首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes a new PCR-based assay for the detection of Pseudomonas aeruginosa genotype D in occupational saturation diving systems in the North Sea. This genotype has persisted in these systems for 11 years (1993-2003) and represents 18% of isolates from infections analysed during this period. The new PCR assay was based on sequences obtained after randomly amplified polymorphic DNA (RAPD)-PCR analysis of a group of isolates related to diving that had been identified previously by pulsed-field gel electrophoresis (PFGE). The primer set for the D genotype targets a gene that codes for a hypothetical class 4 protein in the P. aeruginosa PAO1 genome. A primer set able to detect P. aeruginosa at the species level was also designed, based on the 23S-5S rDNA spacer region. The two assays produced 382-bp and 192-bp amplicons, respectively. The PCR assay was evaluated by analysing 100 P. aeruginosa isolates related to diving, representing 28 PFGE genotypes, and 38 clinical and community P. aeruginosa isolates and strains from other species. The assay identified all of the genotype D isolates tested. Two additional diving-relevant genotypes (TP2 and TP27) were also identified, as well as three isolates of non-diving origin. It was concluded that the new PCR assay is a useful tool for early detection and prevention of infections with the D genotype.  相似文献   

2.
We propose a simple and rapid method to discriminate SHV-type extended spectrum beta-lactamase (ESBL) genes in P. aeruginosa based on PCR techniques (PCR-RFLP and RSI-PCR). We studied 22 producing ESBL P. aeruginosa strains isolated from seven immunocompromised patients (19 isolates) and from environmental swabs (three isolates) at the Bone Marrow Transplantation Center of Tunis. Screening PCR with primer pairs designed to detect gene encoding TEM, SHV, OXA group I, OXA group II, OXA-18 and PER-1 ESBL was positive for bla(OXA18) and bla(SHV) genes in all isolates. Pulsed field gel electrophoresis using SpeI endonuclease defined five genotypic groups. For at least one isolate corresponding to each genotype observed, restriction of PCR products by DdeI and BsrI revealed the same restriction pattern that the bla(SHV-1) negative control; in the same way, RSI-PCR products digestion by NruI, thus excluding 35, 238 and 240 mutations characterizing reported ESBL in P. aeruginosa (SHV-2a, SHV5 et SHV12), and suggesting that studied bla(SHV) genes were not ESBL ones. Genomic DNA hybridization by southern blot with probe consisting in bla(SHV-1) gene was positive in these isolates. Sequencing the full-length open reading frame revealed nucleotide sequence of the bla(SHV-1). PCR-RFLP and RSI-PCR results were then confirmed. This approach is effective for screening P. aeruginosa for ESBL genes carriage in epidemiological studies and for detecting new variants.  相似文献   

3.
Multidrug-resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. The existence of metallo-beta-lactamase- and extended-spectrum beta-lactamase-producing isolates exhibiting resistance to most beta-lactam antimicrobial agents greatly complicates the clinical management of patients infected with such isolates. Since 1998, P. aeruginosa isolates resistant to all commercially available antimicrobial agents have been detected at a university-affiliated public hospital in Rio de Janeiro, Brazil. The present study was designed to characterize the antimicrobial resistance profiles and the genetic diversity of the P. aeruginosa strains isolated at this hospital and four private hospitals in Rio de Janeiro. Between April 1999 and March 2000, 200 consecutive isolates were obtained and analyzed for antimicrobial resistance. The genetic diversity of a selected number of them was evaluated by pulsed-field gel electrophoresis and PCR with the ERIC-2 primer. A predominant genotype, designated genotype A, was identified among isolates from four of the five hospitals evaluated. Eighty-four ceftazidime-resistant isolates were evaluated for metallo-beta-lactamase production, which was detected in 20 (91%) of 22 genotype A isolates and 11 (18%) of 62 isolates belonging to other genotypes (P < 0.05). Two metallo-beta-lactamase-producing genotype A isolates also produced an extended-spectrum beta-lactamase. The occurrence of multidrug-resistant P. aeruginosa strains belonging to a unique genotype in different hospitals in Rio de Janeiro underscores the importance of the contribution of a single clone to the increase in the incidence of multidrug-resistant P. aeruginosa nosocomial infections.  相似文献   

4.
OBJECTIVES: To analyse the global resistance to some antibiotics used to treat nosocomial infections by Pseudomonas aeruginosa, specially to carbapenems, and its relationship with the presence of carbapenemases, OXA, VIM and IMP. METHODS: The study included 229 P. aeruginosa isolates from a Hospital in Northern Spain (year 2002). Susceptibility to antimicrobial agents was determined by the analysis of the MIC. Genetic typing was carried out by RAPD-PCR fingerprinting with primer ERIC-2. Genetic experiments to detect class-1 integrons were performed by PCR with primers 5'CS and 3'CS. Detection of carbapenemases was done by phenotypic (Hodge test and DDST) and genotypic methods (PCR with primers for imp, vim1, vim2 and oxa40 genes). RESULTS: 23.9% of isolates were resistant to ceftazidime, 35.9% to cefotaxime, 5.3% to amikacin, 54.9% to gentamicin, 14.6% to imipenem and 6.6% to meropenem. Isolates resistant to imipenem (33) were furtherly tested. Genetic typing didn't show clonal relatedness among the most of the isolates. Class-1 integrons were present in most isolates (sizes 600-1700 bp). Phenotypic methods for carbapenemases showed 5 positive isolates. Genotypic methods showed the presence of two isolates with the oxa40 gene. CONCLUSIONS: Meropenem, amikacin and imipenem were the most active agents to treat infections caused by Pseudomonas aeruginosa. In our study, the presence of carbapenemase enzymes wasn't high. Phenotypic tests cannot be considered as accurate screening tool to detect carbapenemases. This is the fist report of the oxa40 gene in Pseudomonas aeruginosa isolates.  相似文献   

5.
Pseudomonas aeruginosa and other gram-negative isolates from patients with cystic fibrosis (CF) may be difficult to identify because of their marked phenotypic diversity. We examined 200 gram-negative clinical isolates from CF respiratory tract specimens and compared identification by biochemical testing and real-time PCR with multiple different target sequences using a standardized combination of biochemical testing and molecular identification, including 16S rRNA partial sequencing and gyrB PCR and sequencing as a "gold standard." Of 50 isolates easily identified phenotypically as P. aeruginosa, all were positive with PCR primers for gyrB or oprI, 98% were positive with exotoxin A primers, and 90% were positive with algD primers. Of 50 P. aeruginosa isolates that could be identified by basic biochemical testing, 100% were positive by real-time PCR with gyrB or oprI primers, 96% were positive with exotoxin A primers, and 92% were positive with algD primers. For isolates requiring more-extensive biochemical evaluation, 13 isolates were identified as P. aeruginosa; all 13 were positive with gyrB primers, 12 of 13 were positive with oprI primers, 11 of 13 were positive with exotoxin A primers, and 10 of 13 were positive with algD primers. A single false-positive P. aeruginosa result was seen with oprI primers. The best-performing commercial biochemical testing was in exact agreement with molecular identification only 60% of the time for this most difficult group. Real-time PCR had costs similar to those of commercial biochemical testing but a much shorter turnaround time. Given the diversity of these CF isolates, real-time PCR with a combination of two target sequences appears to be the optimum choice for identification of atypical P. aeruginosa and for non-P. aeruginosa gram-negative isolates.  相似文献   

6.
Phenotypic identification of gram-negative bacteria from Cystic Fibrosis (CF) patients carries a high risk of misidentification. Therefore, we compared the results of biochemical identification by API 20NE with 16S rRNA gene sequencing in 88 gram-negative, oxidase-positive rods, other than morphologically and biochemically typical P. aeruginosa, from respiratory secretions of CF patients. The API 20NE allowed correct identification of the bacterial species in 15 out of 88 (17%) isolates investigated. Agreement between the API and the 16S rRNA gene sequencing results was high only in isolates with an API result classified as "excellent identification". Even API results classified as "very good identification" or "good identification" showed a high rate of misidentification (67% and 84%). Fifty-two isolates of morphological and biochemical nontypical Pseudomonas aeruginosa, representing 59% of all isolates investigated, were not identifiable or misidentified in the API 20NE. Therefore, rapid molecular diagnostic techniques like real-time PCR and fluorescence in situ hybridization (FISH) were evaluated in this particular group of bacteria for identification of the clinically most relevant pathogen, P. aeruginosa. The LightCycler PCR assay with a P. aeruginosa-specific probe showed a sensitivity and specificity of 98.1% and 100%, respectively. For FISH analysis, a newly designed P. aeruginosa-specific probe had a sensitivity and specificity of 100%. In conclusion, molecular methods are superior over biochemical tests for identification of gram-negative, oxidase-positive rods in CF patients. In addition, real-time PCR and FISH allowed identification of morphologically nontypical isolates of P. aeruginosa within a few hours.  相似文献   

7.
Objective: To perform quality assessment of standardized random amplified polymorphic DNA (RAPD) analysis for epidemiologic typing of Klebsiella pneumoniae, K. oxytoca, Serratia marcescens and Pseudomonas aeruginosa .
Methods: Thirty K. pneumoniae , 15 K. oxytoca , 30 S. marcescens and 33 P. aeruginosa epidemiologically unrelated isolates and four collections of clinically related isolates of each species were included in the study. RAPD analysis was performed using Ready-To-Go RAPD Analysis beads with primer ERIC-1R and Ready-To-Go primer 2 for K. pneumoniae and K. oxytoca , primer set ERIC-2/1026 and Ready-To-Go primer 2 for S. marcescens , and primers D-10514 and D-14306 for P. aeruginosa .
Results: All epidemiologically unrelated K. pneumoniae and K. oxytoca isolates were distinguished. Twenty-nine types were distinguished among the 30 unrelated S. marcescens isolates and 32 types among the 33 unrelated P. aeruginosa isolates. Indistinguishable banding patterns were obtained in repeated analyses of two isolates and from 11 serial subcultures of three isolates of each species included in the study. The RAPD data from the clinically related isolates correlated with the epidemiologic origin of the isolates.
Conclusions: The use of Ready-To-Go RAPD Analysis beads resulted in reproducible and stable banding patterns with a high discriminatory capacity, and the RAPD typing results corresponded with the epidemiologic origin of the isolates.  相似文献   

8.
Pseudomonas aeruginosa is the major opportunistic bacterial pathogen in persons with cystic fibrosis (CF); pulmonary infection occurs in approximately 80% of adult CF patients. Much of CF patient management depends on accurate identification of P. aeruginosa from sputum culture. However, identification of this species may be problematic due to the marked phenotypic variability demonstrated by CF sputum isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA (rDNA) sequence data to design PCR assays intended to provide genus- or species-level identification. Both assays yielded DNA fragments of the predicted size. We tested 42 culture collection strains (including 14 P. aeruginosa strains and 28 strains representing 16 other closely related Pseudomonas species) and 43 strains that had been previously identified as belonging to 28 nonpseudomonal species also recovered from CF patient sputum. Based on these 85 strains, the specificity and sensitivity of both assays were 100%. To further assess the utility of the PCR assays, we tested 66 recent CF sputum isolates. The results indicated that preliminary phenotypic testing had misidentified several isolates. The 16S rDNA sequence was determined for 38 isolates, and in all cases it confirmed the results of the PCR assays. Thus, we have designed two PCR assays: one is specific for the genus Pseudomonas, while the other is specific for P. aeruginosa. Both assays show 100% sensitivity and specificity.  相似文献   

9.
Pseudomonas aeruginosa is a common opportunistic bacterial pathogen that causes a variety of infections in humans. Populations of P. aeruginosa are dominated by common clones that can be isolated from diverse clinical and environmental sources. To determine whether specific clones are associated with corneal infection, we used a portable genotyping microarray system to analyze a set of 63 P. aeruginosa isolates from patients with corneal ulcers (keratitis). We then used population analysis to compare the keratitis isolates to a wider collection of P. aeruginosa from various nonocular sources. We identified various markers in a subpopulation of P. aeruginosa associated with keratitis that were in strong disequilibrium with the wider P. aeruginosa population, including oriC, exoU, katN, unmodified flagellin, and the carriage of common genomic islands. The genome sequencing of a keratitis isolate (39016; representing the dominant serotype O11), which was associated with a prolonged clinical healing time, revealed several genomic islands and prophages within the accessory genome. The PCR amplification screening of all 63 keratitis isolates, however, provided little evidence for the shared carriage of specific prophages or genomic islands between serotypes. P. aeruginosa twitching motility, due to type IV pili, is implicated in corneal virulence. We demonstrated that 46% of the O11 keratitis isolates, including 39016, carry a distinctive pilA, encoding the pilin of type IV pili. Thus, the keratitis isolates were associated with specific characteristics, indicating that a subpopulation of P. aeruginosa is adapted to cause corneal infection.  相似文献   

10.
11.
The virulence of Pseudomonas aeruginosa in contact lens-induced microbial keratitis has been linked to various extracellular and cell-associated bacterial products, such as proteases and toxins. Recently, a group of bacterial signal molecules, N-acyl-homoserine lactones (AHLs), has been reported to play an important role in the regulation of the production of several bacterial virulence factors in P. aeruginosa. The aim of this study was to determine the signal molecules produced by P. aeruginosa keratitis strains, and to elucidate any possible correlation between the production of signal molecules and the expression of phenotypic characteristics, including protease production, bacterial invasion and acute cytotoxic activity. The presence and profiles of AHLs in ocular P. aeruginosa isolates were analysed by a combination of thin-layer chromatography and bioassay. All 17 keratitis isolates produced AHLs. There were differences both in the amounts and the types of AHL production in the various phenotypes of isolates. High levels of AHLs were found among the isolates with high protease activity and invasiveness. Acutely cytotoxic isolates displayed low AHL and protease activities. Invasive strains were more common than cytotoxic strains from keratitis patients. These results suggest that quorum-sensing systems of P. aeruginosa display a complexity even within the same species, and the production of certain AHL signal molecules may be associated with certain phenotypes in P. aeruginosa.  相似文献   

12.
13.
This study was designed to characterize the β-lactamase content of carbapenem-resistant Pseudomonas aeruginosa isolates recovered during 2006 and 2007 in a large tertiary-care centre in Nairobi, Kenya. Molecular characterization was done using PCR and sequencing, and typing was performed using pulsed-field gel electrophoresis (PFGE). In total, 416 P. aeruginosa isolates were obtained during that period, of which 57 (13.7%) were resistant to carbapenems. All carbapenem-resistant isolates tested positive for metallo-β-lactamase (MBL) production. All MBL isolates produced VIM-2 with two types of integron structures . PFGE identified three clonally related groups of VIM-2-producing P. aeruginosa , including a pan-resistant clone that was responsible for nosocomial outbreaks during 2006 and 2007 in the intensive-care unit. These findings suggest that continuous molecular surveillance needs to be performed to monitor the spread within the hospital of this pan-resistant strain. This study is the first report of VIM-2-producing P. aeruginosa from the African continent.  相似文献   

14.
The recently described genus Pandoraea contains five named species (Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis) and four unnamed genomospecies. Pandoraea spp. have mainly been recovered from the respiratory tracts of cystic fibrosis (CF) patients. Accurate genus- and species-level identification by routine clinical microbiology methods is difficult, and differentiation from Burkholderia cepacia complex organisms may be especially problematic. This can have important consequences for the management of CF patients. On the basis of 16S ribosomal DNA sequences, PCR assays for the identification of Pandoraea spp. were developed. A first PCR assay was developed for the identification of Pandoraea isolates to the genus level. PCR assays for the identification of P. apista and P. pulmonicola as a group, P. pnomenusa, P. sputorum, and P. norimbergensis were also developed. All five assays were evaluated with a panel of 123 bacterial isolates that included 69 Pandoraea sp. strains, 24 B. cepacia complex strains, 6 Burkholderia gladioli strains, 9 Ralstonia sp. strains, 5 Alcaligenes xylosoxidans strains, 5 Stenotrophomonas maltophilia strains, and 5 Pseudomonas aeruginosa strains. The use of these PCR assays facilitates the identification of Pandoraea spp. and avoids the misidentification of a Pandoraea sp. as a B. cepacia complex isolate.  相似文献   

15.
We used capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) analysis of PCR-amplified 16S rRNA gene fragments for rapid identification of Pseudomonas aeruginosa and other gram-negative nonfermenting bacilli isolated from patients with cystic fibrosis (CF). Target sequences were amplified by using forward and reverse primers labeled with various fluorescent dyes. The labeled PCR products were denatured by heating and separated by capillary gel electrophoresis with an automated DNA sequencer. Data were analyzed with GeneScan 672 software. This program made it possible to control lane-to-lane variability by standardizing the peak positions relative to internal DNA size markers. Thirty-four reference strains belonging to the genera Pseudomonas, Brevundimonas, Burkholderia, Comamonas, Ralstonia, Stenotrophomonas, and Alcaligenes were tested with primer sets spanning 16S rRNA gene regions with various degrees of polymorphism. The best results were obtained with the primer set P11P-P13P, which spans a moderately polymorphic region (Escherichia coli 16S rRNA positions 1173 to 1389 [M. N. Widjojoatmodjo, A. C. Fluit, and J. Verhoef, J. Clin. Microbiol. 32:3002-3007, 1994]). This primer set differentiated the main CF pathogens from closely related species but did not distinguish P. aeruginosa from Pseudomonas alcaligenes-Pseudomonas pseudoalcaligenes and Alcaligenes xylosoxidans from Alcaligenes denitrificans. Two hundred seven CF clinical isolates (153 of P. aeruginosa, 26 of Stenotrophomonas maltophilia, 15 of Burkholderia spp., and 13 of A. xylosoxidans) were tested with P11P-P13P. The CE-SSCP patterns obtained were identical to those for the corresponding reference strains. Fluorescence-based CE-SSCP analysis is simple to use, gives highly reproducible results, and makes it possible to analyze a large number of strains. This approach is suited for the rapid identification of the main gram-negative nonfermenting bacilli encountered in CF.  相似文献   

16.
Nosocomial outbreaks caused by multidrug-resistant (MDR) Pseudomonas aeruginosa have been associated to fibrocystic patients and isolates harboring metallo-beta-lactamase (MBL) genes. Genotyping is an important tool for interpreting bacterial nosocomial outbreaks and implementing adequate control strategies. The aim of this study was to evaluate whether an outbreak of MDR P. aeruginosa occurring in different hospitals was due to a unique clone or independent isolates. From 2000 to 2003, 108 P. aeruginosa were recovered from colonized/infected inpatients in hospitals of S?o Luís, Maranh?o, Brazil. The susceptibility test was performed with antipseudomonal drugs, and the presence of MBL genes were verified by PCR. Isolates were genotyped by pulsed-field gel electrophoresis (PFGE). The majority of strains was multiresistant including a great number presenting the colistin-only-sensitive (COS) profile. PFGE analysis revealed 54 genotypes, with predominance of three major COS clones (A, C, and E) coexisting at different moments and hospitals. Clone A harbored the bla(SPM) gene. Eight unique genotypes also had the COS profile. Other eight MDR genotypes presented isolates with differences in resistance profiles. Here we detected, for the first time, the coexistence of COS P.aeruginosa genotypes disseminated in several hospitals during long periods, attacking patients under various clinical conditions.  相似文献   

17.
Universal primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rRNA genes (rDNAs) were used to amplify the 16S-23S rDNA internal transcribed spacers (ITS) from eight species of pseudomonads which have been associated with human infections. Amplicons from reference strains of Pseudomonas aeruginosa, Pseudomonas cepacia, Pseudomonas gladioli, Pseudomonas mallei, Pseudomonas mendocina, Pseudomonas pickettii, Pseudomonas pseudomallei, and Xanthomonas maltophilia were cloned from each species, and sequence analysis revealed a total of 19 distinct ITS regions, each defining a unique sequevar with ITS sizes ranging from 394 (P. cepacia) to 641 (P. pseudomallei) bp. Five distinct ITS sequevars in P. cepacia, four in P. mendocina, three in P. aeruginosa, two each in P. gladioli and P. pseudomallei, and one each in P. mallei, P. pickettii, and X. maltophilia were identified. With the exception of one P. cepacia ITS, all ITS regions contained potential tRNA sequences for isoleucine and/or alanine. On the basis of these ITS sequence data, species-specific oligonucleotide primers were designed to differentiate P. aeruginosa, P. cepacia, and P. pickettii. The specificities of these primers were investigated by testing 220 clinical isolates, including 101 strains of P. aeruginosa, 103 strains of P. cepacia, and 16 strains of P. pickettii, in addition to 24 American Type Culture Collection (ATCC) Pseudomonas strains. The results showed that single primer pairs directed at particular ITSs were capable of specifically identifying the ATCC reference strains and all of the clinical isolates of P. aeruginosa and P. pickettii, but this was not the case with several ITS-based primer pairs tested for P. cepacia. This pathogen, on the other hand, could be specifically identified by primer pairs directed against the 23S rDNA.  相似文献   

18.
Rapid identification of candida species by TaqMan PCR   总被引:3,自引:0,他引:3       下载免费PDF全文
AIM: To develop and evaluate a TaqMan(TM) polymerase chain reaction (PCR) for the rapid identification and speciation of candida species. METHODS: Species specific primer and probe sets were designed for the identification of Candida albicans, C. parapsilosis, C. tropicalis, C. krusei, C. kefyr, and C. glabrata from clinical isolates in a 5' exonuclease (TaqMan(TM)) assay. The probes were labelled with three fluorescent dyes to enable differentiation between species when three primer and probe sets were combined in two multiplexes. The specificity of these assays was evaluated against a range of National Collection of Pathogenic Fungi strains, clinical isolates of yeast, bacterial and viral pathogens. RESULTS: The primer and probe sets have been shown to be 100% specific for their respective species; there was no crossreaction between any set and human DNA, or extracts from other candida species, fungal, bacterial, or viral pathogens tested. Extracts from two clinical isolates, originally identified as C albicans on the basis of germ tube formation, were not amplified by any of the primer and probe sets. These isolates have been putatively re-identified as C dubliniensis after sequencing of the variable internal transcribed spacer region ITS2 and lack of growth at 45 degrees C. CONCLUSION: This TaqMan assay provides a rapid alternative to conventional culture based techniques for the identification and speciation of the most frequently isolated candida species. The simple extraction method followed by TaqMan PCR can identify the six species mentioned in four hours.  相似文献   

19.
Burkholderia gladioli colonizes the respiratory tracts of patients with cystic fibrosis and chronic granulomatous disease. However, due to the high degree of phenotypic similarity between this species and closely related species in the Burkholderia cepacia complex, accurate identification is difficult. Incorrect identification of these species may have serious repercussions for the management of patients with cystic fibrosis. To develop an accurate procedure for the identification of B. gladioli, a molecular method to discriminate between this species and other species commonly isolated from the sputa of patients with cystic fibrosis was investigated. The 23S ribosomal DNA was cloned from several clinical isolates of B. gladioli, and the nucleotide sequence was determined. Computer-assisted sequence comparisons indicated four regions of the 23S rRNA specific for this species; these regions were used to design three primer pairs for species-specific PCR. Two of the primer pairs showed 100% sensitivity and specificity for B. gladioli when tested against a panel of 47 isolates comprising 19 B. gladioli isolates and 28 isolates of 16 other bacterial species. One of the primer pairs was further assessed for species specificity by using a panel of 102 isolates obtained from the Burkholderia cepacia Research Laboratory and Repository. The species-specific PCR was positive for 70 of 74 isolates of B. gladioli and was negative for all other bacterial species examined. Overall, this primer pair displayed a sensitivity and specificity of 96% (89 of 93) and 100%, respectively. These data demonstrate the potential of species-specific PCR for the identification of B. gladioli.  相似文献   

20.
Although Pseudomonas aeruginosa chronically colonizes most older patients with cystic fibrosis (CF), bacterial features responsible for its persistence are understood poorly. We observed that many P. aeruginosa isolates from chronically colonized patients were nonmotile and resistant to phagocytosis by macrophages. P. aeruginosa isolates were collected from 20 CF patients for up to 10 years. Isolates from early colonization were highly motile and expressed both flagellin and pilin. However, many isolates from chronically colonized patients lacked flagellin expression and were nonmotile; a total of 1,030 P. aeruginosa CF isolates were examined, of which 39% were nonmotile. Moreover, sequential isolates recovered from several of the CF patients were consistently nonmotile for up to 10 years. Lack of motility was rare among environmental isolates (1.4%) and other clinical isolates (3.7%) of P. aeruginosa examined. Partial complementation of motility in nonmotile P. aeruginosa isolates was achieved by introduction of extra copies of the rpoN locus carried on plasmid pPT212, indicating that the alternate sigma factor, RpoN, may be involved in the coordinate regulation of virulence factors during CF infection. We hypothesize that the nonmotile phenotype may provide P. aeruginosa a survival advantage in chronic CF infection by enabling it to resist phagocytosis and conserve energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号