首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: It has been suggested that the antirelapse drug acamprosate can inhibit or potentiate glutamate/NMDA receptor-mediated responses via a polyamine site. Additionally, subchronic exposure to acamprosate increases expression of some NMDA receptor subunits. These effects on NMDA receptors imply that the drug may have neurotoxic or neuroprotective actions under different conditions, and these studies were undertaken to evaluate this possibility in hippocampal neuronal cultures. METHODS: Organotypic hippocampal cultures from 8-day-old neonatal rats were maintained in medium for 28 days. The effects of acamprosate (100 microM) alone or on neurotoxic challenges induced by either 50 microM NMDA or 100 microM spermidine were studied. Neurotoxicity was assessed by uptake of propidium iodide 24 hr after challenge. Calcium entry was measured by uptake of 45Ca2+ into the culture during the challenge. RESULTS: Acamprosate produced no neurotoxicity in these cultures after acute or subchronic exposure. In contrast, the presence of acamprosate significantly reduced "basal" propidium iodide uptake caused by the medium change procedure; similar effects were obtained with dizocilpine (MK-801; 30 microM) and, to a lesser extent, with ifenprodil (50 microM). Acamprosate did not significantly potentiate or inhibit NMDA-induced neurotoxicity, but the presence of acamprosate significantly reduced spermidine-induced neurotoxicity. CONCLUSION: No evidence was obtained that the putative agonist or coagonist effects of acamprosate on the NMDA receptor are able to cause neurotoxicity. Similarly, no evidence for inhibitory effects of acamprosate on NMDA-induced toxicity was observed under any of these conditions. However, acamprosate significantly inhibited the toxicity associated with changing medium and the toxicity induced by spermidine in these hippocampal cultures. The mechanism is unknown but is compatible with previously reported inhibition of polyamine-mediated effects.  相似文献   

2.
BACKGROUND: The antirelapse drug acamprosate has previously been reported to inhibit activating effects of polyamines on -methyl-D-aspartic acid receptor (NMDAR) function. Because increased synthesis of polyamines has been suggested as a mechanism for potentiation of NMDAR function during ethanol withdrawal, we evaluated the effects of acamprosate, MK-801, and ifenprodil in a cell culture model of ethanol withdrawal-induced neurotoxicity. METHODS: Organotypic hippocampal cultures from 8-day-old neonatal rats were maintained in vitro for 23 days before experimental use. The ethanol withdrawal model consisted of exposing cultures to ethanol (70-100 mM) for 4 days before being "withdrawn" into Calcium-Locke's buffer for 1 hr and then into minimal medium for 23 hr. Uptake of (45)CaCl(2) and propidium iodide by damaged cells was assessed 1 hr and 24 hr after the start of ethanol withdrawal, respectively. Additional studies examined effects of exposure to NMDA (50 microM) or spermidine (100 microM) on withdrawal-induced hippocampal damage. Last, these studies examined the ability of the sodium salt of acamprosate (Na-acamprosate, 200 microM), ifenprodil (50 microM), or MK-801 (30 microM) to inhibit neurotoxicity and (45)Ca(2+) entry produced by these insults. RESULTS: Ethanol withdrawal was associated with significantly greater toxicity and (45)Ca(2+) entry, relative to controls. Exposure to spermidine and NMDA during ethanol withdrawal further increased neurotoxicity and (45)Ca(2+) entry. Acamprosate, ifenprodil, and MK-801 almost completely prevented ethanol withdrawal-induced toxicity and (45)Ca(2+) entry. Acamprosate also reduced spermidine-induced neurotoxicity during ethanol withdrawal but was ineffective against NMDA-induced toxicity or (45)Ca(2+) entry at this time. CONCLUSIONS: The results support the contention that acamprosate, like ifenprodil, interacts with polyamines and that these compounds may be effective in reducing consequences of ethanol withdrawal. NMDAR activation is also strongly implicated in ethanol withdrawal neurotoxicity, but whether acamprosate causes any of these effects in this preparation directly via the NMDAR remains uncertain.  相似文献   

3.
This article represents the proceedings of a symposium at the 2001 RSA Meeting in Montreal, Canada. The organizers were Barbara J. Mason and George F. Koob. Anita M. Goodman served as chair. The presentations were (1) Acamprosate inhibits alcohol withdrawal-induced neurotoxicity in organotypic hippocampal cultures, by John Littleton; (2) Acamprosate alteration of NMDA receptor-dependent synaptic transmission and synaptic plasticity, by George R. Siggins; (3) Acamprosate and glutamate during ethanol withdrawal, by Philippe De Witte; (4) Clinical evidence of protective CNS effects of acamprosate in alcohol-dependent individuals, by Barbara J. Mason.  相似文献   

4.
Background: Our previous studies on the effects of acamprosate on enhanced locomotion during repeated withdrawals are now extended to the effects of acamprosate on excitatory amino acids in the hippocampus during repeated ethanol withdrawals. Methods: In this study, Wistar rats were made ethanol dependent by 4 weeks of vapor inhalation. After this first cycle of chronic ethanol treatment, rats underwent repeated and alternate cycles of 24 hr withdrawals and 1 week of chronic ethanol treatment. The microdialysis technique was used together with high‐performance liquid chromatography and electrochemical detection to quantify different amino acids such as aspartate and glutamate. Results: An intraperitoneal administration of acamprosate (400 mg/kg) to naïve rats did not alter aspartate or glutamate levels compared with the saline groups. During the first cycle of ethanol withdrawal, the administration of acamprosate (400 mg/kg, intraperitoneally) 2 hr after the commencement of ethanol withdrawal decreased both aspartate and glutamate microdialysate levels when compared with their respective saline group. Acamprosate administration also significantly decreased glutamate levels during the third withdrawal compared with the saline group, whereas no changes were seen in aspartate levels. Conclusion: The results of this work demonstrate that acamprosate reduced the excitatory amino acid glutamate increase observed during repeated ethanol withdrawal. These effects of acamprosate may provide a protective mechanism against neurotoxicity by reducing excitatory amino acids, particularly glutamate.  相似文献   

5.
BACKGROUND: Several reported effects of acamprosate within the glutamatergic system could result from interactions with metabotropic glutamate receptors (mGluRs). The following experiments were performed to determine whether acamprosate could compete with trnas-ACPD (+/--1-aminocyclopentane-trans-1,3-dicarboxylic acid, an equimolecular mixture of 1S, 3R and 1R, 3S-ACPD and an agonist at both group I and group II mGluRs) sensitive binding sites and protect against trans-ACPD-induced neurotoxicity in organotypic hippocampal slice cultures. METHODS: A P2 membrane preparation of cortices, cerebellums, and hippocampi of adult, male Sprague Dawley rats was used to determine the abilities of N-methyl-D-aspartic acid (NMDA) and trans-ACPD to displace [3H]glutamate in both the absence and the presence of the sodium salt of acamprosate (sodium mono N-acetyl homotaurine or Na-acamprosate). A comparison of the effects of 100 microM guanosine 5'-triphosphate on unlabeled glutamate, trans-ACPD, and Na-acamprosate was performed in the same paradigm. For the neurotoxicity studies, organotypic hippocampal slice cultures from male and female 8-day-old neonatal rats were exposed to either 500 microM -ACPD or 50 microM NMDA for 24 hr in normal culture medium containing serum on day 20 in vitro. The effects of Na-acamprosate and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893), a noncompetitive antagonist at metabotropic type 5 receptors (mGluR5s), were assessed by determining differences in propidium iodide uptake as compared with neurotoxic challenges alone. RESULTS: Na-acamprosate displaced 31% of [3H]glutamate but did not compete with NMDA for [3H]glutamate binding sites. Na-acamprosate displayed total competition with trans-ACPD. The presence of 100 microM guanosine 5'-triphosphate differentially altered the displacing capabilities of the two mGluR agonists, unlabeled glutamate and trans-ACPD, as compared with Na-acamprosate. Na-acamprosate (200-1000 microM) and SIB-1893 (20-500 microM) both were neuroprotective against trans-ACPD induced neurotoxicity that likely results from mGluR potentiation of NMDARs. In turn, Na-acamprosate and SIB-1893 had no direct effects on NMDA-induced neurotoxicity. CONCLUSIONS: Na-acamprosate demonstrates the binding and functional characteristics that are consistent with a group I mGluR antagonist. The functional similarities between Na-acamprosate and SIB-1893 support an interaction of Na-acamprosate at mGluR5s. The neuroprotective properties of acamprosate and possibly its ability to reduce craving in alcohol-dependent patients may result from its alterations in glutamatergic transmission through mGluRs.  相似文献   

6.
The taurinate analog acamprosate (calcium acetylhomotaurinate) has received considerable attention in Europe for its ability to prevent relapse in abstained alcoholics. To determine the mechanism of acamprosate actions in the CNS, we superfused acamprosate onto rat hippocampal CA1 pyramidal neurons using an in vitro slice preparation. In current- and voltage-clamp recordings, acamprosate (100 to 1000 μM) superfusion had little effect on resting membrane potential or input slope resistance. Acamprosate had no effect on Ca2+-dependent action potentials when tetrodotoxin was used to block Na+ spikes. In whole-cell voltage-clamp recordings, and in the presence of tetraethylammonium and Cs+ to block K+ channels, acamprosate had little effect on a Cd2+-sensitive inward current likely to be a high voltage-activated Ca2+ current. However, in both current- and voltage-clamp recordings, acamprosate significantly increased the N-methyl-d -aspartate (NMDA) component of excitatory postsynaptic potentials evoked by stimulation of Schaffer collaterals in the stratum radiatum, in the presence of the selective non-NMDA (R.S)-α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid kainate) glutamate receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione and the GABAA receptor antagonist bicuculline. Acamprosate had inconsistent or no effects on the stratum radiatum-evoked non-NMDA component of the excitatory postsynaptic potentials, in the presence of bicuculline and the NMDA antagonist dl -2-amino-5-phosphonovalerate. Acamprosate, on average, had little effect on the late inhibitory postsynaptic potentials thought to be mediated by GABAB receptors. In the presence of tetrodotoxin to block synaptic transmission, acamprosate dramatically increased inward current responses in most CA1 neurons to exogenous NMDA applied by pressure or superfusion, with reversal on washout of acamprosate. These data suggest that acamprosate may act postsynaptically to increase the NMDA component of excitatory transmission to hippocampal CA1 pyramidal neurons. Considering the known interaction of ethanol with NMDA receptors, this acamprosate modulation of NMDA receptor-mediated neurotransmission could provide a mechanism of action underlying the clinical efficacy of acamprosate.  相似文献   

7.
Acamprosate is a putative anticraving drug used to maintain abstinence in alcohol-dependent patients. Its mechanism of action is uncertain, but the drug is thought to interact with neuronal NMDA receptors and calcium channels, and these proteins are implicated in the induction of alcohol dependence. In these experiments, the effects of acamprosate were studied on the binding of the NMDA receptor ligand [3H]dizocilpine to rat brain membranes under nonequilibrium conditions; 10 μM glutamate and 1 μM glycine were present in the binding assays to partially activate the receptor. At clinically relevant concentrations (in the micromolar range), acamprosate significantly enhanced [3H]dizocilpine binding to cortical membranes from control animals (suggesting that acamprosate may increase the rate of association of the radioligand), whereas at higher concentrations binding was inhibited. This effect is consistent with a partial agonist effect of acamprosate on the NMDA receptor protein. However, when rats were made dependent on ethanol (exposure to the drug for 10 days by inhalation) and cortical membranes were prepared from these animals, acamprosate in vitro no longer produced any enhancement of [3H]dizocilpine binding. Similar results were obtained when membranes were used from rats that had received 400 mg/kg/day of acamprosate in their drinking water with or without concurrent ethanol inhalation for 10 days. Thus, in brain membranes from all these treatment groups, acamprosate in vitro caused inhibition of [3H]dizocilpine binding only. The results suggest that acamprosate may have excitatory or inhibitory effects on NMDA receptors, depending on the experimental conditions. The effects of the drug on this system appear to be shifted toward inhibition in alcohol dependence, and this finding may be important to its clinical mechanism.  相似文献   

8.
Background: Acamprosate (calcium acetylhomotaurinate) has proven to be a moderately effective pharmacological adjunct for the treatment of alcoholism. However, the central nervous system mechanism by which acamprosate reduces alcohol relapse remains unclear. Here we survey a number of metabotropic receptors, ligand‐gated ion channels, and voltage‐gated ion channels, to determine if acamprosate has actions at these sites in the central nervous system. Methods: Xenopus oocytes were injected with cDNAs or cRNAs encoding metabotropic glutamate receptors 1 and 5, M1 muscarinic receptors, glycine α1 homomeric and α1β1 heteromeric receptors, γ‐aminobutyric acid A (GABAAα4β3δ, α4β3γ2s, and α1β2γ2s) receptors, vanilloid receptor 1, and various combinations of α and β subunits of voltage‐gated Na+ channels. Electrophysiological responses were measured using two‐electrode voltage clamp parameters after activation with agonists or voltage steps (for the voltage‐gated channels). Acamprosate (0.1 to 100 μM) was pre‐applied for 1 minute, followed by co‐application with agonist. Acamprosate was also applied with ethanol to determine if it altered ethanol responses at some of these receptors and channels. Results: None of the receptors or ion channels responded to acamprosate alone. Acamprosate also failed to alter the activation of receptors or channels by agonists or after activation of voltage‐gated channels. There was no effect of acamprosate on ethanol responses at GABAAα1β2γ2s receptors or Na+ channels. Conclusions: Acamprosate does not significantly modulate the function of these receptors and ion channels at clinically relevant concentrations. Thus, the clinical effectiveness of acamprosate in the treatment of alcoholism is not likely due to direct effects on these receptors or ion channels.  相似文献   

9.
Ethanol, acutely, is a potent inhibitor of the function of the N -methyl-D-aspartate (NMDA) subtype of glutamate receptor. After chronic exposure of animals to ethanol, however, the NMDA receptor in brain is upregulated. This upregulation is associated with the occurrence of ethanol withdrawal seizures. When cultured cerebellar granule neurons are exposed chronically to ethanol, the resulting upregulation of NMDA receptor function renders the cells more susceptible to glutamate-induced neurotoxicity. The present studies show that chronic ethanol exposure produces an increase in NMDA receptor number in the cells, measured by ligand binding to intact cells. Glutamate-induced excitotoxicity, both in control and ethanol-exposed cells, is blocked by the same NMDA receptor antagonists previously shown to block ethanol withdrawal seizures in animals. In addition, glutamate neurotoxicity is blocked by acute (2-hr) pretreatment of cells with ganglioside GM., or by chronic (3 days) treatment with the ganglioside. Acute ganglioside treatment does not interfere with the initial rise in intracellular calcium caused by glutamate, whereas this response is downregulated after chronic ganglioside treatment. These results suggest that therapeutic agents can be developed to block both ethanol withdrawal signs and the neuronal damage that accompanies ethanol withdrawal. Furthermore, chronic ganglioside treatment during ethanol exposure has the potential to prevent changes in the NMDA receptor that lead to withdrawal seizures and enhanced susceptibility to excitotoxicity.  相似文献   

10.
BACKGROUND: Acamprosate (calcium acetyl homotaurinate) reduces alcohol intake in animals and increases abstinence rates in alcohol-dependent persons. Acamprosate's mechanism of action, however, remains poorly understood. In order to examine whether acamprosate/alcohol interactions contribute to acamprosate's efficacy, the present double-blind, placebo-controlled human laboratory study examined effects of acamprosate on the pharmacokinetics and subjective, psychomotor, and physiological effects of alcohol in heavy drinkers. METHODS: In a six-week within-subject design, participants were maintained on acamprosate (0, 2, and 4 g, p.o., double-blind, in counterbalanced order) for 11 days at each dose. Physiological, subjective, and psychomotor measures were collected daily during each dosing cycle. During each acamprosate dose condition, subjects were challenged with 0, 0.5, and 1.0 g/kg ethanol (p.o., counterbalanced order) during three separate laboratory sessions. Subjective, physiological, and psychomotor effects of alcohol, and breath alcohol levels were collected at baseline and at 30-min intervals for a 3-hr post-administration period. RESULTS: Acamprosate alone did not substantially affect subjective, physiological, or psychomotor performance measures. Acamprosate did not alter alcohol pharmacokinetics, or alcohol-induced behavioral impairment or tachycardia, and most subjective alcohol effects were also unaltered by acamprosate as well. Although a trend appeared for acamprosate to increase subjective ratings of intoxication following the lower (0.5 g/kg) alcohol dose, adjustment for individual differences in blood alcohol level eliminated this effect, suggesting the trend was not due to a central effect of acamprosate. CONCLUSIONS: Acamprosate does not alter alcohol pharmacokinetics, acute physiological or psychomotor alcohol effects, or most subjective alcohol effects.  相似文献   

11.
Acamprosate (calcium acetylhomotaurine) is used therapeutically in Europe to reduce relapse in weaned alcoholics. However, the mechanisms of acamprosate action in the central nervous system are still obscure, although early studies suggested an action on GABA receptors. The nucleus accumbens (NAcc) is a brain region thought to underlie ethanol reinforcement. Recent studies from our laboratory have demonstrated that ethanol inhibits both N-methyl-D-aspartate (NMDA) and non-NMDA types of glutamatergic synaptic transmission in the NAcc.1,2 In the present study, we used voltage- and current-clamp intracellular recording of NAcc core neurons in a slice preparation to examine acamprosate actions on resting membrane properties and pharmacologically isolated synaptic responses. We isolated NMDA and non-NMDA receptor-mediated excitatory postsynaptic potentials or currents (EPSP/Cs) with 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovaler-ate (d-APV), respectively. Bicuculline was also included to block GABAA receptors. Superfusion of acamprosate (5, 50, and 300 μM) did not alter the resting membrane properties of NAcc neurons. However, 300 μM acamprosate significantly increased the NMDA receptor-mediated components of EPSP/Cs (NMDA-EPSP/Cs) with recovery on washout. In contrast, 300 μM acamprosate had no significant effect on the non-NMDA receptor component of the EPSP/Cs (non-NMDA-EPSP/Cs). To test acamprosate actions on the GABA system, we superfused 60 μM d-APV and 20 μM CNQX to block glutamatergic transmission and evoked monosynaptic GABAA receptor-mediated synaptic responses within the NAcc. Acamprosate (300 μM) did not change these monosynaptic GABAA-IPSCs. We also used a paired-pulse paradigm to test whether acamprosate could act on presynaptic GABAB, autoreceptors, in the presence of d-APV and CNQX to block glutamatergic transmission. Like 0.5 μM CGP 34358 (a GABAB receptor blocker), acamprosate significantly decreased the paired-pulse inhibition (PPI) of GABAA-IPSCs at short interstimulus intervals (ISIs). Thus, acamprosate may concomitantly enhance NMDA-EPSP/Cs while blocking presynaptic GABAB receptor-mediated inhibition of GABA release. These results suggest that acamprosate's clinical efficacy in preventing relapse in weaned alcoholics could derive from its interactions with both the glutamatergic and GABAergic systems in the NAcc. Synaptic Transmission, Alcohol, Ethanol, EPSPs, NMDA Receptors.  相似文献   

12.
Chronic ethanol ingestion results in an up-regulation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor in mouse brain. This increase in receptors is associated with ethanol withdrawal seizures, which can be attenuated by NMDA receptor antagonists. Chronic exposure to ethanol (3 days) of rat cerebellar granule cells in primary culture also produces an increase in NMDA receptor number and function, which leads to enhanced susceptibility to glutamate-induced neurotoxicity. Antagonists acting at various sites on the NMDA receptor can block glutamate excitotoxicity in both control and ethanol-exposed cells. These results suggest the possibility of developing agents that will ameliorate ethanol withdrawal seizures as well as withdrawal-induced neuronal damage. In addition, acute (2 hr) or chronic (3 day) exposure of cerebellar granule cells to ganglioside GM1 protects control and ethanol-treated cells against glutamate neurotoxicity. However, while the acute GM1 treatment does not interfere with the initial response to glutamate (increase in intracellular Ca2+), this response is down-regulated after chronic ganglioside treatment. These findings suggest that the mechanism by which acute and chronic ganglioside treatments protect against glutamate neurotoxicity may differ. Furthermore, chronic ganglioside treatment during ethanol exposure has the potential to prevent the ethanol-induced up-regulation of NMDA receptors that underlies withdrawal seizures and increased susceptibility to excitotoxicity.  相似文献   

13.
BACKGROUND: Acamprosate (calcium acetyl homotaurinate) has been used clinically to treat relapse in alcoholics. In rats, it has been shown to decrease ethanol, but not water, self-administration after ethanol deprivation. METHODS: To further investigate the effect of acamprosate on reinforced behaviors in rats, the present experiment used: (1) both ethanol and sucrose reinforcer solutions to better assess the distinct effects of acamprosate on ethanol-directed behaviors, and (2) an operant model that procedurally separates the "cost" to begin drinking from consuming the reinforcer solutions to dissociate the effects of acamprosate on appetitive versus consummatory processes. In daily sessions (5 days/week), rats (n = 6/group) were trained to make 30 lever-press responses to gain access for 20 min to a sipper tube containing either ethanol (10%) or sucrose (3%). After stable responding, acamprosate treatment was given. Three doses were tested (50, 100, and 200 mg/kg/injection, intraperitoneally), one dose per week. Each week, a total of four injections were given (21 and 2 hr before the operant sessions over 2 consecutive days). RESULTS: At these doses, acamprosate had no effect on the measures of appetitive responding for either solution. However, all doses reliably decreased ethanol consumption on the 2nd day of treatment (from an average of 0.83 to 0.63 g/kg). Analysis of the pattern of ethanol consumption showed that the effects of acamprosate occurred after the onset of a normal pattern of intake, as measured by lick rate and size of the initial bout of drinking, which suggested that acamprosate is most effective when combined with the pharmacological effects of ethanol. Sucrose intake was unaffected by all acamprosate treatments, which indicated that the treatment effects were specific to ethanol and not due to a general decrease in consummatory behavior. CONCLUSIONS: Overall, these results suggest that acamprosate is effective at reducing total ethanol intake, but may not reliably alter subjects propensity to begin a drinking bout as measured by this model. However, whether this applies to the clinical use of acamprosate, where other types of reinforcement may also precipitate relapse drinking, is not certain.  相似文献   

14.
Acamprosate: recent findings and future research directions   总被引:1,自引:0,他引:1  
This article explores the mechanisms of action and the potential responder profile of acamprosate, a compound efficacious in relapse prevention of alcoholism. New evidence at the molecular and cellular level suggests that acamprosate attenuates hyper-glutamatergic states that occur during early abstinence and involves iono (NMDA)- and metabotrotropic (mGluR5) glutamate receptors along with augmented intracellular calcium release and electrophysiological changes. Thus mutant mice with enhanced glutamate levels exhibit higher alcohol consumption than wild type mice and respond better to acamprosate, demonstrating that acamprosate acts mainly on a hyper-glutamatergic system. This mode of action further suggests that acamprosate exhibits neuroprotective properties. In rats, cue-induced reinstatement behavior is significantly reduced by acamprosate treatment whereas cue-induced craving responses in alcohol-dependent patients seem not to be affected by this treatment. An ongoing study ("Project Predict") defines specific responder profiles for an individualized use of acamprosate and naltrexone. Neurophysiological as well as psychometric data are used to define 2 groups of patients: "reward cravers" and "relief cravers". While naltrexone should work better in the first group, acamprosate is hypothesized to be efficacious in the latter where withdrawal associated and/or cue induced hyper-glutamatergic states are thought to trigger relapse. Further research should target the definition of subgroups applying endophenotypic approaches, e.g. by detecting a hyperglutamatergic syndrome using MR spectroscopy.  相似文献   

15.
It has been suggested that the anticraving drug, acamprosate, acts via the glutamatergic system, but the exact mechanism of action is still unknown. The aim of this study was to characterize [3H]acam-prosate binding and establish whether this showed any relation to sites on the NMDA receptor complex. We found saturable specific binding of [3H]acamprosate to rat brain membranes with a KD of 120 μM and a Bmax of 450 pmol/mg of protein. This acamprosate binding site was sensitive to inhibition by spermidine (IC50: 13.32 ± 1.1 μM; Hill coefficient = 1.04), and arcaine and glutamate both potentiated the inhibitory effect of spermidine. Acamprosate binding to the acamprosate binding site was also sensitive to inhibition by divalent cations (Ca2+, Mg2+, and Sr2+). Conversely, acamprosate displaced [14C]spermidine binding from rat brain membranes with an IC50, of 645 μM and a Hill coefficient = 1.74. This inhibitory effect of acamprosate was not affected by arcaine, and was associated with a significant reduction in Bmax and binding affinity for spermidine, suggesting an allosteric interaction between acamprosate and a spermidine binding site. These data are consistent with an effect of acamprosate on the NMDA receptor protein complex, and acamprosate was also found to alter binding of [3H]dizocilpine to rat brain membranes. When no agonists were present in vitro (minimal NMDA receptor activation), acamprosate markedly potentiated [3H]dizocilpine binding at concentrations in the 5 to 200 μ range. However, under conditions of maximal receptor activation (100 μM glutamate, 30 μM glycine), acamprosate only inhibited [3H]dizocilpine binding (at concentrations concentrations > 100 μM). When these binding studies were performed in the presence of 1 μM spermidine, the enhancing effects of acamprosate on [3H]dirocilpine binding were inhibited. The results show that acamprosate binds to a specific spermidine-sensitive site that modulates the NMDA receptor in a complex way. Together, with data from al Quatari et al. (see next paper), this work suggests that acamprosate acts as “partial co-agonist“ at the NMDA receptor, so that low concentrations enhance activation when receptor activity is low, whereas higher concentrations are inhibitory to high levels of receptor activation. This may be relevant to the clinical effects of acamprosate in alcohol-dependent patients during abstinence.  相似文献   

16.
Background: Recently, a simple procedure in mice, Drinking‐in‐the‐Dark (DID), was hypothesized to have value for medication development for human alcoholism. In DID, mice are offered intermittent, limited access to ethanol over a series of days during the dark phase that results in rapid drinking to intoxication in predisposed genotypes. Methods: We measured the effects of acamprosate or MPEP, metabotropic glutamate 5 receptor (mGluR5) antagonist, on intake of 20% ethanol, plain tap water or 10% sugar water using the DID procedure in male C57BL/6J mice. Results: Acamprosate (100, 200, 300, or 400 mg/kg) dose dependently decreased ethanol drinking with 300 mg/kg reducing ethanol intake by approximately 20% without affecting intake of plain water or 10% sugar water. MPEP (1, 3, 5, 10, 20, or 40 mg/kg) was more potent than acamprosate with 20 mg/kg reducing ethanol intake by approximately 20% and for longer duration without affecting intake of plain water or 10% sugar water. Conclusions: These results support the hypothesis that mGluR5 signaling plays a role in excessive ethanol intake in DID and suggest DID may have value for screening novel compounds that reduce overactive glutamate signaling for potential pharmaceutical treatment of excessive ethanol drinking behavior.  相似文献   

17.
The effects of the new alcohol anticraving compound acamprosate on the alcohol deprivation effect were tested in an operant two-lever free choice paradigm with concurrent water. Two groups of rats were tested after long-term voluntary ethanol self-administration: the "continuous access" group consisting of animals that had continuous access to ethanol before operant testing; and the "limited access" group that was tested only after ethanol deprivation. The limited access group exhibited a strong alcohol deprivation effect with immediate high ethanol consumption and preference. Acamprosate (100, 200, or 400 mg/kg) dose-dependently reduced lever pressing for ethanol and, accordingly, ethanol consumption in both groups in a 23-hr session. The consumption-reducing effect was still evident at the end of the session. Ethanol preference was dose-dependently reduced during the first hour of the session, but returned to basal levels before the end of the 23-hr session in both groups. Thus, the time course of preference reduction was not identical with that of the reduction of ethanol consumption. Surprisingly, preference reduction was observed only after a considerable amount of ethanol had been consumed. These results suggest that the specific effect of preference reduction depended on the simultaneous presence of sufficient levels of acamprosate and ethanol, and that the longer-lasting reduction of ethanol consumption was the consequence of this experience.  相似文献   

18.
Background:  Glycine receptors (GlyRs) in the nucleus accumbens (nAc) and nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA) have been suggested to be involved in the positive reinforcing and dopamine elevating effects of ethanol. Recent studies have also shown that ethanol high-preferring rats substantially decrease their ethanol intake when treated with a glycine transporter 1 inhibitor (ORG 25935). Acamprosate, a drug used for relapse prevention in treatment of alcohol dependence, has also been demonstrated to elevate extracellular dopamine levels in the nAc. However, the underlying mechanism of action of acamprosate is not fully understood. Here we investigated whether acamprosate interferes with a neuronal circuitry that previously has been demonstrated to be involved in the dopamine elevating effects of ethanol and taurine.
Methods:  In vivo microdialysis in freely moving rats was used to assess accumbal dopamine levels before and during local (nAc) or systemic administration of acamprosate.
Results:  Perfusion of 0.5 mM acamprosate in the nAc significantly increased dopamine levels. Pretreatment either with 10 μM strychnine in the nAc or 100 μM mecamylamine in the VTA, completely antagonized the acamprosate-induced elevation of accumbal dopamine levels. Also, systemic acamprosate administration elevated accumbal dopamine output, an effect that was abolished by local (nAc) pretreatment with 10 μM strychnine.
Conclusions:  These results suggest that both systemic and local application of acamprosate elevate extracellular dopamine levels in the nAc by activating accumbal GlyRs, and, secondarily, tegmental nAChRs.  相似文献   

19.
Role of Polyamines and NMDA Receptors in Ethanol Dependence and Withdrawal   总被引:4,自引:0,他引:4  
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was John M. Littleton. The presentations were (1) Examination of ethanol spermine and acamprosate actions on native and recombinant NMDA receptors, by David Lovinger; (2) Ethanol inhibition of NMDA neurotoxicity on the polyamine site in cerebellar granule cells, by Sture Liljequist; (3) Alterations in expression of NMDA receptor subunits during ethanol exposure and withdrawal, by Raj Ticku; (4) Alterations in polyamine synthesis and release as a potential mechanism for ethanol dependence and withdrawal, by Izuru Matsumoto; (5) The role of polyamines in neurotoxicity induced by alcohol withdrawal in vitro, by John Littleton; and (6) Agmatine reduces some of the effects of "third trimester" alcohol exposure using a rodent model, by Susan Barron.  相似文献   

20.
Excessive or prolonged stimulation of, N -methyl- D -aspartate (NMDA) receptors appears to play an important role in many neurodegenerative processes in brain through a process known as excitotoxicity. This study examined the effects of ethanol on NMDA receptormediated excitotoxicity in primary neuronal cultures obtained from embryonic rat whole brain. Neurotoxicity was quantitated by measuring the amount of lactate dehydrogenase released into the media during a 20-hr time period following NMDA washout. Exposure of 12-to 14-day-old cultures to NMDA in Mg2+-free HEPES buffer (pH 7.4) for a 25-min period resulted in a concentration-dependent toxicity (EC50= 54 μM). Time-course experiments showed that exposure to NMDA for as little as 5 min was excitotoxic and reached a plateau after a 20-min exposure period. Preincubation of the cultures with ethanol (25 to 200 mm) resulted in a concentration-dependent inhibition of NMDA-mediated toxicity with approximately 38% inhibition produced by 25 mm ethanol and essentially complete inhibition at 200 mm ethanol (IC50= 60 mm). Increasing the glycine concentration to 100 μM did not potentiate NMDA neurotoxicity or antagonize the neuroprotective effect of ethanol. NMDA-Mediated excitotoxicity was reduced by approximately 50% by the glycine antagonist 7-chlorokynurenate (50 μM). Ethanol (50 mm) reduced NMDA neurotoxicity similar to 7-chlorokynurenate, and the two together produced greater inhibition than either alone. These results show that intoxicating concentrations of ethanol can potently inhibit NMDA receptor-mediated excitotoxicity and may have important implications in terms of ethanols interactions with brain trauma, ischemia, and other neuropathologies associated with NMDA receptor-mediated neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号