首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The large-scale open access whole-exome sequencing (WES) data of the UK Biobank ~200,000 participants is accelerating a new wave of genetic association studies aiming to identify rare and functional loss-of-function (LoF) variants associated with complex traits and diseases. We proposed to merge the WES genotypes and the genome-wide genotyping (GWAS) genotypes of 167,000 UKB homogeneous European participants into a combined reference panel, and then to impute 241,911 UKB homogeneous European participants who had the GWAS genotypes only. We then used the imputed data to replicate association identified in the discovery WES sample. The average imputation accuracy measure r2 is modest to high for LoF variants at all minor allele frequency intervals: 0.942 at MAF interval (0.01, 0.5), 0.807 at (1.0 × 10−3, 0.01), 0.805 at (1.0 × 10−4, 1.0 × 10−3), 0.664 at (1.0 × 10−5, 1.0 × 10−4) and 0.410 at (0, 1.0 × 10−5). As applications, we studied associations of LoF variants with estimated heel BMD and four lipid traits. In addition to replicating dozens of previously reported genes, we also identified three novel associations, two genes PLIN1 and ANGPTL3 for high-density-lipoprotein cholesterol and one gene PDE3B for triglycerides. Our results highlighted the strength of WES based genotype imputation as well as provided useful imputed data within the UKB cohort.  相似文献   

2.
The accuracy of genotype imputation depends upon two factors: the sample size of the reference panel and the genetic similarity between the reference panel and the target samples. When multiple reference panels are not consented to combine together, it is unclear how to combine the imputation results to optimize the power of genetic association studies. We compared the accuracy of 9,265 Norwegian genomes imputed from three reference panels—1000 Genomes phase 3 (1000G), Haplotype Reference Consortium (HRC), and a reference panel containing 2,201 Norwegian participants from the population‐based Nord Trøndelag Health Study (HUNT) from low‐pass genome sequencing. We observed that the population‐matched reference panel allowed for imputation of more population‐specific variants with lower frequency (minor allele frequency (MAF) between 0.05% and 0.5%). The overall imputation accuracy from the population‐specific panel was substantially higher than 1000G and was comparable with HRC, despite HRC being 15‐fold larger. These results recapitulate the value of population‐specific reference panels for genotype imputation. We also evaluated different strategies to utilize multiple sets of imputed genotypes to increase the power of association studies. We observed that testing association for all variants imputed from any panel results in higher power to detect association than the alternative strategy of including only one version of each genetic variant, selected for having the highest imputation quality metric. This was particularly true for lower frequency variants (MAF < 1%), even after adjusting for the additional multiple testing burden.  相似文献   

3.
Imputation of genotypes for markers untyped in a study sample has become a standard approach to increase genome coverage in genome‐wide association studies at practically zero cost. Most methods for imputing missing genotypes extend previously described algorithms for inferring haplotype phase. These algorithms generally fall into three classes based on the underlying model for estimating the conditional distribution of haplotype frequencies: a cluster‐based model, a multinomial model, or a population genetics‐based model. We compared BEAGLE, PLINK, and MACH, representing the three classes of models, respectively, with specific attention to measures of imputation success and selection of the reference panel for an admixed study sample of African Americans. Based on analysis of chromosome 22 and after calibration to a fixed level of 90% concordance between experimentally determined and imputed genotypes, MACH yielded the largest absolute number of successfully imputed markers and the largest gain in coverage of the variation captured by HapMap reference panels. Following the common practice of performing imputation once, the Yoruba in Ibadan, Nigeria (YRI) reference panel outperformed other HapMap reference panels, including (1) African ancestry from Southwest USA (ASW) data, (2) an unweighted combination of the Northern and Western Europe (CEU) and YRI data into a single reference panel, and (3) a combination of the CEU and YRI data into a single reference panel with weights matching estimates of admixture proportions. For our admixed study sample, the optimal strategy involved imputing twice with the HapMap CEU and YRI reference panels separately and then merging the data sets. Genet. Epidemiol. 34: 258–265, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare‐variant test that explicitly models a fraction of variants as neutral, tests associations at the gene‐level, and infers the rare‐variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome‐wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare‐variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.  相似文献   

5.
In the search for genetic associations with complex traits, population isolates offer the advantage of reduced genetic and environmental heterogeneity. In addition, cost‐efficient next‐generation association approaches have been proposed in these populations where only a subsample of representative individuals is sequenced and then genotypes are imputed into the rest of the population. Gene mapping in such populations thus requires high‐quality genetic imputation and preliminary phasing. To identify an effective study design, we compare by simulation a range of phasing and imputation software and strategies. We simulated 1,115,604 variants on chromosome 10 for 477 members of the large complex pedigree of Campora, a village within the established isolate of Cilento in southern Italy. We assessed the phasing performance of identical by descent based software ALPHAPHASE and SLRP, LD‐based software SHAPEIT2, SHAPEIT3, and BEAGLE, and new software EAGLE that combines both methodologies. For imputation we compared IMPUTE2, IMPUTE4, MINIMAC3, BEAGLE, and new software PBWT. Genotyping errors and missing genotypes were simulated to observe their effects on the performance of each software. Highly accurate phased data were achieved by all software with SHAPEIT2, SHAPEIT3, and EAGLE2 providing the most accurate results. MINIMAC3, IMPUTE4, and IMPUTE2 all performed strongly as imputation software and our study highlights the considerable gain in imputation accuracy provided by a genome sequenced reference panel specific to the population isolate.  相似文献   

6.
While current genome-wide association analyses often rely on meta-analysis of study-specific summary statistics, individual participant data (IPD) from multiple studies increase options for modeling. When multistudy IPD is available, however, it is unclear whether this data is to be imputed and modeled across all participants (mega-imputation and mega-analysis) or study-specifically (meta-imputation and meta-analysis). Here, we investigated different approaches toward imputation and analysis using 52,189 subjects from 25 studies of the International Age-related Macular Degeneration (AMD) Genomics Consortium including, 16,144 AMD cases and 17,832 controls for association analysis. From 27,448,454 genetic variants after 1,000-Genomes-based imputation, mega-imputation yielded ~400,000 more variants with high imputation quality (mostly rare variants) compared to meta-imputation. For AMD signal detection (P < 5 × 10−8) in mega-imputed data, most loci were detected with mega-analysis without adjusting for study membership (40 loci, including 34 known); we considered these loci genuine, since genetic effects and P-values were comparable across analyses. In meta-imputed data, we found 31 additional signals, mostly near chromosome tails or reference panel gaps, which disappeared after accounting for interaction of whole-genome amplification (WGA) with study membership or after excluding studies with WGA-participants. For signal detection with multistudy IPD, we recommend mega-imputation and mega-analysis, with meta-imputation followed by meta-analysis being a computationally appealing alternative.  相似文献   

7.
Genotype imputation provides imputation of untyped single nucleotide polymorphisms (SNPs) that are present on a reference panel such as those from the HapMap Project. It is popular for increasing statistical power and comparing results across studies using different platforms. Imputation for African American populations is challenging because their linkage disequilibrium blocks are shorter and also because no ideal reference panel is available due to admixture. In this paper, we evaluated three imputation strategies for African Americans. The intersection strategy used a combined panel consisting of SNPs polymorphic in both CEU and YRI. The union strategy used a panel consisting of SNPs polymorphic in either CEU or YRI. The merge strategy merged results from two separate imputations, one using CEU and the other using YRI. Because recent investigators are increasingly using the data from the 1000 Genomes (1KG) Project for genotype imputation, we evaluated both 1KG-based imputations and HapMap-based imputations. We used 23,707 SNPs from chromosomes 21 and 22 on Affymetrix SNP Array 6.0 genotyped for 1,075 HyperGEN African Americans. We found that 1KG-based imputations provided a substantially larger number of variants than HapMap-based imputations, about three times as many common variants and eight times as many rare and low-frequency variants. This higher yield is expected because the 1KG panel includes more SNPs. Accuracy rates using 1KG data were slightly lower than those using HapMap data before filtering, but slightly higher after filtering. The union strategy provided the highest imputation yield with next highest accuracy. The intersection strategy provided the lowest imputation yield but the highest accuracy. The merge strategy provided the lowest imputation accuracy. We observed that SNPs polymorphic only in CEU had much lower accuracy, reducing the accuracy of the union strategy. Our findings suggest that 1KG-based imputations can facilitate discovery of significant associations for SNPs across the whole MAF spectrum. Because the 1KG Project is still under way, we expect that later versions will provide better imputation performance.  相似文献   

8.
Multivariable analysis of proteomics data using standard statistical models is hindered by the presence of incomplete data. We faced this issue in a nested case–control study of 135 incident cases of myocardial infarction and 135 pair‐matched controls from the Framingham Heart Study Offspring cohort. Plasma protein markers (K = 861) were measured on the case–control pairs (N = 135), and the majority of proteins had missing expression values for a subset of samples. In the setting of many more variables than observations (K ? N), we explored and documented the feasibility of multiple imputation approaches along with subsequent analysis of the imputed data sets. Initially, we selected proteins with complete expression data (K = 261) and randomly masked some values as the basis of simulation to tune the imputation and analysis process. We randomly shuffled proteins into several bins, performed multiple imputation within each bin, and followed up with stepwise selection using conditional logistic regression within each bin. This process was repeated hundreds of times. We determined the optimal method of multiple imputation, number of proteins per bin, and number of random shuffles using several performance statistics. We then applied this method to 544 proteins with incomplete expression data (≤40% missing values), from which we identified a panel of seven proteins that were jointly associated with myocardial infarction. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.  相似文献   

9.
Genome‐wide association studies are usually accompanied by imputation techniques to complement genome‐wide SNP chip genotypes. Current imputation approaches separate the phasing of study data from imputing, which makes the phasing independent from the reference data. The two‐step approach allows for updating the imputation for a new reference panel without repeating the tedious phasing step. This advantage, however, does no longer hold, when the build of the study data differs from the build of the reference data. In this case, the current approach is to harmonize the study data annotation with the reference data (prephasing lift‐over), requiring rephasing and re‐imputing. As a novel approach, we propose to harmonize study haplotypes with reference haplotypes (postphasing lift‐over). This allows for updating imputed study data for new reference panels without requiring rephasing. With continuously updated reference panels, our approach can save considerable computing time of up to 1 month per re‐imputation. We evaluated the rephasing and postphasing lift‐over approaches by using data from 1,644 unrelated individuals imputed by both approaches and comparing it with directly typed genotypes. On average, both approaches perform equally well with mean concordances of 93% between imputed and typed genotypes for both approaches. Also, imputation qualities are similar (mean difference in RSQ < 0.1%). We demonstrate that our novel postphasing lift‐over approach is a practical and time‐saving alternative to the prephasing lift‐over. This might encourage study partners to accommodate updated reference builds and ultimately improve the information content of study data. Our novel approach is implemented in the software PhaseLift.  相似文献   

10.
11.
Genotype imputation is a critical technique for following up genome‐wide association studies. Efficient methods are available for dealing with the probabilistic nature of imputed single nucleotide polymorphisms (SNPs) in population‐based designs, but not for family‐based studies. We have developed a new analytical approach (FBATdosage), using imputed allele dosage in the general framework of family‐based association tests to bridge this gap. Simulation studies showed that FBATdosage yielded highly consistent type I error rates, whatever the level of genotype uncertainty, and a much higher power than the best‐guess genotype approach. FBATdosage allows fast linkage and association testing of several million of imputed variants with binary or quantitative phenotypes in nuclear families of arbitrary size with arbitrary missing data for the parents. The application of this approach to a family‐based association study of leprosy susceptibility successfully refined the association signal at two candidate loci, C1orf141‐IL23R on chromosome 1 and RAB32‐C6orf103 on chromosome 6.  相似文献   

12.
A key aim for current genome-wide association studies (GWAS) is to interrogate the full spectrum of genetic variation underlying human traits, including rare variants, across populations. Deep whole-genome sequencing is the gold standard to fully capture genetic variation, but remains prohibitively expensive for large sample sizes. Array genotyping interrogates a sparser set of variants, which can be used as a scaffold for genotype imputation to capture a wider set of variants. However, imputation quality depends crucially on reference panel size and genetic distance from the target population. Here, we consider sequencing a subset of GWAS participants and imputing the rest using a reference panel that includes both sequenced GWAS participants and an external reference panel. We investigate how imputation quality and GWAS power are affected by the number of participants sequenced for admixed populations (African and Latino Americans) and European population isolates (Sardinians and Finns), and identify powerful, cost-effective GWAS designs given current sequencing and array costs. For populations that are well-represented in existing reference panels, we find that array genotyping alone is cost-effective and well-powered to detect common- and rare-variant associations. For poorly represented populations, sequencing a subset of participants is often most cost-effective, and can substantially increase imputation quality and GWAS power.  相似文献   

13.
Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not been adequately addressed including the utility of study-specific reference, performance in admixed populations, and quality for less common (minor allele frequency [MAF] 0.005-0.05) and rare (MAF < 0.005) variants. These issues only recently became addressable with genome-wide association studies (GWAS) follow-up studies using dense genotyping or sequencing in large samples of non-European individuals. In this work, we constructed a study-specific reference panel of 3,924 haplotypes using African Americans in the Women's Health Initiative (WHI) genotyped on both the Metabochip and the Affymetrix 6.0 GWAS platform. We used this reference panel to impute into 6,459 WHI SNP Health Association Resource (SHARe) study subjects with only GWAS genotypes. Our analysis confirmed the imputation quality metric Rsq (estimated r(2) , specific to each SNP) as an effective post-imputation filter. We recommend different Rsq thresholds for different MAF categories such that the average (across SNPs) Rsq is above the desired dosage r(2) (squared Pearson correlation between imputed and experimental genotypes). With a desired dosage r(2) of 80%, 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF > 0.05 (0.03-0.05, 0.01-0.03, 0.005-0.01, and 0.001-0.005) passed the post-imputation filter. The average dosage r(2) for these SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005-0.05, is feasible and worthwhile for power increase in downstream association analysis provided a sizable reference panel is available.  相似文献   

14.
Hu YJ  Lin DY 《Genetic epidemiology》2010,34(8):803-815
Analysis of untyped single nucleotide polymorphisms (SNPs) can facilitate the localization of disease-causing variants and permit meta-analysis of association studies with different genotyping platforms. We present two approaches for using the linkage disequilibrium structure of an external reference panel to infer the unknown value of an untyped SNP from the observed genotypes of typed SNPs. The maximum-likelihood approach integrates the prediction of untyped genotypes and estimation of association parameters into a single framework and yields consistent and efficient estimators of genetic effects and gene-environment interactions with proper variance estimators. The imputation approach is a two-stage strategy, which first imputes the untyped genotypes by either the most likely genotypes or the expected genotype counts and then uses the imputed values in a downstream association analysis. The latter approach has proper control of type I error in single-SNP tests with possible covariate adjustments even when the reference panel is misspecified; however, type I error may not be properly controlled in testing multiple-SNP effects or gene-environment interactions. In general, imputation yields biased estimators of genetic effects and gene-environment interactions, and the variances are underestimated. We conduct extensive simulation studies to compare the bias, type I error, power, and confidence interval coverage between the maximum likelihood and imputation approaches in the analysis of single-SNP effects, multiple-SNP effects, and gene-environment interactions under cross-sectional and case-control designs. In addition, we provide an illustration with genome-wide data from the Wellcome Trust Case-Control Consortium (WTCCC) [2007].  相似文献   

15.
Genome‐wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thus be attributed to rare variation. However, genome‐wide association study genotyping chips have been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants. Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome‐wide genotype data up to high‐density reference panels has the potential to identify rare variant associations with complex traits, without the need for costly re‐sequencing experiments. By application of this approach to genome‐wide association studies of seven common complex diseases, imputed up to publicly available reference panels, we identify genome‐wide significant evidence of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome‐wide association studies have the potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to substantial advancements in our understanding of the genetic architecture underlying complex human traits.  相似文献   

16.
Advances in DNA sequencing technologies have greatly facilitated the discovery of rare genetic variants in the human genome, many of which may contribute to common disease risk. However, evaluating their individual or even collective effects on disease risk requires very large sample sizes, which involves study designs that are often prohibitively expensive. We present an alternative approach for determining genotypes in large numbers of individuals for all variants discovered in the sequence of relatively few individuals. Specifically, we developed a new imputation algorithm that utilizes whole-exome sequencing data from 25 members of the South Dakota Hutterite population, and genome-wide single nucleotide polymorphism (SNP) genotypes from >1,400 individuals from the same founder population. The algorithm relies on identity-by-descent sharing of phased haplotypes, a different strategy than the linkage disequilibrium methods found in most imputation algorithms. We imputed genotypes discovered in the sequence data to on average ~77% of chromosomes among the 1,400 individuals. Median R(2) between imputed and directly genotyped data was >0.99. As expected, many variants that are vanishingly rare in European populations have risen to larger frequencies in the founder population and would be amenable to single-SNP analyses.  相似文献   

17.
Imputation in admixed populations is an important problem but challenging due to the complex linkage disequilibrium (LD) pattern. The emergence of large reference panels such as that from the 1,000 Genomes Project enables more accurate imputation in general, and in particular for admixed populations and for uncommon variants. To efficiently benefit from these large reference panels, one key issue to consider in modern genotype imputation framework is the selection of effective reference panels. In this work, we consider a number of methods for effective reference panel construction inside a hidden Markov model and specific to each target individual. These methods fall into two categories: identity‐by‐state (IBS) based and ancestry‐weighted approach. We evaluated the performance on individuals from recently admixed populations. Our target samples include 8,421 African Americans and 3,587 Hispanic Americans from the Women' Health Initiative, which allow assessment of imputation quality for uncommon variants. Our experiments include both large and small reference panels; large, medium, and small target samples; and in genome regions of varying levels of LD. We also include BEAGLE and IMPUTE2 for comparison. Experiment results with large reference panel suggest that our novel piecewise IBS method yields consistently higher imputation quality than other methods/software. The advantage is particularly noteworthy among uncommon variants where we observe up to 5.1% information gain with the difference being highly significant (Wilcoxon signed rank test P‐value < 0.0001). Our work is the first that considers various sensible approaches for imputation in admixed populations and presents a comprehensive comparison.  相似文献   

18.
The Physical Activity Monitor component was introduced into the 2003–2004 National Health and Nutrition Examination Survey (NHANES) to collect objective information on physical activity including both movement intensity counts and ambulatory steps. Because of an error in the accelerometer device initialization process, the steps data were missing for all participants in several primary sampling units, typically a single county or group of contiguous counties, who had intensity count data from their accelerometers. To avoid potential bias and loss in efficiency in estimation and inference involving the steps data, we considered methods to accurately impute the missing values for steps collected in the 2003–2004 NHANES. The objective was to come up with an efficient imputation method that minimized model‐based assumptions. We adopted a multiple imputation approach based on additive regression, bootstrapping and predictive mean matching methods. This method fits alternative conditional expectation (ace) models, which use an automated procedure to estimate optimal transformations for both the predictor and response variables. This paper describes the approaches used in this imputation and evaluates the methods by comparing the distributions of the original and the imputed data. A simulation study using the observed data is also conducted as part of the model diagnostics. Finally, some real data analyses are performed to compare the before and after imputation results. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
Haplotype information could lead to more powerful tests of genetic association than single‐locus analyses but it is not easy to estimate haplotype frequencies from genotype data due to phase ambiguity. The challenge is compounded when individuals are pooled together to save costs or to increase sample size, which is crucial in the study of rare variants. Existing expectation–maximization type algorithms are slow and cannot cope with large pool size or long haplotypes. We show that by collapsing the total allele frequencies of each pool suitably, the maximum likelihood estimates of haplotype frequencies based on the collapsed data can be calculated very quickly regardless of pool size and haplotype length. We provide a running time analysis to demonstrate the considerable savings in time that the collapsed data method can bring. The method is particularly well suited to estimating certain union probabilities useful in the study of rare variants. We provide theoretical and empirical evidence to suggest that the proposed estimation method will not suffer much loss in efficiency if the variants are rare. We use the method to analyze re‐sequencing data collected from a case control study involving 148 obese persons and 150 controls. Focusing on a region containing 25 rare variants around the MGLL gene, our method selects three rare variants as potentially causal. This is more parsimonious than the 12 variants selected by a recently proposed covering method. From another set of 32 rare variants around the FAAH gene, we discover an interesting potential interaction between two of them. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Family‐based designs enriched with affected subjects and disease associated variants can increase statistical power for identifying functional rare variants. However, few rare variant analysis approaches are available for time‐to‐event traits in family designs and none of them applicable to the X chromosome. We developed novel pedigree‐based burden and kernel association tests for time‐to‐event outcomes with right censoring for pedigree data, referred to FamRATS (family‐based rare variant association tests for survival traits). Cox proportional hazard models were employed to relate a time‐to‐event trait with rare variants with flexibility to encompass all ranges and collapsing of multiple variants. In addition, the robustness of violating proportional hazard assumptions was investigated for the proposed and four current existing tests, including the conventional population‐based Cox proportional model and the burden, kernel, and sum of squares statistic (SSQ) tests for family data. The proposed tests can be applied to large‐scale whole‐genome sequencing data. They are appropriate for the practical use under a wide range of misspecified Cox models, as well as for population‐based, pedigree‐based, or hybrid designs. In our extensive simulation study and data example, we showed that the proposed kernel test is the most powerful and robust choice among the proposed burden test and the existing four rare variant survival association tests. When applied to the Diabetes Heart Study, the proposed tests found exome variants of the JAK1 gene on chromosome 1 showed the most significant association with age at onset of type 2 diabetes from the exome‐wide analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号