首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CAG repeat length variation in sperm from a patient with Kennedy's disease   总被引:2,自引:6,他引:2  
Using a modified sperm typing protocol, the mutation frequencyof the CAG repeat region at the androgen receptor locus hasbeen measured using a rare semen sample from an individual withspinal and bulbar muscular atrophy (SBMA). Among 258 X chromo-some-containingsperm, 19% had a repeat number equal to the donor's somaticDNA (47 repeats), 66% were expansions and 15% were contractions.The average expansion was 2.7 repeats. More than half of theexpansions involved one or two repeats; the largest was 11 repeats.68% of the contractions were also one or two repeats but six(16%) were very large (12–25 repeats). One contractiongenerated an allele in an intermediate size range (33–39repeats). Such alleles have not been observed among more than900 normal and SBMA X-chromosomes that have been examined. Comparisonof the SBMA sperm typing results with mutation frequency dataon normal alleles supports the hypothesis that trinucleotiderepeat expansions may have a different molecular origin thancontractions.  相似文献   

2.
The vast majority of Friedreich ataxia patients are homozygous for large GAA triplet repeat expansions in intron 1 of the X25 gene. Instability of the expanded GAA repeat was examined in 23 chromosomes bearing 97-1250 triplets in lymphoblastoid cell lines passaged 20-39 times. Southern analyses revealed 18 events of significant changes in length ranging from 69 to 633 triplets, wherein the de novo allele gradually replaced the original over 1-6 passages. Contractions and expansions occurred with equal frequency and magnitude. This behavior is unique in comparison with other large, non-coding triplet repeat expansions [(CGG)(n)and (CTG)(n)] which remain relatively stable under similar conditions. We also report a rare patient who, having inherited two expanded alleles, showed evidence of contracted GAA repeats ranging from nine to 29 triplets in DNA from two independent peripheral blood samples. The GAA triplet repeat is known to adopt a triplex structure, and triplexes in transcribed templates cause enhanced mutagenesis. The poly(A) tract and a 135 bp sequence, both situated immediately upstream of the GAA triplet repeat, were therefore examined for somatic mutations. The poly(A) tract showed enhanced instability when in cis with the GAA expansion. The 135 bp upstream sequence was found to harbor a 3-fold excess of point mutations in DNA derived from individuals homozygous for the GAA triplet repeat expansion compared with normal controls. These data are likely to have important mechanistic and clinical implications.  相似文献   

3.
Friedreich's ataxia is the first known autosomal recessive disease caused by an unstable trinucleotide expansion mutation. The most frequent mutation is expansion of a GAA repeat in the first intron of gene X25. We studied transmission of the expanded GAA repeat in 37 Friedreich's ataxia pedigrees and analysed blood and sperm alleles in eight patients. We showed intergenerational instability in 84% of the alleles with an overall excess of contractions. Both contractions and expansions of the GAA repeat occurred in maternal transmission with a stronger tendency to expand for smaller repeats and to contract for longer repeats. Paternally transmitted alleles contracted only. Parental age and the intergenerational change in expansion size were directly correlated in maternal transmission and inversely in paternal transmission. The size of the GAA expansion was slightly lower in patients than heterozygous carriers. Sperm analysis confirmed the tendency to contract of paternal alleles, which was more marked with ageing. The degree of contraction of the GAA repeat in sperm was much higher than that found in intergenerational transmission and was directly related to the repeat size. A blood expanded allele reverted to normal size in the sperm of one patient. This study suggests the existence of different mutational mechanisms in Friedreich's ataxia alleles, which occur both pre- and post-zygotically.   相似文献   

4.
To investigate the mechanism of the meiotic instability of expanded CAG repeats in the gene for Machado-Joseph disease (MJD1), we analyzed the CAG repeat sizes of 1036 single sperm from six individuals with Machado- Joseph disease (MJD). The segregation ratio between single sperm with an expanded allele and those with a normal allele is significantly different (P <0.0001) from the expected 1:1 segregation ratio, which demonstrates segregation distortion of expanded alleles in male meiosis. In single sperm from individuals with the [expanded (CAG)n- CGG]/[normal (CAG)n-GGG] genotype, significantly greater instability of the CAG repeat was observed compared with single sperm from individuals with the [expanded (CAG)n-CGG]/[normal (CAG)n-CGG] genotype (F-test, P <0.001). These findings in single sperm confirm non-Mendelian transmission of the MJD1 gene and the effect of the intragenic CGG/GGG polymorphism on the intergenerational instability of the CAG repeats in the MJD1 gene, which have been observed in clinical and genetic studies. Our results indicate similarities and dissimilarities between MJD and Huntington's disease or myotonic dystrophy in terms of the inter-allelic interaction, segregation distortions and size distribution of trinucleotide repeats in mutant alleles. Further study is required to determine whether there is a common mechanism underlying the instability of the triplet repeats in 'triplet repeat diseases'.   相似文献   

5.
Instability of the FMR1 repeat, commonly observed in transmissions of premutation alleles (55–200 repeats), is influenced by the size of the repeat, its internal structure and the sex of the transmitting parent. We assessed these three factors in unstable transmissions of 14/3,335 normal (~5 to 44 repeats), 54/293 intermediate (45–54 repeats), and 1561/1,880 premutation alleles. While most unstable transmissions led to expansions, contractions to smaller repeats were observed in all size classes. For normal alleles, instability was more frequent in paternal transmissions and in alleles with long 3′ uninterrupted repeat lengths. For premutation alleles, contractions also occurred more often in paternal than maternal transmissions and the frequency of paternal contractions increased linearly with repeat size. All paternal premutation allele contractions were transmitted as premutation alleles, but maternal premutation allele contractions were transmitted as premutation, intermediate, or normal alleles. The eight losses of AGG interruptions in the FMR1 repeat occurred exclusively in contractions of maternal premutation alleles. We propose a refined model of FMR1 repeat progression from normal to premutation size and suggest that most normal alleles without AGG interruptions are derived from contractions of maternal premutation alleles.  相似文献   

6.
《Genetics in medicine》2015,17(5):358-364
PurposeFragile X CGG repeat alleles often contain one or more AGG interruptions that influence allele stability and risk of a full mutation transmission from parent to child. We have examined transmissions of maternal and paternal alleles with 45–90 repeats to quantify the effect of AGG interruptions on fragile X repeat instability.MethodsA novel FMR1 polymerase chain reaction assay was used to determine CGG repeat length and AGG interruptions for 1,040 alleles from 705 families.ResultsWe grouped transmissions into nine categories of five repeats by parental size and found that in every size category, alleles with no AGGs had the greatest risk for instability. For maternal alleles <75 repeats, 89% (24/27) that expanded to a full mutation had no AGGs. Two contractions in maternal transmission were accompanied by loss of AGGs, suggesting a mechanism for generating alleles that lack AGG interruptions. Maternal age was examined as a factor in full mutation expansions using prenatal samples to minimize ascertainment bias, and a possible effect was observed though it was not statistically significant (P = 0.06).ConclusionThese results strengthen the association of AGG repeats with CGG repeat stability and provide more accurate risk estimates of full mutation expansions for women with 45–90 repeat alleles.Genet Med 17 5, 358–364.  相似文献   

7.
Fragile X syndrome results from the unstable expansion of a CGG repeat within the FMR1 gene. Three classes of FMR1 alleles have been identified, normal alleles with 6-60 repeats, premutations with 60-200 repeats, and full mutations with > 230 repeats. Premutations are exquisitely unstable upon transmission. Normal alleles, while generally stable upon transmission, are thought to have different intrinsic mutation frequencies, such that some normal alleles may be predisposed towards expansion while others may be more resistant to such change. One variable that may account for this difference is the occurrence of one or more AGG triplets punctuating the normal CGG repeat. The AGG interruptions lead to alleles that have equivalent overall length but different lengths of perfect repeats. To test the influence of the length of perfect repeats on stability, we examined the CGG repeat of single sorted sperm from two males, each with 39 total repeats, but distinct AGG interruption patterns. Sorted sperm of each donor showed -15% variation in repeat length, consistent with previous studies of sorted sperm at other triplet repeat loci. However, when discounting the majority variation of +/-1 repeat, the male with 29 perfect repeats showed 3% expansion changes while the donor with only 19 perfect repeats had none (< 0.9%). Moreover, > 90% of all variant sperm, including all those observed with expansions, showed expansion or contraction of the 3' end of the repeat array. These data are consistent with the hypothesis that perfect repeat tracts influence the repeat stability and that changes of the FMR1 repeat exhibit polarity.  相似文献   

8.
The instability of (CTG)?(CAG) repeats can cause >15 diseases including myotonic dystrophy, DM1. Instability can arise during DNA replication, repair or recombination, where sealing of nicks by DNA ligase I (LIGI) is a final step. The role of LIGI in CTG/CAG instability was determined using in vitro and in vivo approaches. Cell extracts from a human (46BR) harbouring a deficient LIGI (~3% normal activity) were used to replicate CTG/CAG repeats; and DM1 mice with >300 CTG repeats were crossed with mice harbouring the 46BR LigI. In mice, the defective LigI reduced the frequency of CTG expansions and increased CTG contraction frequencies on female transmissions. Neither male transmissions nor somatic CTG instability was affected by the 46BR LigI - indicating a post-female germline segregation event. Replication-mediated instability was affected by the 46BR LIGI in a manner that depended upon the location of Okazaki fragment initiation relative to the repeat tract; on certain templates, the expansion bias was unaltered by the mutant LIGI, similar to paternal transmissions and somatic tissues; however, a replication fork-shift reduced expansions and increased contractions, similar to maternal transmissions. The presence of contractions in oocytes suggests that the DM1 replication profile specific to pre-meiotic oogenesis replication of maternal alleles is distinct from that occurring in other tissues and, when mediated by the mutant LigI, is predisposed to CTG contractions. Thus, unlike other DNA metabolizing enzymes studied to date, LigI has a highly specific role in CTG repeat maintenance in the maternal germline, involved in mediating CTG expansions and in the avoidance of maternal CTG contractions.  相似文献   

9.
We recently described an untranslated CTG expansion that causes a previously undescribed form of spinocerebellar ataxia (SCA8). The SCA8 CTG repeat is preceded by a polymorphic but stable CTA tract, with the configuration (CTA)(1-21)(CTG)(n). The CTG portion of the repeat is elongated on pathogenic alleles, which nearly always change in size when transmitted from generation to generation. To better understand the reduced penetrance and maternal penetrance bias associated with SCA8 we analyzed the sequence configurations and instability patterns of the CTG repeat in affected and unaffected family members. In contrast to other triplet repeat diseases, expanded alleles found in affected SCA8 individuals can have either a pure uninterrupted CTG repeat tract or an allele with one or more CCG, CTA, CTC, CCA or CTT interruptions. Surprisingly, we found six different sequence configurations of the CTG repeat on expanded alleles in a seven generation family. In two instances duplication of CCG interruptions occurred over a single generation and in other instances duplications that had occurred in different branches of the family could be inferred. We also evaluated SCA8 instability in sperm samples from individuals with expansions ranging in size from 80 to 800 repeats in blood. Surprisingly the SCA8 repeat tract in sperm underwent contractions, with nearly all of the resulting expanded alleles having repeat lengths of <100 CTGs, a size that is not often associated with disease. These en masse repeat contractions in sperm likely underlie the reduced penetrance associated with paternal transmission.  相似文献   

10.
The CAG triplet repeat region of the Huntington's disease genewas amplified in 923 single sperm from three affected and twonormal individuals. Average-size alleles (15–18 repeats)showed only three contraction mutations among 475 sperm (0.6%).A 30 repeat normal allele showed an 11% mutation frequency.The mutation frequency of a 36 repeat intermediate allele was53% with 8% of all gametes having expansions which brought theallele size into the HD disease range (38 repeats). Diseasealleles (38–51 repeats) showed a very high mutation frequency(92–99%). As repeat number increased there was a markedelevation in the frequency of expansions, in the mean numberof repeats added per expansion and the size of the largest observedexpansion. Contraction frequencies also appeared to increasewith allele size but decreased as repeat number exceeded 36.Our sperm typing data are of a discrete nature rather than consistingof smears of PCR product from pooled sperm. This allowed theobserved mutation frequency spectra to be compared to the distributioncalculated using discrete stochastic models based on currentmolecular ideas of the expansion process. An excellent fit wasfound when the model specified that a random number of repeatsare added during the progression of the polymerase through therepeated region.  相似文献   

11.
Human minisatellite B6.7 is a highly variable locus showing extensive heterozygosity with alleles ranging from six to >500 repeat units. Paternal and maternal mutation rates to new length alleles were estimated from pedigrees at 7.0 and 3.9% per gamete, respectively, indicating that B6.7 is one of the most unstable minisatellites isolated to date. Mutation at this locus was also analysed by small pool PCR of sperm and blood DNA. Male germline instability varied from <0.8 to 14% per allele and increased with tandem array size. In contrast, the frequency of mutants in somatic (blood) DNA was far lower (<0.5%), consistent with a meiotic origin of germline mutants. Sperm mutants were further characterized by minisatellite variant repeat mapping using four major polymorphic sites within the B6.7 repeats. This highly informative system revealed a wide variety of changes in allele structure, including simple intra-allelic duplications and deletions and more complicated inter- and intra-allelic transfers of repeat blocks, as seen at other human minisatellites. The main mode of sperm mutation, however, resulted in extremely complex allele reorganization with evidence of inter-allelic transfer plus the generation of novel repeats by rearrangement at the sub-repeat level, suggesting that recombinational instability at B6.7 is a complex multistep process.  相似文献   

12.
Fragile X syndrome (Fra X) is the most common heritable disease accounting for mental retardation and is caused by an expanded CGG repeat in the first exon of the FMR1gene. Previous studies have shown an increased fertility rate among fragile X carrier mothers and a preponderance of mentally retarded boys among the male offspring. In this study, we examined the transmission of the intermediate allele in the lower range of CGG repeats in carrier mothers found randomly in a screening program of the normal population. We tested 10,587 healthy women with no family history of mental retardation and identified 138 (1.3%) who were carriers of the intermediate allele (51-200 CGG repeats). Of these, 107 underwent prenatal testing during 108 pregnancies for Fra X in the fetus. Of the 108 pregnancies, the abnormal allele was transmitted in 67 (segregation ratio = 0.62, P < 0.012). We found a significant increase in the transmission of the abnormal allele by mothers who had between 51 and 60 repeats (segregation ratio = 0.69 [P < 0.007] for the group with 51-55 repeats, and 0.74 [P < 0.04] for the group with 56-60 repeats), but no increase by mothers who had more than 61 repeats. This suggests a genetic advantage for the abnormal allele in the 51- to 60-repeat range.  相似文献   

13.
The fragile X syndrome is one of more than a dozen genetic diseases attributed to the amplification of a trinucleotide repeat. Despite the number of these disease loci, relatively little is known about the mechanism(s) that cause a stable allele to become unstable. Population and family studies of the fragile X CGG repeat have identified a number of factors that may play a role in repeat instability including the number of AGG interruptions, purity of the 3' and 5' end of the repeat and cis-acting factors as related to haplotype background. However, studies that assess whether these factors have an impact on the rate and magnitude of change of the repeat are lacking, mainly due to the lack of an appropriate model system. Therefore, in order to dissect the factors involved in the initial mutations of the CGG repeat, small pool (SP)-PCR was performed on DNA derived from sperm and blood from seven unaffected males whose repeat sizes range from 20 to 33. Using the SP-PCR-derived data, regression analyses suggested that components of the repeat structure such as the number of interruptions and purity of the 3' end of the repeat are important determinants of germline repeat instability. In contrast, elements other than repeat structure, such as haplotype background, seemed to have an impact on somatic repeat instability. The factors identified for either cell type, however, explained only a small portion of the variance, suggesting that other factors may be involved in this process.  相似文献   

14.
Myotonic dystrophy (DM) is caused by a CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. A very high level of instability is observed through successive generations and the size of the repeat is generally correlated with the severity of the disease and with age at onset. Furthermore, tissues from DM patients exhibit somatic mosaicism that increases with age. We generated transgenic mice carrying large human genomic sequences with 20, 55 or >300 CTG, cloned from patients from the same affected DM family. Using large human flanking sequences and a large amplification, we demonstrate that the intergenerational CTG repeat instability is reproduced in mice, with a strong bias towards expansions and with the same sex- and size-dependent characteristics as in humans. Moreover, a high level of instability, increasing with age, can be observed in tissues and in sperm. Although we did not observe dramatic expansions (or 'big jumps' over several hundred CTG repeats) as in congenital forms of DM, our model carrying >300 CTG is the first to show instability so close to the human DM situation. Our three models carrying different sizes of CTG repeat provide insight on the different factors modulating the CTG repeat instability.  相似文献   

15.
The FMR1 gene contains an unstable CGG repeat in its 5′ untranslated region. Premutation alleles range between 55 and 200 repeat units and confer a risk for developing fragile X‐associated tremor/ataxia syndrome or fragile X‐associated primary ovarian insufficiency. Furthermore, the premutation allele often expands to a full mutation during female germline transmission giving rise to the fragile X syndrome. The risk for a premutation to expand depends mainly on the number of CGG units and the presence of AGG interruptions in the CGG repeat. Unfortunately, the detection of AGG interruptions is hampered by technical difficulties. Here, we demonstrate that single‐molecule sequencing enables the determination of not only the repeat size, but also the complete repeat sequence including AGG interruptions in male and female alleles with repeats ranging from 45 to 100 CGG units. We envision this method will facilitate research and diagnostic analysis of the FMR1 repeat expansion.  相似文献   

16.
Fragile X syndrome is due to an expanded CGG repeat in the 5' UTR of the FMR1 gene. According to repeat size, we distinguish four allele categories: normal (<40 CGG), intermediate (46-60 CGG), premutated (55-200 CGG) and full mutated (>200 CGG). However, the boundaries among these categories are unclear, making it difficult to classify unstable alleles and to estimate the risk of expansion. We report a family with a proband, carrying a methylated full mutation with an amplification of 1.2 kb. PCR analysis demonstrated two alleles of 29 and 61 CGGs in the mother. Sequencing of the 61 CGG allele showed no AGG interruptions. Both mother's sisters had two alleles of 31 and 44 CGGs, and the daughter of one of these had two alleles of 22 and 44 repeats, demonstrating stable transmission of the 44 CGG allele. The maternal grandfather was deceased, but haplotype reconstruction using markers DXS548 and FRAXAC1 demonstrated that he was carrier of the premutated allele. Furthermore, molecular analysis confirmed the same paternity with a probability of 99.79% for all the three sisters. According to these findings, it is likely that the maternal grandfather carried the 44 CGG allele, showing unstable transmission, given that it expanded first to 61 CGGs in one daughter, and then to full mutation in her child. Although we cannot exclude paternal mosaicism, it is likely that a rare event of progression from an intermediate to a premutated and on to a full mutated allele occurred in this family over two generations.  相似文献   

17.
We have analysed the CAG repeat in the Huntington disease (HD)gene in sperm and blood from 20 unrelated HD patients. Althoughthe CAG repeat displayed significant mosaicism in sperm fromall individuals, there were marked differences in the degreeof repeat instability. Individuals who had either inheritedor transmitted an expanded CAG repeat displayed the highestlevels of repeat mosaicism, whereas individuals who had inheritedor transmitted a contracted repeat had very limited CAG mosaicismin sperm. A strong association between intergenerational changein CAG allele size and the level of sperm repeat mosaicism wasdetermined (P = 0.019). In contrast, neither blood CAG sizenor repeat mosaicism in blood, were significantly associatedwith intergenerational CAG changes. These data suggest the presenceof a c/s-acting factor, separate from CAG size, that stronglyinfluences the intergenerational behaviour of the CAG repeat.Additional studies are needed to determine whether analysisof CAG mosaicism in sperm is useful for assessing an individual'srisk for transmitting large expansions or contractions to hisoffspring.  相似文献   

18.
We report on the allele distribution in a normal Chilean population at 2 microsatellite loci neighbouring the FRAXA locus and at the CGG repeat in the 5′ end of the FMR-1 gene, which causes the fragile X syndrome. The most common CGG repeat allele was 30 (41.7%), with 29 being second most common (30.2%). This distribution was similar from that seen in Caucasians but different from that observed in Chinese controls, where the most common allele was 29 repeats. Four alleles of FRAXAC1 and 6 of DXS548 were observed in the Chilean sample. A striking linkage disequilibrium of FMR-1 alleles with FRAXAC1 alleles was observed. In 90% of the 30 CGG repeat alleles only 31% of the 29 CGG repeat alleles had the FRAXAC1 154 bp allele. This result is in agreement with the suggestion that slippage between CGG repeat alleles 29 and 30 and between 152 and 154 FRAXAC1 alleles is very rare. This study suggests a founder chromosome effect in the Chilean population. Am. J. Med. Genet. 75:277–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Analysis of CGG variation through 642 meioses in Fragile X families   总被引:1,自引:0,他引:1  
Fragile X syndrome is the commonest familial form of inherited mental retardation. The molecular defect is an expansion of the CGG trinucleotide repeats in the 5' untranslated region of the FMR1 gene that is inherited in an unstable fashion in fragile X families. In an attempt to provide more information about the CGG tract intergenerational variation, we have evaluated 642 transmissions in 175 Fragile X families. PCR and Southern blot (StB12.3) was used to analyse the CGG number. Among premutated alleles, 90.2% showed expansion, two-thirds to a full mutation while the rest remained in the premutation range, 5.5% of alleles did not vary and finally 4.3% of them reduced in size. Premutated females showed an increased risk of expansion to the full mutation depending on the CGG tract. The estimated risk for 80 triplets is more than seven times that of a woman carrying 59 CGG, the risk being 100% for alleles of >100 repeats. Fifty-nine repeats was the smallest allele that expanded to full mutation. Contractions were detected more frequently in males than in females, being statistically significant. This study contributes to the literature by increasing the data available regarding transmissions in Fragile X families and it allows us to perform more precise genetic counselling for women with the CGG repeat in the premutation range.  相似文献   

20.
Analysis of mononucleotide repeats BAT-26 and BAT-40 in North Indians revealed that there were germline polymorphisms at both the loci. We evaluated BAT-26 and BAT-40 in 100 normal healthy individuals from North India. The DNA from normal blood was PCR amplified using primers flanking the BAT-26 and BAT-40 loci. The allelic variation of BAT-26 and BAT-40 ranged between 117-130 and 94-112 bp respectively. The most frequent BAT-26 allele was 122 bp, which corresponded to 26 repeats and had a frequency of 32% while that of BAT-40 was 109 bp corresponding to 39 repeats with a frequency of 26%. These results suggest that polymorphisms in these poly-adenine repeat loci limit their applicability in studying the microsatellite instability in cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号