ifosfamide was clearly superior compared with treatment with individual components alone or as combinations of two components. In conclusion, Ad35-based vectors are promising for the treatment of sarcoma.  相似文献   

9.
《Molecular therapy》2002,5(6):695-704
Adenovirus serotype 5 (Ad5) displays unparalleled gene transfer efficacy to cells with high coxsackie-adenovirus receptor (CAR) expression. Unfortunately, cells isolated from clinical human cancers, both ovarian and other types, express highly variable and often low levels of CAR. Fortunately, native Ad5 tropism can be modified to circumvent CAR deficiency and to enhance infectivity. Ad5/3luc1 incorporates the serotype 3 fiber knob and binds to a receptor distinct from CAR, while the fiber of Ad5lucRGD is modified with an RGD-4C motif, allowing CAR-independent binding to integrins. We studied the liver tropism and blood clearance of these viruses after intravenous (i.v.) injection, and biodistribution after intraperitoneal (i.p.) injection to tumor-bearing mice. To estimate efficacy, we assessed gene transfer to purified human primary ovarian cancer cells, and in a mouse model of ovarian cancer. Ad5/3luc1 achieved improved gene transfer over Ad5lucRGD, and both infectivity-enhanced viruses were superior to the isogenic control with an unmodified Ad5 capsid. In the presence of malignant ascites, gene transfer was improved with both Ad5/3luc1 and Ad5lucRGD. Thus, retargeting to the Ad3 receptor enhances gene transfer to clinically relevant ovarian cancer substrates, while the mouse toxicity and biodistribution profile of both fiber-modified Ad vectors is comparable to Ad5.  相似文献   

10.
Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice   总被引:5,自引:0,他引:5  
Adenoviral vectors used in gene therapy are predominantly derived from adenovirus serotype 5 (Ad5), which infects a broad range of cells. Ad5 cell entry involves interactions with the coxsackie-adenovirus receptor (CAR) and integrins. To assess these receptors in vivo, we mutated amino acid residues in fiber and penton that are involved in receptor interaction and showed that CAR and integrins play a minor role in hepatic transduction but that integrins can influence gene delivery to other tissues. These data suggest that an alternative entry pathway exists for hepatocyte transduction in vivo that is more important than CAR or integrins. In vitro data suggest a role for heparan sulfate glycosaminoglycans (HSG) in adenovirus transduction. The role of the fiber shaft in liver uptake was examined by introducing specific amino acid changes into a putative HSG-binding motif contained within the shaft or by preparing fiber shaft chimeras between Ad5 and Ad35 fibers. Results were obtained that demonstrate that the Ad5 fiber shaft can influence gene transfer both in vitro and to the liver in vivo. These observations indicate that the currently accepted two-step entry pathway, which involves CAR and integrins, described for adenoviral infection in vitro, is not used for hepatic gene transfer in vivo. In contrast, alpha(v) integrins influence gene delivery to the lung, spleen, heart, and kidney. The detargeted vector constructs described here may provide a foundation for the development of targeted adenoviral vectors.  相似文献   

11.
Malignant brain tumors remain refractory to adenovirus type 5 (Ad5)-based gene therapy, mostly due to the lack of the primary Ad5 receptor, the coxsackie and adenovirus receptor, on brain tumor cells. To bypass the dependence on coxsackie and adenovirus receptor for adenoviral entry and infectivity, we used a novel, double targeted Ad5 backbone-based vector carrying a chimeric Ad5/3 fiber with integrin-binding RGD motif incorporated in its Ad3 knob domain. We then tested the new virus in vitro and in vivo in the setting of malignant glioma. Ad5/3-RGD showed a 10-fold increase in gene expression in passaged cell lines and up to 75-fold increase in primary tumors obtained from patients relative to the control. These results were further corroborated in our in vivo human glioma xenograft model, where the Ad5/3-RGD vector showed a 1,000-fold increase in infectivity as compared with the control. Taken together, our findings indicate that Ad5/3-RGD may be a superior vector for applications in glioma gene therapy and therefore warrants further attention in the field of neuro-oncology.  相似文献   

12.
Coxsackievirus and adenovirus receptor (CAR), alphav integrins, and heparan sulfate glycosaminoglycans (HSGs) are the tropism determinants of adenoviral (Ad) vectors in vivo. For the development of a targeted Ad vector, its broad tropism needs to be blocked (or reduced). We have previously developed Ad vectors with ablation of CAR, alphav integrin, and HSG binding by mutation of the FG loop in the fiber knob (deletion of T489, A490, Y491, and T492 of the fiber protein), deletion of the RGD motif of the penton base, and substitution of the fiber shaft domain for that derived from Ad type 35, respectively, and have shown that this triple-mutant Ad vector [Ad/deltaF(FG)deltaP-S35-L2] exhibits significantly lower transduction in mouse liver compared with the conventional Ad vector [Koizumi, N., Mizuguchi, H., Sakurai, F., Yamaguchi, T., Watanabe, Y., and Hayakawa, T. (2003). J. Virol. 77, 13062-13072]. In the present study, we optimized the fiber knob mutation for further reduced in vivo transduction and examined toxicity of the modified Ad vectors. Ad/deltaF(AB)deltaPS35- L2, a triple-mutant Ad vector containing a mutation of the AB loop in the fiber knob (R412S, A415G, E416G, and K417G), mediated approximately 15,000- and 500-fold lower mouse liver transduction by intravenous and intraperitoneal administration, respectively, than the conventional Ad vector, and mediated 10- fold lower mouse liver transduction than did Ad/deltaF(FG)deltaP-S35-L2. Ad/deltaF(AB)deltaP-S35-L2 also exhibited lower transduction of other organs compared with Ad/deltaF(FG)deltaP-S35-L2 and the conventional Ad vector. Levels of both liver serum enzymes (aspartate transferase [AST] and alanine transferase (ALT)] and interleukin (IL)-6 in mouse serum after intravenous administration of Ad/deltaF(AB)deltaP-S35-L2 were similar to those in the nontreatment mouse serum, whereas the conventional Ad vector led to high levels of AST, ALT, and IL-6. We therefore succeeded in further improving the mutant Ad vector, abolishing both viral natural tropism and toxicity. This new Ad vector appears to be a fundamental vector for targeted gene delivery.  相似文献   

13.
Vectors based on Adenovirus type 5 (Ad5) are among the most common vectors in cancer gene therapy trials to date. However, for increased efficiency and safety, Ad5 should be de-targeted from its native receptors and re-targeted to a tumor antigen. We have described earlier an Ad5 vector genetically re-targeted to the tumor antigen HER2/neu by a dimeric version of the Affibody molecule ZH inserted in the HI-loop of the fiber knob of a coxsackie and adenovirus receptor-binding ablated fiber. This virus showed almost wild-type growth characteristics and infected cells through HER2/neu. Here we generate vectors with double specificity by incorporating two different Affibody molecules, ZH (HER2/neu-binding) and ZT (Taq polymerase-binding), at different positions relative to one another in the HI-loop. Receptor-binding studies together with viral production and gene transfer assays showed that the recombinant fiber with ZT in the first position and ZH in the second position (ZTZH) bound to both its targets, whereas surprisingly, the fiber with ZHZT was devoid of binding to HER2/neu. Hence, it is possible to construct a recombinant adenovirus with dual specificity after evaluating the best position for each ligand in the fiber knob.  相似文献   

14.
Peritoneal compartmentalization of advanced stage ovarian cancer provides a rational scenario for gene therapy strategies. Several groups are exploring intraperitoneal administration of adenoviral (Ad) vectors for this purpose. We examined in vitro gene transfer in the presence of ascites fluid from ovarian cancer patients and observed significant inhibition of Ad-mediated gene transfer. The inhibitory activity was not identified as either complement or cellular factors, but depletion of IgG from ascites removed the inhibitory activity, implicating neutralizing anti-Ad antibodies. A wide range of preexisting anti-Ad antibody titers in patient ascites fluid was measured by ELISA. Western blot analysis demonstrated that the antibodies were directed primarily against the Ad fiber protein. To circumvent inhibition by neutralizing antibodies, a genetically modified adenoviral vector was tested. The Ad5Luc.RGD vector has an Arg-Gly-Asp (RGD) peptide sequence inserted into the fiber knob domain and enters cells through a nonnative pathway. Compared with the conventional Ad5 vector, Ad5Luc.RGD directed efficient gene transfer to cell lines and primary ovarian cancer cells in the presence of ascites fluid containing high-titer neutralizing anti-Ad antibodies. These results suggest that such modified Ad vectors will be needed to achieve efficient gene transfer in the clinical setting.  相似文献   

15.
Previously, we developed single adenovirus (Ad) vectors that contained the gene of interest in the E1 deletion region and the transactivator gene for the tetracycline-controllable expression system in the E3 deletion region. In the present study, we improved the Ad vector-mediated tetracycline-controllable expression system by the fiber modification of Ad. We developed fiber-modified Ad vectors containing the tet-off system, which are effective in overcoming the limitations of conventional Ad vectors, specifically their inefficient gene transfer into cells lacking the primary receptor, the coxsackievirus and adenovirus receptor (CAR). Ad vectors containing the tet-off system with an Arg-Gly-Asp (RGD) peptide in the HI loop of the fiber knob or the Ad type 35 fiber greatly improved transduction efficiency (more than 1-2-log orders) into the cells lacking CAR expression but expressing alphav integrin or CD46, respectively. They exhibited vastly higher regulation of gene expression by doxycycline. The combination of fiber-modified Ad vectors and the tetracycline-controllable expression system should offer a powerful tool for gene therapy and gene transfer experiment.  相似文献   

16.
Adenoviral vectors (AdV) are used for anti-inflammatory cytokine therapy in experimental arthritis. Cell entry of AdV is dependent on the initial recognition of the coxsackie-adenovirus receptor (CAR) on cells. Recently, an Arg-Gly-Asp (RGD) motif was introduced in the HI loop of the fiber knob, this enables the adenovirus to bypass CAR and mediate cell entry via RGD binding integrins. In this study, we explored the transduction efficiency of the RGD-modified adenovirus in synovium and compared the RGD-modified with the conventional adenoviral vector for their effectiveness to modulate the murine collagen-induced arthritis (CIA) model when used to overexpress mIL-1Ra in the knee joint. Twenty-four hours after intra-articular injection of 10(7) fluorescent forming units (ffu) virus, luciferase (luc) activity in Ad5LucRGD-injected joints was up to 38 times higher than in AdCMVLuc-injected joints, and in arthritic joints the transduction efficiency was up to 69 times higher for the Ad5LucRGD viruses. Transduction of the synovial lining by the RGD-modified adenovirus containing the mIL-1Ra transgene, markedly improved the inhibition of CIA compared with the conventional virus in both a prophylactic and therapeutic treatment protocol. These results show that targeting integrins with the RGD-modified AdV improved the outcome of gene therapy for arthritis.  相似文献   

17.
Yun CO  Cho EA  Song JJ  Kang DB  Kim E  Sohn JH  Kim JH 《Human gene therapy》2003,14(17):1643-1652
Recombinant adenovirus (Ad) has emerged as the vector system of choice in cancer gene therapy. Its full utility, however, has been limited because of the low efficiency of adenovirus-mediated gene transfer to cancer cells - the main reason being that cancer cells in general express inherently low levels of the coxsackie and adenovirus receptor (CAR) on their surface. Development of novel strategies to achieve adenovirus infection in a CAR-independent manner may help to overcome this limitation. To this end, we have generated a novel recombinant Ad, dl-VSVG-LacZ, that contains a fiber knob with intact CAR entry capability and an additional phosphatidylserine (PS) entry capability. This was achieved by incorporating the vesicular stomatitis virus glycoprotein (VSV-G) epitope onto the C terminus of the fiber knob. VSV-G is an envelope protein that facilitates the specificity for binding of the virus to PS moieties on the cellular plasma membrane. The newly tropism-expanded adenovirus, dl-VSVG-LacZ, showed a remarkable improvement (3- to 20-fold) in the delivery of LacZ to a variety of mammalian cells including those that were CAR deficient. The greatest improvement in gene transfer was observed in cells that were difficult to transduce with an untargeted Ad (wildtype fiber). Furthermore, treatment with dl-VSVG-LacZ significantly enhanced gene transfer in vivo when compared with control adenovirus that lacked the VSV-G epitope. Taken together, these studies demonstrate that the strategy to extend adenovirus tropism may greatly improve the utility of adenovirus in gene therapy applications.  相似文献   

18.
Systemic adenoviral delivery into tumors is inefficient because of liver sequestration of intravenously administered virus. One potential solution for improving bioavailability is the use of carrier cells such as human mesenchymal stem cells (MSCs), which have been suggested to have inherent tumor tropism. Here we investigated the capacity of capsid-modified adenoviruses to infect and replicate in MSCs. Further, biodistribution and tumor-killing efficacy of MSCs loaded with oncolytic adenoviruses were evaluated in orthotopic murine models of lung and breast cancer. In vitro, heparan sulfate proteoglycan- and alpha(v)beta integrin-targeted viruses enhanced gene delivery to bone marrow- and adipose tissue-derived MSCs up to 11,000-fold over adenovirus serotype 5 (Ad5). Infectivity-enhanced oncolytic adenoviruses showed notably higher rates of cytolysis of in vitro-passaged MSCs in comparison with wild-type virus. In vivo, intravenously injected MSCs homed primarily to the lungs, and virus was released into advanced orthotopic breast and lung tumors for therapeutic efficacy and increased survival. When the same dose of virus was injected intravenously without MSCs, only transduction of the liver was seen. These results suggest that MSCs loaded with oncolytic adenoviruses might be a useful approach for improving the bioavailability of systemically administered oncolytic adenoviruses.  相似文献   

19.
20.
The interaction between viral capsid proteins and specific molecules exposed on the plasma membrane of the cells is involved in the viral tropism. A human adenovirus (Ad) belonging to subgroups A, C, D, E and F infects cells via the interaction between the fiber knob and the primary receptor, the coxsackievirus and adenovirus receptor (CAR). Conventional human adenovirus type 5 (hAd5) vectors show efficient transduction in CAR-positive cells; in contrast, hAd5 vector application is limited by poor transduction into cells lacking CAR expression. In the present study, to broaden the tropism of hAd5 vectors, we generated hAd5 vectors containing the TAT peptide, which is a protein transduction domain derived from human immunodeficiency virus, in the HI loop of the fiber knob (Ad-TAT(HI)-L2) or the C-terminus of the fiber knob (Ad-TAT(C)-L2). In CAR-negative adherent cells, Ad-TAT(HI)-L2 and Ad-TAT(C)-L2 showed approximately 50- to 500-fold higher gene expression than the conventional hAd5 vector (Ad-L2). Ad-TAT(HI)-L2 was also more efficient than Ad-L2 in blood cell lines and in two types of primary cultured human vascular smooth muscle cells, which are almost refractory to Ad-L2. Furthermore, Ad-TAT(HI)-L2 was more efficient than other types of fiber-modified Ad vectors, which harbor an RGD (Arg-Gly-Asp) or a poly-lysine (KKKKKKK;K7) peptide in the HI loop or the C-terminus of the fiber knob, respectively. Ad-TAT(HI)-L2 efficiently transduced the organs in levels and patterns that were roughly similar to those of Ad-L2 after being systemically injected into mice. To the best of our knowledge, this study is the first report showing that hAd5 vectors containing the TAT peptide in the fiber knob could efficiently transduce cells independently of CAR. These Ad vectors should be useful for gene functional analysis and gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号