首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effects of the pyrethroid insecticide tetramethrin on voltage-dependent sodium channels were studied with internally perfused crayfish giant axons. At low concentrations in the order of 10-8-10-9M, tetramethrin caused an increase in depolarizing after-potential which in turn triggered repetitive after-discharges. Under Voltage clamp conditions, the sodium current was markedly prolonged during a step depolarization, and a large and prolonged sodium tail current appeared upon step repolarization. A population of sodium channels having activation and inactivation kinetics identical to those in control axons was observed in the tetramethrin-poisoned axons, indicating that only a fraction of the channels was modified. The modified channels exhibited remarkably slow kinetics, activating with a time course of 100 msec to 2 sec and inactivating with a time course of 1-5 sec depending on the membrane potential. The voltage dependence of the modified channels was shifted in the direction of hyperpolarization by about 10-20 mV with respect to normal sodium channels. The large inward sodium tail current associated with step repolarization of the membrane decayed with a time course of 20-600 msec. A kinetic hypothesis describing the behavior of sodium channels in a tetramethrin-poisoned axon is presented and discussed in relation of the behavior of the sodium channels modified by other toxins.  相似文献   

2.
Type I and type II pyrethroids are known to modulate the sodium channel to cause persistent openings during depolarization and upon repolarization. Although there are some similarities between the two types of pyrethroids in their actions on sodium channels, the pattern of modification of sodium currents is different between the two types of pyrethroids. In the present study, interactions of the type I pyrethroid tetramethrin and the type II pyrethroid deltamethrin at rat hippocampal neuron sodium channels were investigated using the inside-out single-channel patch clamp technique. Deltamethrin-modified sodium channels opened much longer than tetramethrin-modified sodium channels. When 10 microM tetramethrin was applied to membrane patches that had been exposed to 10 microM deltamethrin, deltamethrin-modified prolonged single sodium currents disappeared and were replaced by shorter openings which were characteristic of tetramethrin-modified channel openings. These single-channel data are compatible with previous whole-cell competition study between type I and type II pyrethroids. These results are interpreted as being due to the displacement of the type II pyrethroid molecule by the type I pyrethroid molecule from the same binding site or to the allosteric interaction of the two pyrethroid molecules at separate sodium channel sites.  相似文献   

3.
J Baumgold 《Brain research》1985,349(1-2):271-274
The development of two separate toxin binding sites from sodium channels of rat brain was studied. Whereas [3H]saxitoxin binding developed gradually, reaching adult levels by 4.5 weeks after birth, the binding of [125I]scorpion toxin increased rapidly for the first 10 days after birth, then declined. The stoichiometric ratio of [3H]saxitoxin binding site to [125I]scorpion toxin binding sites changed during development from 0.5 in 8 day old rats to 1.9 in adult rats, implying separate biological regulation for each of these sites.  相似文献   

4.
Type I and type II pyrethroids and dichlorodiphenyltrichloroethane (DDT) are known to modulate the sodium channel to cause the hyperexcitatory symptoms of poisoning in animals. However, since the degrees to which neuronal sodium channel parameters are altered differ, a question is raised as to whether these insecticides bind to the same site in the sodium channel. Competition patch-clamp experiments were performed using rat dorsal root ganglion neurons which are endowed with tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels.d-trans-Tetramethrin,S,S-fenvalerate andp,p′-DDT caused a slowly rising and slowly falling tail current o to be developed in tetrodotoxin-sensitive sodium channels. In tetrodotoxin-resistant sodium channels, these insecticides, particularly tetramethrin and fenvalerate, generated a large and prolonged tail current upon repolarization. The effects of tetramethrin were reversible after washing with drug-free solution, whereas the effects of fenvalerate and DDT were irreversible. When fenvalerate application was followed by tetramethrin application, the characteristic changes in current by fenvalerate disappeared and the characteristic changes by tetramethrin appeared. After washout, the characteristic current pattern of fenvalerate reappeared. These results can be explained by assuming that the tetramethrin molecule displaces the fenvalerate molecule from the same binding site in the sodium channel protein, or that tetramethrin and fenvalerate bind to separate sodium channel sites which interact allosterically with each other. DDT interacted with fenvalerate and tetramethrin in the same manner.  相似文献   

5.
Many antiepileptic drugs (AEDs) exert their therapeutic activity by modifying the inactivation properties of voltage‐gated sodium (Nav) channels. Lacosamide is unique among AEDs in that it selectively enhances the slow inactivation component. Although numerous studies have investigated the effects of AEDs on Nav channel inactivation, a direct comparison of results cannot be made because of varying experimental conditions. In this study, the effects of different AEDs on Nav channel steady‐state slow inactivation were investigated under identical experimental conditions using whole‐cell patch‐clamp in N1E‐115 mouse neuroblastoma cells. All drugs were tested at 100 μM, and results were compared with those from time‐matched control groups. Lacosamide significantly shifted the voltage dependence of Nav current (INa) slow inactivation toward more hyperpolarized potentials (by ?33 ± 7 mV), whereas the maximal fraction of slow inactivated channels and the curve slope did not differ significantly. Neither SPM6953 (lacosamide inactive enantiomer), nor carbamazepine, nor zonisamide affected the voltage dependence of INa slow inactivation, the maximal fraction of slow inactivated channels, or the curve slope. Phenytoin significantly increased the maximal fraction of slow inactivated channels (by 28% ± 9%) in a voltage‐independent manner but did not affect the curve slope. Lamotrigine slightly increased the fraction of inactivated currents (by 15% ± 4%) and widened the range of the slow inactivation voltage dependence. Lamotrigine and rufinamide induced weak, but significant, shifts of INa slow inactivation toward more depolarized potentials. The effects of lacosamide on Nav channel slow inactivation corroborate previous observations that lacosamide has a unique mode of action among AEDs that act on Nav channels. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
(+)-trans-Tetramethrin, a pyrethroid insecticide, markedly prolongs the open time of single sodium channels recorded by the gigaohm-seal voltage clamp technique in a membrane patch excised from the N1E-115 neuroblastoma cell. Single channel conductance is not altered by tetramethrin. The modification by tetramethrin occurs in an all-or-none manner in a population of sodium channels. The observed tetramethrin-induced modification of single sodium channels is compatible with previous sodium current data from axons.  相似文献   

7.
Currents through sodium channels in the neuroblastoma cell membrane were measured after internal and external application of the ruthenium red. The treatment of the membrane by the dye resulted in a slowdown of inactivation kinetics of sodium currents and in the changes of activation and inactivation stationary parameters, which were more pronounced after internal application of the ruthenium red.  相似文献   

8.
DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi’s group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi’s pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids.  相似文献   

9.
Recent advances in the study of the effects of various enzymes, toxins, drugs and ions on Na channels inactivation are reviewed. The available data suggest the protein "inactivation subunit" (IS) to span the membrane. The internal end of this IS protrudes from the membrane to the axoplasm and acts as an inactivation gate (h-gate). It can be affected by intracellular application of some proteases (endopeptidases), protein-specific reagents and drugs, removing (completely or partially) the fast sodium inactivation. The ultraslow sodium inactivation, resistant to proteases, is apparently due to the conformational changes of that part of the channel which is buried in the membrane lipid matrix. The outer end of the IS is provided with chemical groups having a high affinity to anemone and scorpion toxins inducing the modification of Na inactivation when applied from outside the fibre. Batrachotoxin and aconitine cause a simultaneous modification of inactivation, activation and selectivity of Na channels by interacting with a single "receptor site" of the channel. It is proposed that this receptor is disposed in the hydrophobic part of the channel and is allosterically linked with different subunits responsible for the principal channel functions. It is tempting to assume that the batrachotoxin receptor belongs to that subunit which plays a key role in the normal structural interaction of various channel subunits. Inactivation process is critically involved in the voltage- and frequency-dependent inhibition of sodium currents by various quaternary and tertiary amines among which there are local anesthetics and antiarrhythmics.  相似文献   

10.
11.
The differential effects of the pyrethroid tetramethrin on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) single sodium channel currents in rat dorsal root ganglion (DRG) neurons were investigated using the outside-out configuration of patch-clamp technique. Channel conductances were 10.7 and 6.3 pS for TTX-S and TTX-R sodium channels, respectively, at a room temperature of 24–26°C. The single-channel current of TTX-S sodium channels at the test potential of −30 mV was −1.27 ± 0.25 pA, and was not changed after exposure to 10 μM tetramethrin (−1.28 ± 0.23 pA). The open time histogram of TTX-S single-channel currents could be fitted by a single exponential function with a time constant of 1.27 ms. After exposure to 10 μM tetramethrin, the open time histogram could be fitted by the sum of two exponential functions with time constants of 1.36 ms (τfast) and 5.73 ms (τlow). The percentage of contribution of each component to the population was 62% for the fast component representing the normal channels and 38% for the slow component representing the tetramethrin modified channels. The amplitudc of TTX-R single-channel currents was slightly changed from −0.72 ± 0.14 to −0.83 ± 0.07 pA by 10 μM tetramethrin. The open time histogram of TTX-R single-channel currents could be fitted by a single exponential function with a time constant of 1.92 ms. In the presence of 10 μM tetramethrin, the open time histogram could be fitted by the sum of two exponential functions with time constants of 2.07 ms (τfast) and 9.75 ms (τslow). The percentage of contribution of each component was 15% for the fast, unmodified component and 85% for the slow, modified component. Differential effects of tetramethrin on the open time distribution of single sodium channel currents explains the differential sensitivity of TTX-S and TTX-R sodium channels.  相似文献   

12.
Generalized epilepsy with febrile seizures-plus (GEFS+) is a benign Mendelian syndrome characterized by childhood-onset febrile and afebrile seizures. Three point mutations within two voltage-gated sodium channel genes have been identified so far: in GEFS+ type 1 a mutation in the beta1-subunit gene SCN1B, and in GEFS+ type 2 two mutations within the neuronal alpha-subunit gene SCN1A. Functional expression of the SCN1B and one of the SCN1A mutations revealed defects in fast channel inactivation which are in line with previous findings on myotonia causing mutations in SCN4A, the skeletal muscle sodium channel alpha-subunit gene, all showing an impaired fast inactivation. We now studied the second GEFS+ mutation (T875M in SCN1A), using the highly homologous SCN4A gene (mutation T685M). Unexpectedly, the experiments revealed a pronounced enhancement of both fast and slow inactivation and a defect of channel activation for T685M compared to wild-type channels. Steady-state fast and slow inactivation curves were shifted in the hyperpolarizing direction, entry into slow inactivation was threefold accelerated, recovery from slow inactivation was slowed by threefold and the time course of activation was slightly but significantly accelerated. In contrast to other disease-causing mutations in SCN1A, SCN1B and SCN4A, the only mechanism that could explain hyperexcitability of the cell membrane would be the acceleration of activation. Because the enhancement of slow inactivation was the most obvious alteration in gating found for T685M, this might be the disease-causing mechanism for that mutation. In this case, the occurrence of epileptic seizures could be explained by a decrease of excitability of inhibitory neurons.  相似文献   

13.
Effect of chloramine-T, the specific reagent on methionine residues, on gating of sodium channels was studied in neuroblastoma cell membrane. After the chloramine treatment the inactivation became slower, incomplete and the steepness of its voltage dependence considerably decreased; the inactivation curve was shifted towards depolarization. Time course of activation did not change. The activation curve shifted towards negative potentials, its slope being insignificantly decreased. Effective charge of activation as determined from the limiting logarithmic slope of the activation decreased by a factor of 1.17. Possible explanations of the phenomena observed are discussed.  相似文献   

14.
Sodium currents were recorded in rat fast and slow twitch muscle fibers. Changes in the membrane potential around the resting potential produced slow changes in the sodium current amplitude due to alterations of the slow inactivation process that was increased by steady depolarization and removed by prolonged hyperpolarization. In contrast, classical fast inactivation was not operative around the resting potential, and depolarizations of greater than 20 mV were required to close half of the channels by fast inactivation. Because slow inactivation is operative around the resting potential of mammalian muscle fibers, it may partially explain why small depolarizations, such as those that occur in some patients with periodic paralysis, can reduce excitability.  相似文献   

15.
Sodium channel blocker insecticides (SCBIs), such as indoxacarb and metaflumizone, are a new class of insecticides with a mechanism of action different from those of other insecticides that target sodium channels. SCBIs block sodium channels in a manner similar to local anesthetics (LAs) such as lidocaine. Several residues, particularly F1579 and Y1586, in the sixth transmembrane segment (S6) of domain IV (IV) of rat Nav1.4 sodium channels are required for the action of LAs and SCBIs and may form part of overlapping receptor sites. However, the binding site for SCBIs in insect sodium channels remains undefined. We used site-directed mutagenesis, the Xenopus laevis oocyte expression system, and the two-electrode voltage clamp technique to study the effects on SCBI activity of mutating F1817 and Y1824 (analogous to those residues identified in mammalian sodium channels) to alanine, in the voltage-sensitive sodium channel of the German cockroach, Blattella germanica. The mutant channels showed no effect or a marked increase in channel sensitivity to both DCJW (the active metabolite of indoxacarb) and metaflumizone. Thus, it appeared that although the F1817 residue plays a role in the action of SCBIs and that both residues are involved in LA activity in mammalian sodium channels, neither F1817 nor Y1824 are integral determinants of SCBI binding on insect sodium channels. Our results suggest that the receptor site of SCBIs on insect sodium channels may be significantly different from that on mammalian sodium channels.  相似文献   

16.
Kv1.1 channels are brain glycoproteins that play an important role in repolarization of action potentials. In previous work, we showed that lack of N-glycosylation, particularly lack of sialylation, of Kv1.1 affected its macroscopic gating properties and slowed activation and C-type inactivation kinetics and produced a depolarized shift in the steady-state activation curve. In our current study, we used single channel analysis to investigate voltage-independent C-type inactivation in both Kv1.1 and Kv1.1N207Q, a glycosylation mutant. Both channels underwent brief and long-lived closures, and the lifetime and frequency of the long-lived closed states were voltage-independent and similar for both channels. We found that, as in macroscopic measurements, Kv1.1N207Q exhibited a approximately 8 mV positive shift in its single channel fractional open time (fo) and a shallower fo-voltage slope compared with Kv1.1. Data suggested that C-type inactivation reflected the equilibration time with at least two slow voltage-independent long-lived closed states that followed the rapid activation process. In addition, data simulation indicated that the C-type inactivation process reflected the equilibration time between the open state and at least two long-lived closed states. Moreover, the faster macroscopic current decay in Kv1.1 mostly reflected a slower equilibration time in these channels as compared with Kv1.1N207Q. Finally, action potential simulations indicated that the N207Q mutation broaden the action potential and decreased the interspike interval. The shape of the action potential was not significantly affected by C-type inactivation, however, for a given channel, C-type inactivation increased the interspike interval. Data and simulations suggested that excitable cells could use differences in K(+) channel glycosylation degree as an additional mechanism to increase channel functional diversity which could modify cell excitability.  相似文献   

17.
Disulfide trapping studies have revealed that the pore-lining (P) segments of voltage-dependent sodium channels undergo sizable motions on a subsecond time scale. Such motions of the pore may be necessary for selective ion translocation. Although traditionally viewed as separable properties, gating and permeation are now known to interact extensively in various classes of channels. We have investigated the interaction of pore motions and voltage-dependent gating in micro1 sodium channels engineered to contain two cysteines within the P segments. Rates of catalyzed internal disulfide formation (kSS) were measured in K1237C+W1531C mutant channels expressed in oocytes. During repetitive voltage-clamp depolarizations, increasing the pulse duration had biphasic effects on the kSS, which first increased to a maximum at 200 msec and then decreased with longer depolarizations. This result suggested that occupancy of an intermediate inactivation state (IM) facilitates pore motions. Consistent with the known antagonism between alkali metals and a component of slow inactivation, kSS varied inversely with external [Na+]o. We examined the converse relationship, namely the effect of pore flexibility on gating, by measuring recovery from inactivation in Y401C+E758C (YC/EC) channels. Under oxidative conditions, recovery from inactivation was slower than in a reduced environment in which the spontaneous YC/EC cross-link is disrupted. The most prominent effects were slowing of a component with intermediate recovery kinetics, with diminution of its relative amplitude. We conclude that occupancy of an intermediate inactivation state facilitates motions of the P segments; conversely, flexibility of the P segments alters an intermediate component of inactivation.  相似文献   

18.
The pyrethroid tetramethrin greatly prolongs the sodium current during step depolarization and the sodium tail current associated with step repolarization of the squid axon membrane. Non-linear current-voltage relationships for the sodium tail current were analyzed to assess the open sodium channel properties which included the permeation of various cations, calcium block and cation selectivity. Tetramethrin had no effect on any of these properties. It was concluded that tetramethrin modifies the sodium channel gating machinery without affecting the pore properties.  相似文献   

19.

Objective

Neurotoxicity is the most frequent dose-limiting side effect of the anti-cancer agent oxaliplatin, but the mechanisms are not well understood. This study used nerve excitability testing to investigate the pathophysiology of the acute neurotoxicity.

Methods

Questionnaires, quantitative sensory tests, nerve conduction studies and nerve excitability testing were undertaken in 12 patients with high-risk colorectal cancer treated with adjuvant oxaliplatin and in 16 sex- and age-matched healthy controls. Examinations were performed twice for patients: once within 3?days after oxaliplatin treatment (post-infusion examination) and once shortly before the following treatment (recovery examination).

Results

The most frequent post-infusion symptoms were tingling paresthesias and cold allodynia. The most prominent nerve excitability change was decreased superexcitability of motor axons which correlated with the average intensity of abnormal sensations (Spearman Rho?=?0.80, p?<?.01). The motor nerve excitability changes were well modeled by a slowing of sodium channel inactivation, and were proportional to dose/m2 with a half-life of about 10d.

Conclusions

Oxaliplatin induces reversible slowing of sodium channel inactivation in motor axons, and these changes are closely related to the reversible cold allodynia. However, further studies are required due to small sample size in this study.

Significance

Nerve excitability data provide an index of sodium channel dysfunction: an objective biomarker of acute oxaliplatin neurotoxicity.  相似文献   

20.
Mutations of the skeletal muscle sodium (Na) channel have been reported in families with paramyotonia congenita (PC), an autosomal dominant disorder with cold and/or exercise induced stiffness and myotonia. Functional consequences of specific Na channel mutations responsible for PC have not been described. Patch clamp recording of single Na channels were made in cultured myotubes at 22 and 34°C from a PC patient with the thr1313met mutation. Cell-attached and outside-out recordings of mutant PC channels contained long duration and late openings. The mean open time was increased and the ensemble average showed a prolonged inward Na current. This membrane depolarization could cause repetitive action potentials and the clinical syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号