首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium channels in the peripheral microcirculation   总被引:8,自引:0,他引:8  
Vascular smooth muscle (VSM) cells, endothelial cells (EC), and pericytes that form the walls of vessels in the microcirculation express a diverse array of ion channels that play an important role in the function of these cells and the microcirculation in both health and disease. This brief review focuses on the K+ channels expressed in smooth muscle and endothelial cells in arterioles. Microvascular VSM cells express at least four different classes of K+ channels, including inward-rectifier K+ channels (Kin), ATP-sensitive K+ channels (KATP), voltage-gated K+ channels (Kv), and large conductance Ca2+-activated K+ channels (BKCa). VSM KIR participate in dilation induced by elevated extracellular K+ and may also be activated by C-type natriuretic peptide, a putative endothelium-derived hyperpolarizing factor (EDHF). Vasodilators acting through cAMP or cGMP signaling pathways in VSM may open KATP, Kv, and BKCa, causing membrane hyperpolarization and vasodilation. VSMBKc. may also be activated by epoxides of arachidonic acid (EETs) identified as EDHF in some systems. Conversely, vasoconstrictors may close KATP, Kv, and BKCa through protein kinase C, Rho-kinase, or c-Src pathways and contribute to VSM depolarization and vasoconstriction. At the same time Kv and BKCa act in a negative feedback manner to limit depolarization and prevent vasospasm. Microvascular EC express at least 5 classes of K+ channels, including small (sKCa) and intermediate(IKCa) conductance Ca2+-activated K+ channels, Kin, KATP, and Kv. Both sK and IK are opened by endothelium-dependent vasodilators that increase EC intracellular Ca2+ to cause membrane hyper-polarization that may be conducted through myoendothelial gap junctions to hyperpolarize and relax arteriolar VSM. KIR may serve to amplify sKCa- and IKCa-induced hyperpolarization and allow active transmission of hyperpolarization along EC through gap junctions. EC KIR channels may also be opened by elevated extracellular K+ and participate in K+-induced vasodilation. EC KATP channels may be activated by vasodilators as in VSM. Kv channels may provide a negative feedback mechanism to limit depolarization in some endothelial cells.  相似文献   

2.
We have previously shown expression of voltage-gated K+ channels (K(V)) in smooth muscle of cerebral arterioles and suggested the channels function to oppose voltage-dependent Ca2+ entry. However, other studies indicate that large conductance Ca2+-activated K+ (BK) channels serve this function and chloride (Cl-) channels may have the opposite effect. In this study we compared the activation thresholds and absolute current amplitudes for K(V) channels, BK channels and Cl- channels at physiological membrane potentials in intact precapillary arterioles from the rabbit cerebral circulation. Patch-clamp recordings were made to measure current and membrane potential, and a video scan line was used to detect external diameter. Two strategies to determine the basal current-voltage relationship of BK channels showed the channels contributed current only at voltages positive of -35 mV, even though voltage-dependent Ca2+-entry occurred. Ca2+-activated and niflumic acid-sensitive Cl- current was detected but, between -50 and -10 mV, both BK and Cl- channel currents were much smaller and contributed less to the membrane potential compared with K(V) channel current. Furthermore, in the absence of an exogenous vasoconstrictor agent, block of K(V) channels but not BK or Cl- channels caused constriction, although in the presence of endothelin-1 block of BK or K(V) channels caused constriction. The data indicate K(V) channels are the first inhibitory mechanism to activate when there is depolarisation in precapillary arteriolar smooth muscle cells of the cerebral circulation.  相似文献   

3.
Zhao G  Zhao Y  Pan B  Liu J  Huang X  Zhang X  Cao C  Hou N  Wu C  Zhao KS  Cheng H 《Circulation research》2007,101(5):493-502
Large conductance Ca(2+)-activated K(+) channels (BK(Ca)) play a critical role in blood pressure regulation by tuning the vascular smooth muscle tone, and hyposensitivity of BK(Ca) to Ca(2+) sparks resulting from its altered beta1 subunit stoichiometry underlies vasoconstriction in animal models of hypertension. Here we demonstrate hypersensitivity of BK(Ca) to Ca(2+) sparks that contributes to hypotension and blunted vasoreactivity in acute hemorrhagic shock. In arterial smooth muscle cells under voltage-clamp conditions (0 mV), the amplitude and duration, but not the frequency, of spontaneous transient outward currents of BK(Ca) origin were markedly enhanced in hemorrhagic shock, resulting in a 265% greater hyperpolarizing current. Concomitantly, subsurface Ca(2+) spark frequency was either unaltered (at 0 mV) or decreased in hyperpolarized resting cells. Examining the relationship between spark and spontaneous transient outward current amplitudes revealed a hypersensitive BK(Ca) activity to Ca(2+) spark in hemorrhagic shock, whereas the spark-spontaneous transient outward current coupling fidelity was near unity in both groups. Importantly, we found an acute upregulation of the beta1 subunit of the channel, and single-channel recording substantiated BK(Ca) hypersensitivity at micromolar Ca(2+), which promotes the alpha and beta1 subunit interaction. Treatment of shock animals with the BK(Ca) inhibitors iberiotoxin and charybdotoxin partially restored vascular membrane potential and vasoreactivity to norepinephrine and blood reinfusion. Thus, the results underscore a dynamic regulation of the BK(Ca)-Ca(2+) spark coupling and its therapeutic potential in hemorrhagic shock-associated vascular disorders.  相似文献   

4.
INTRODUCTION: The effects of membrane stretch on ion channels were investigated in cultured smooth muscle cells of human coronary artery. METHODS AND RESULTS: In the cell-attached configuration, membrane stretch with negative pressure induced two types of stretch-activated (SA) ion channels: a nonselective cation channel and a large-conductance Ca2+-activated K+ (BK(Ca)) channel. The single-channel conductances of SA cation and BK(Ca) channels were 26 and 203 pS, respectively. To elucidate the mechanism of activation of these SA channels and to minimize mechanical disruption, a sinusoidal change in pipette pressure was applied to the on-cell membrane patch. During dynamic changes in pipette pressure, increases in SA cation channel activity was found to coincide with increases in BK(Ca) channel activity. In the continued presence of cyclic stretch, the activity of SA cation channels gradually diminished. However, after termination of cyclic stretch, BK(Ca) channel activity was greatly enhanced, but the activity of SA cation channels disappeared. CONCLUSION: This study is the first to demonstrate that the behavior of SA cation and BK(Ca) channels in coronary smooth muscle cells is differentially susceptible to dynamic changes in membrane tension.  相似文献   

5.
目的探讨正常大鼠冠状动脉平滑肌细胞大电导钙离子激活钾通道(BK通道)电流的特点,为研究疾病状况下冠状动脉平滑肌细胞BK通道电流异常变化提供正常对照。方法酶消化法分离大鼠冠状动脉平滑肌细胞;采用不同阻滞剂,对冠状动脉血管平滑肌细胞上钾通道进行鉴定;采用全细胞和单通道膜片钳实验技术分别记录冠状动脉平滑肌细胞BK通道电流,计算开放幅度和电导,观察BK通道电压敏感性和钙敏感性及加入特异性BK通道阻滞剂IBTX后BK通道电流的变化。结果正常冠状动脉平滑肌细胞BK通道电流约占总钾离子流65%±4%(t/,=12),BK通道电导为(258±42)pS(n=6),在刺激电位150mV时,电流密度为(275±40)pA/pF(n=8);在电极外液钙离子浓度为1μmol/L,刺激电位为0、20、40、60、80、100、120、140和160mV条件下,BK通道开放概率(NP0)分别为0、0.0002、0.0016±0.0005、0.0283±0.0081、0.05694±0.0102、0.3533±0.0514、1.4922±0.1578、2.5975±0.3632和4.6041±0.7834(P〈0.05,n=5);在刺激电位60mV,电极外液钙离子浓度为0、0.001、0.01、0.1、1、10、50和100μmol/L条件下,BK通道NP。分别为0、0.0001、0.0031±0.0008、0.0042±0.0090、0.0808±0.0105、0.7591±0.1274、2.7242±0.4612和3.2366±0.5728(P〈0.05,n=6)。结论BK通道广泛分布于冠状动脉平滑肌细胞上,具有电压敏感性和钙敏感性,对冠状动脉血管张力调节起重要作用。  相似文献   

6.
7.
BACKGROUND & AIMS: The characteristics of colonic circular smooth muscle slow waves are altered during inflammation. The aim of this study was to examine whether inflammation modulates the open-state probability of Ca2+-activated K+ (KCa) channels in these cells to contribute to these alterations. METHODS: The experiments were performed on freshly dissociated single smooth muscle cells from the canine colon using standard patch clamp methods. Inflammation was induced by mucosal exposure to ethanol and acetic acid. RESULTS: Inflammation decreased the open-state probability of large-conductance KCa (BK) channels in the cell-attached and excised inside-out configurations. The voltage sensitivity of the channels was also reduced during inflammation. Inflammation had no significant effect on the large, medium, and small conductances or the unitary current levels of channel openings. However, it decreased the maximum number of simultaneous channel openings. The channels were Ca2+-dependent and were blocked by tetraethylammonium and charybdotoxin in normal and inflamed cells. CONCLUSIONS: Inflammation decreases the open-state probability of BK channels. This may partially reverse the decrease in duration and amplitude of slow waves and depolarization of membrane potential seen in inflammation.  相似文献   

8.
大电导钙激活钾通道(BKCa)是血管平滑肌细胞(VSMCs)上表达最丰富的钾通道,对维持VSMCs的膜电位及血管收缩和舒张的动态平衡具有重要的调节作用。BKCa通道的激活可使细胞膜发生超极化,从而抑制电压依赖性钙通道的激活和钙离子内流,导致平滑肌舒张。对高血压患者的观察和高血压动物模型的研究发现,高血压血管张力升高时平滑肌细胞膜表面钾离子和钙离子通道表达和功能均发生异常,因此,有人推测高血压是离子通道重构导致平滑肌细胞去极化的结果。本文主要综述近年来BKCa通道在高血压病中的研究进展。  相似文献   

9.
Large-conductance Ca2+-voltage-activated K+ channels (BK channels) control many key physiological processes, such as neurotransmitter release and muscle contraction. A signature feature of BK channels is that they have the largest single channel conductance of all K+ channels. Here we examine the mechanism of this large conductance. Comparison of the sequence of BK channels to lower-conductance K+ channels and to a crystallized bacterial K+ channel (MthK) revealed that BK channels have a ring of eight negatively charged glutamate residues at the entrance to the intracellular vestibule. This ring of charge, which is absent in lower-conductance K+ channels, is shown to double the conductance of BK channels for outward currents by increasing the concentration of K+ in the vestibule through an electrostatic mechanism. Removing the ring of charge converts BK channels to inwardly rectifying channels. Thus, a simple electrostatic mechanism contributes to the large conductance of BK channels.  相似文献   

10.
Cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences. Oxyhemoglobin (oxyhb) has been implicated in SAH-induced cerebral vasospasm as it causes cerebral artery constriction and increases tyrosine kinase activity. Voltage-dependent, Ca(2+)-selective and K(+)-selective ion channels play an important role in the regulation of cerebral artery diameter and represent potential targets of oxyhb. Here we provide novel evidence that oxyhb selectively decreases 4-aminopyridine sensitive, voltage-dependent K(+) channel (K(v)) currents by approximately 30% in myocytes isolated from rabbit cerebral arteries but did not directly alter the activity of voltage-dependent Ca(2+) channels or large conductance Ca(2+)-activated (BK) channels. A combination of tyrosine kinase inhibitors (tyrphostin AG1478, tyrphostin A23, tyrphostin A25, genistein) abolished both oxyhb-induced suppression of K(v) channel currents and oxyhb-induced constriction of isolated cerebral arteries. The K(v) channel blocker 4-aminopyridine also inhibited oxyhb-induced cerebral artery constriction. The observed oxyhb-induced decrease in K(v) channel activity could represent either channel block, or a decrease in K(v) channel density on the plasma membrane. To explore whether oxyhb altered trafficking of K(v) channels to the plasma membrane, we used an antibody generated against an extracellular epitope of K(v)1.5 channels. In the presence of oxyhb, staining of K(v)1.5 on the plasma membrane surface was markedly reduced. Furthermore, oxyhb caused a loss of spatial distinction between staining with K(v)1.5 and the general anti-phosphotyrosine antibody PY-102. We propose that oxyhb-induced suppression of K(v) currents occurs via a mechanism involving enhanced tyrosine kinase activity and channel endocytosis. This novel mechanism may contribute to oxyhb-induced cerebral artery constriction following SAH.  相似文献   

11.
12.
Ca2+-activated K+ channels (PKCa channels) account for the predominant K+ permeability of many types of smooth muscle cells. When activated, they oppose depolarization due to Na+ and Ca2+ channel activity. Several vasodilatory agents that increase intracellular cGMP levels (e.g., nitroprusside, adenosine, and atrial natriuretic factor) enhance the activity of these high-conductance PKCa channels in on-cell patches of bovine aortic smooth muscle cells. In addition, dibutyryl-cGMP (1.0 mM) causes a similar increase in channel activity. To pursue the mechanism of channel modulation by these agents, a series of guanine and adenine nucleotides were evaluated by using inside-out excised patches. Whereas cAMP, AMP, ADP, and ATP were ineffective, all of the corresponding guanine nucleotides potentiated PKCa channel activity when tested at a high concentration (500 microM). However, only GMP consistently enhanced channel activity in the 1-100 microM range by increasing the percent open time and frequency of opening of these channels over a wide range of potentials and Ca2+ levels without affecting single-channel conductance. Thus, GMP is a potent modulator of PKCa channels and it, rather than cGMP, may mediate the action of the vasodilators examined in this study.  相似文献   

13.
The patch-clamp technique was used to study the electrophysiological properties of single smooth muscle cells obtained from the human cystic artery. These cells contracted on exposure to high K+ and had a mean resting potential of -36 +/- 7 mV. Under current clamp, regenerative responses could not be elicited when depolarizing pulses were applied. Voltage-clamp measurements demonstrated that a large fraction of the outward current was inhibited by tetraethylammonium (5-10 mM) or Ca2+ channel blockers and that it was enhanced by increasing [Ca2+]o, suggesting that it is a Ca(2+)-activated K+ current. In addition, spontaneous transient outward currents that were sensitive to extracellular Ca2+ were observed in some cells. In cell-attached patch-clamp recordings, Ca(2+)-activated K+ channels that had a conductance of 117 pS were consistently identified. At negative potentials (approximately -60 mV), these single-channel events deactivated completely and very quickly, suggesting that they do not control the resting membrane potential in healthy cystic artery cells. Ca2+ currents that were recorded using Ba2+ (10 mM) as the charge carrier were enhanced by the dihydropyridine agonist, Bay K 8644, and blocked by nifedipine (0.1 microM). Only one type of Ca2+ current, the L-type, could be identified in these cells. These results demonstrate that the major ionic currents in the human cystic artery are similar to other mammalian arteries and indicate that this tissue will be a useful model for studying the metabolic and pharmacological modulation of ionic currents in human vascular smooth muscle.  相似文献   

14.
The diameters of small arteries and arterioles are tightly regulated by the dynamic interaction between Ca(2+) and K(+) channels in the vascular smooth muscle cells. Calcium influx through voltage-gated Ca(2+) channels induces vasoconstriction, whereas the opening of K(+) channels mediates hyperpolarization, inactivation of voltage-gated Ca(2+) channels, and vasodilation. Three types of voltage-sensitive ion channels have been highly implicated in the regulation of resting vascular tone. These include the L-type Ca(2+) (Ca(L)) channels, voltage-gated K(+) (K(V)) channels, and high-conductance voltage- and Ca(2+)-sensitive K(+) (BK(Ca)) channels. Recently, abnormal expression profiles of these ion channels have been identified as part of the pathogenesis of arterial hypertension and other vasospastic diseases. An increasing number of studies suggest that high blood pressure may trigger cellular signaling cascades that dynamically alter the expression profile of arterial ion channels to further modify vascular tone. This article will briefly review the properties of Ca(L), K(V), and BK(Ca) channels, present evidence that their expression profile is altered during systemic hypertension, and suggest potential mechanisms by which the signal of elevated blood pressure may result in altered ion channel expression. A final section will discuss emerging concepts and opportunities for the development of new vasoactive drugs, which may rely on targeting disease-specific changes in ion channel expression as a mechanism to lower vascular tone during hypertensive diseases.  相似文献   

15.
OBJECTIVE: It is controversial whether endothelium-dependent relaxation resistance to inhibitors of nitric oxide (NO) and prostacyclin synthases is completely attributed to endothelium-derived hyperpolarizing factor (EDHF). This study examined NO release and K+ channels involved in endothelium-dependent relaxation and hyperpolarization resistance to N(G)-nitro-L-arginine (L-NNA) and indomethacin in coronary arteries with emphasis on the microarteries. METHODS: NO release, isometric force, and membrane potential of porcine coronary arteries were measured using a NO-specific electrode, wire myograph, and microelectrode, respectively. RESULTS: In large arteries pretreated with indomethacin, bradykinin (BK) evoked a rise in [NO] from 5.5+/-2.4 nM to 105.0+/-19.6 nM and hyperpolarization. L-NNA treatment significantly reduced the BK-stimulated rise in [NO] to 32.1+/-11.3 nM but did not affect the hyperpolarization. In the presence of indomethacin and L-NNA, U46619 contracted and depolarized (from -51+/-3 mV to -30+/-4 mV) vascular smooth muscle in microarteries. The addition of BK produced dose-dependent relaxation (maximal: 70.2+/-5.7%) and repolarization (membrane potential: -50+/-4 mV). Oxyhemoglobin eliminated indomethacin and L-NNA-resistance rise in [NO] but not relaxation (42.3+/-4.4%) and repolarization (-40+/-2 mV) by BK. Tetraethylammonium, charybdotoxin, and iberiotoxin partially decreased the BK-induced responses. Apamin alone did not affect the relaxation by BK; however, in combination with charybdotoxin it almost completely abolished the BK-induced relaxation and hyperpolarization. CONCLUSIONS: In porcine coronary arteries, both EDHF and NO contribute to BK-induced relaxation resistance to indomethacin and L-NNA. Large conductance Ca2+-activated K+ channels (BK(Ca)) may play an important role in mediating the BK-induced responses and small conductance Ca2+-activated K+ channels might function as 'backup' mechanisms when BK(Ca) is curtailed.  相似文献   

16.
The beta1 subunit of BK (large conductance Ca2+ and voltage-activated K+) channels is essential for many key physiological processes, such as controlling the contraction of smooth muscle and the tuning of hair cells in the cochlea. Although it is known that the beta1 subunit greatly increases the open probability of BK channels, little is known about its mechanism of action. We now explore this mechanism by using channels in which the Ca2+- and Mg2+-dependent activating mechanisms have been disrupted by mutating three sites to remove the Ca2+ and Mg2+ sensitivity. We find that the presence of the beta1 subunit partially restores Ca2+ sensitivity to the triply mutated channels, but not the Mg2+ sensitivity. We also find that the beta1 subunit has no effect on the Mg2+ sensitivity of WT BK channels, in contrast to its pronounced effect of increasing the apparent Ca2+ sensitivity. These observations suggest that the beta1 subunit increases open probability by working through the Ca2+-dependent, rather than Mg2+-dependent, activating mechanisms, and that the action of the beta1 subunit is not directly on the Ca2+ binding sites, but on the allosteric machinery coupling the sites to the gate. The differential effects of the beta1 subunit on the Ca2+ and Mg2+ activation of the channel suggest that these processes act separately. Finally, we show that Mgi2+ inhibits, rather than activates, BK channels in the presence of the beta1 subunit for intermediate levels of Cai2+. This Mg2+ inhibition in the presence of the beta1 subunit provides an additional regulatory mechanism of BK channel activity.  相似文献   

17.
The molecular mechanisms underlying increased arterial tone during hypertension are unclear. In vascular smooth muscle, localized Ca2+ release events through ryanodine-sensitive channels located in the sarcoplasmic reticulum (Ca2+ sparks) activate large-conductance, Ca2+-sensitive K+ (BK) channels. Ca2+ sparks and BK channels provide a negative feedback mechanism that hyperpolarizes smooth muscle and thereby opposes vasoconstriction. In this study, we examined Ca2+ sparks and BK channel function in Wistar-Kyoto (WKY) rats with borderline hypertension and in spontaneously hypertensive rats (SHR), a widely used genetic model of severe hypertension. We found that the amplitude of spontaneous BK currents in WKY and SHR cells were smaller than in normotensive cells even though Ca2+ sparks were of similar magnitude. BK channels in WKY and SHR cells were less sensitive to physiological changes in intracellular Ca2+ than normotensive cells. Our data indicate that decreased expression of the BK channel beta1 subunit underlies the lower Ca2+ sensitivity of BK channels in SHR and WKY myocytes. We conclude that the lower expression of the beta1 subunit during genetic borderline and severe hypertension reduced BK channel activity by decreasing the sensitivity of these channels to physiological changes in Ca2+. These results support the view that changes in the molecular composition of BK channels may be a fundamental event contributing to the development of vascular dysfunction during hypertension.  相似文献   

18.
NO causes pulmonary vasodilation in patients with pulmonary hypertension. In pulmonary arterial smooth muscle cells, the activity of voltage-gated K+ (Kv) channels controls resting membrane potential. In turn, membrane potential is an important regulator of the intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. We used patch clamp methods to determine whether the NO-induced pulmonary vasodilation is mediated by activation of Kv channels. Quantitative fluorescence microscopy was employed to test the effect of NO on the depolarization-induced rise in [Ca2+]i. Blockade of Kv channels by 4-aminopyridine (5 mM) depolarized pulmonary artery myocytes to threshold for initiation of Ca2+ action potentials, and thereby increased [Ca2+]i. NO (approximately 3 microM) and the NO-generating compound sodium nitroprusside (5-10 microM) opened Kv channels in rat pulmonary artery smooth muscle cells. The enhanced K+ currents then hyperpolarized the cells, and blocked Ca(2+)-dependent action potentials, thereby preventing the evoked increases in [Ca2+]i. Nitroprusside also increased the probability of Kv channel opening in excised, outside-out membrane patches. This raises the possibility that NO may act either directly on the channel protein or on a closely associated molecule rather than via soluble guanylate cyclase. In isolated pulmonary arteries, 4-aminopyridine significantly inhibited NO-induced relaxation. We conclude that NO promotes the opening of Kv channels in pulmonary arterial smooth muscle cells. The resulting membrane hyperpolarization, which lowers [Ca2+]i, is apparently one of the mechanisms by which NO induces pulmonary vasodilation.  相似文献   

19.
Wu SN  Liu SI  Huang MH 《Endocrinology》2004,145(3):1175-1184
The effects of cilostazol, a dual inhibitor of type 3 phosphodiesterase and adenosine uptake, on ion currents were investigated in pituitary GH(3) cells and pheochromocytoma PC12 cells. In whole-cell configuration, cilostazol (10 microm) reversibly increased the amplitude of Ca(2+)-activated K(+) current [I(K(Ca))]. Cilostazol-induced increase in I(K(Ca)) was suppressed by paxilline (1 microM) but not glibenclamide (10 microm), dequalinium dichloride (10 microM), or beta-bungarotoxin (200 nM). Pretreatment of adenosine deaminase (1 U/ml) or alpha,beta-methylene-ADP (100 microM) for 5 h did not alter the magnitude of cilostazol-stimulated I(K(Ca)). Cilostazol (30 microM) slightly suppressed voltage-dependent l-type Ca(2+) current. In inside-out configuration, bath application of cilostazol (10 microM) into intracellular surface caused no change in single-channel conductance; however, it did increase the activity of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels. Cilostazol enhanced the channel activity in a concentration-dependent manner with an EC(50) value of 3.5 microM. Cilostazol (10 microM) shifted the activation curve of BK(Ca) channels to less positive membrane potentials. Changes in the kinetic behavior of BK(Ca) channels caused by cilostazol were related to an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, cilostazol decreased the firing frequency of action potentials. In pheochromocytoma PC12 cells, cilostazol (10 microM) also increased BK(Ca) channel activity. Cilostazol-mediated stimulation of I(K(Ca)) appeared to be not linked to its inhibition of adenosine uptake or phosphodiesterase. The channel-stimulating properties of cilostazol may, at least in part, contribute to the underlying mechanisms by which it affects neuroendocrine function.  相似文献   

20.
正常肠系膜动脉平滑肌细胞钙激活钾通道活性的观察   总被引:2,自引:1,他引:2  
为了解人体正常肠系膜动脉平滑肌细胞钙激活钾通道的特性 ,取 2 4例人体正常肠系膜动脉小枝节段 ,用酶消化法获取标本细胞 ,以膜片钳制技术检测钙激活钾通道的活性 ,通过Pclamp专用软件实时采样记录其平均开放时间、平均关闭时间及平均开放概率等。结果发现 ,人体肠系膜动脉平滑肌细胞钙激活钾通道开放具有明显电压依赖性 ,在对称性高钾液中 ,电流 -电压关系曲线在 10~ 6 0mV范围内可被直线拟合。在细胞吸附式膜片和内面向外膜片中 ,通道电导分别为 192 .3± 2 9.2Ps和 2 0 2 .5± 5 8.3Ps。开放概率和开放数目随Ca2 + 浓度的增加而增加 ,膜内面应用四乙胺可减少通道开放概率及电流幅值。提示人体肠系膜动脉平滑肌细胞钙激活钾通道与人体其他血管相似 ,主要为大电导钙激活钾通道 ,具有电压和钙浓度双重依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号