共查询到20条相似文献,搜索用时 10 毫秒
1.
Kim YS Paik SK Cho YS Shin HS Bae JY Moritani M Yoshida A Ahn DK Valtschanoff J Hwang SJ Moon C Bae YC 《The Journal of comparative neurology》2008,506(4):627-639
Trigeminal primary afferents expressing P2X(3) receptor are involved in the transmission of orofacial nociceptive information. However, little is known about their central projection pattern and ultrastructural features within the trigeminal brainstem sensory nuclei (TBSN). Here we use multiple immunofluorescence and electron microscopy to characterize the P2X(3)-immunopositive (+) neurons in the trigeminal ganglion and describe the distribution and synaptic organization of their central terminals within the rat TBSN, including nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc). In the trigeminal ganglion, P2X(3) immunoreactivity was mainly in small and medium-sized somata, but also frequently in large somata. Although most P2X(3) (+) somata costained for the nonpeptidergic marker IB4, few costained for the peptidergic marker substance P. Most P2X(3) (+) fibers in the sensory root of trigeminal ganglion (92.9%) were unmyelinated, whereas the rest were small myelinated. In the TBSN, P2X(3) immunoreactivity was dispersed in the rostral TBSN but was dense in the superficial laminae of Vc, especially in the inner lamina II. The P2X(3) (+) terminals contained numerous clear, round vesicles and sparse large, dense-core vesicles. Typically, they were presynaptic to one or two dendritic shafts and also frequently postsynaptic to axonal endings, containing pleomorphic vesicles. Such P2X(3) (+) terminals, showing glomerular shape and complex synaptic relationships, and those exhibiting axoaxonic contacts, were more frequently seen in Vp than in any other TBSN. These results suggest that orofacial nociceptive information may be transmitted via P2X(3) (+) afferents to all TBSN and that it may be processed differently in different TBSN. 相似文献
2.
Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites 总被引:19,自引:0,他引:19
The vanilloid receptor (VR1) protein functions both as a receptor for capsaicin and a transducer of noxious thermal stimuli. To determine the expression and targetting of this protein, we have generated antisera against both the amino and carboxy termini of VR1. Within the dorsal root and trigeminal ganglia of rats, VR1-immunoreactivity (VR1-ir) was restricted to small and medium sized neurons. VR1-ir was transported into both the central and peripheral processes of these primary afferent neurons, as evidenced by: (i) the presence of VR1-ir in nerve fibres and terminals in lamina I and lamina II of the superficial dorsal horn, and the association of VR1-ir with small diameter nerve fibres in the skin and cornea; (ii) the reduction of VR1-ir in the spinal cord after dorsal rhizotomy; and (iii) the accumulation of VR1-ir proximal to sciatic nerve ligation. At the ultrastructural level, VR1-ir was associated with plasma membranes of neuronal perikarya in dorsal root ganglia and nerve terminals in the dorsal horn. VR1-ir was also seen in nerve fibres and terminals in the spinal trigeminal nucleus and nucleus of the solitary tract. Within a large proportion of dorsal root ganglion neurons and the terminals of their axons, VR1-ir was colocalized with staining for the P2X3 purinoceptor, and with binding sites for the lectin IB4. Surprisingly, VR1-ir did not coexist substantially in nerve fibres and terminals that contain substance P and calcitonin gene-related peptide, suggesting complex mechanisms for the release of these neuropeptides in response to capsaicin application. 相似文献
3.
4.
Yun Sook Kim Jae Youn Son Tae Heon Kim Sang Kyoo Paik Yi Dai Koichi Noguchi Dong Kuk Ahn Yong Chul Bae 《The Journal of comparative neurology》2010,518(5):687-698
Transient receptor potential ankyrin 1 (TRPA1), responding to noxious cold and pungent compounds, is implicated in the mediation of nociception, but little is known about the processing of the TRPA1‐mediated nociceptive information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized the TRPA1‐positive (+) neurons in the trigeminal ganglion (TG) and investigated the distribution of TRPA1+ afferent fibers and their synaptic connectivity within the rat TSN and DH by using light and electron microscopic immunohistochemistry. In the TG, TRPA1 was expressed in unmyelinated and small myelinated axons and also occasionally in large myelinated axons. Many TRPA1+ neurons costained for the marker for peptidergic neurons substance P (26.8%) or the marker for nonpeptidergic neurons IB4 (44.5%). In the CNS, small numbers of axons and terminals were immunopositive for TRPA1 throughout the rostral TSN, in contrast to the dense network of positive fibers and terminals in the superficial laminae of the trigeminal caudal nucleus (Vc) and DH. The TRPA1+ terminals contained clear round vesicles, were presynaptic to one or two dendrites, and rarely participated in axoaxonic contacts, suggesting involvement in relatively simple synaptic circuitry with a small degree of synaptic divergence and little presynaptic modulation. Immunoreactivity for TRPA1 was also occasionally observed in postsynaptic dendrites. These results suggest that TRPA1‐dependent orofacial and spinal nociceptive input is processed mainly in the superficial laminae of the Vc and DH in a specific manner and may be processed differently between the rostral TSN and Vc. J. Comp. Neurol. 518:687–698, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
5.
The enzyme Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is widely distributed in the nervous system. A previous report describes immunostaining for CaMKII alpha in dorsal root ganglion (DRG) neurons. In this study, CaMKII alpha is colocalized in the rat with three putative markers of nociceptive DRG neurons, isolectin Griffonia simplicifolia (I-B4), identifying small-diameter, "peptide-poor" neurons; calcitonin gene-related peptide (CGRP), identifying " peptide-rich" neurons; or the vanilloid receptor 1 (VR1), identifying neurons activated by heat, acid, and capsaicin. Lumbar 4 and 5 DRG sections were labeled using immunofluorescence or lectin binding histochemistry, and percentages of single and double-labeled CaMKIIalpha neurons were determined. Stereological estimates of total neuron number in the L4 DRG were 13,815 +/- 2,798 and in the L5 DRG were 14,111 +/- 4,043. Percentages of single-labeled L4 DRG neurons were 41% +/- 2% CaMKII alpha, 38% +/- 3% I-B4, 44% +/- 3% CGRP, and 32% +/- 6% VR1. Percentages of single-labeled L5 DRG neurons were 44% +/- 5% CaMKII alpha, 48% +/- 2% I-B4, 41% +/- 7% CGRP, and 39% +/- 14% VR1. For L4 and L5, respectively, estimates of double-labeled CaMKII alpha neurons showed 34% +/- 2% and 38% +/- 17% labeled for I-B4, 25% +/- 14% and 19% +/- 10% labeled for CGRP, and 37% +/- 7% and 38% +/- 5% labeled for VR1. Conversely, for L4 and L5, respectively, 39% +/- 14% and 38% +/- 7% I-B4 binding neurons, 24% +/- 12% and 23% +/- 10% CGRP neurons, and 42% +/- 7% and 35% +/- 7% VR1 neurons labeled for CaMKIIalpha. The mean diameter of CaMKII alpha - labeled neurons was approximately 27 microm, confirming that this enzyme was preferentially localized in small DRG neurons. The results indicate that subpopulations of DRG neurons containing CaMKII alpha are likely to be involved in the processing of nociceptive information. Thus, this enzyme may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory neurons. 相似文献
6.
De Riu PL Russo A Pellitteri R Stanzani S Tringali G Roccazzello AM De Riu G Marongiu P Mameli O 《Experimental neurology》2008,213(1):101-107
Alpha-tyrosinated tubulin is a cytoskeletal protein that is involved in axonal growth and is considered a marker of neuronal plasticity in adult mammals. In adult rats, unilateral ablation of the left facial sensorimotor cortical areas induces degeneration of corticotrigeminal projections and marked denervation of the contralateral sensory trigeminal nuclei. Western blotting and real-time-PCR of homogenates of the contralateral trigeminal ganglion (TG) revealed consistent overexpression of growth proteins 15 days after left decortication in comparison with the ipsilateral side. Immunohistochemical analyses indicated marked overexpression of α-tyrosinated tubulin in the cells of the ganglion on the right side. Cytoskeletal changes were primarily observed in the small ganglionic neurons. Application of HRP-CT, WGA-HRP, and HRP to infraorbital nerves on both sides 15 days after left decortication showed a significant degree of terminal sprouting and neosynaptogenesis from right primary afferents at the level of the right caudalis and interpolaris trigeminal subnuclei. These observations suggest that the adaptive response of TG neurons to central deafferentation, leading to overcrowding and rearrangement of the trigeminal primary afferent terminals on V spinal subnuclei neurons, could represent the anatomical basis for distortion of facial modalities, perceived as allodynia and hyperalgesia, despite nerve integrity. 相似文献
7.
Substance P is a peptide which is found in small diameter primary afferent fibres and may have a function in nociceptive afferent transmission. In order to study the role of substance P in sensory processes in depth, we have compared the distributions of nociceptive neurones and substance P-responsive neurones with the distribution of substance P in the caudal trigeminal nucleus of the rat. It was found that substance P-like immunoreactivity was located primarily in the superficial layers of nucleus caudalis (equivalent to laminae I and II of the dorsal horn) and in more ventromedially located areas (equivalent to laminae V and VI). The distribution was found to be in good agreement with the distribution of nociceptive neurones. Iontophoretically applied substance P had predominantly excitatory actions on both nociceptive and non-nociceptive nucleus caudalis neurones, although the peptide did appear to be slightly more likely to excite nociceptive neurones. Similarly, the peptide appeared slightly more likely to be excitatory in areas of nucleus caudalis showing substance P staining, but excitations were also predominantly seen in areas containing little or no apparent substance P staining. These results are consistent with the proposed role for substance P as a nociceptive afferent neurotransmitter. However, it is also possible that the peptide performs other functions in the processing of sensory information. 相似文献
8.
Tóth A Boczán J Kedei N Lizanecz E Bagi Z Papp Z Edes I Csiba L Blumberg PM 《Brain research. Molecular brain research》2005,135(1-2):162-168
The vanilloid receptor (TRPV1 or VR1) is a molecular integrator of various painful stimuli, including capsaicin, acid, and high temperature. It can also be activated by endogenous ligands, like the cannabinoid 1 receptor (CB1) agonist anandamide. TRPV1 is well characterized at the terminals of sensory nerves involved in the pain pathway. There is also evidence that TRPV1 is expressed in the brain but little is known about its function. Here, using commercially available specific antibodies to investigate the localization of TRPV1 in the brain of the rat, we report that TRPV1 was expressed in hippocampus, cortex, cerebellum, olfactory bulb, mesencephalon and hindbrain. Immunohistochemical analyses showed high expression in the cell bodies and dendrites of neurons in the hippocampus and in the cortex. To address the question of subcellular localization, immunoelectronmicroscopy was used. TRPV1-like staining was detected in the synapses (mostly, but not exclusively in post-synaptic dendritic spines), on the end feet of astrocytes and in pericytes. In summary, TRPV1 expression shows wide distribution in the brain of the rat, being found in astrocytes and pericytes as well as in neurons. Its localization is consistent with multiple functions within the central nervous system, including the regulation of brain vasculature. 相似文献
9.
Michael A. Henry Lonnie R. Johnson Nancy Nousek-Goebl Lesnick E. Westrum 《The Journal of comparative neurology》1996,365(4):526-540
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has been implicated in the transmission and modulation of primary afferent nociceptive stimuli. In this study, we describe the light microscopic distribution of CGRP immunoreactivity (IR) within the feline trigeminal ganglion and trigeminal nucleus of normal adult subjects and in subjects 10 and 30 days following complete retrogasserian rhizotomy. Within the trigeminal ganglion of normal subjects, cell bodies and fibers showed CGRP-IR, whereas immunoreactive fibers were rare in the central root region. Within the normal spinal trigeminal and main sensory nuclei, CGRP-IR was seen to form a reproducible pattern that varied between the different nuclei. Following rhizotomy, most, but not all, of the CGRP-IR was lost from the spinal trigeminal and main sensory nuclei, except in regions where the upper cervical roots and cranial nerves VII, IX, and X project into the trigeminal nucleus. The pattern seen at 10 days contained more CGRP-IR than that seen at 30 days and suggests that degenerating fibers still show CGRP-IR. In contrast to the decrease seen in the nuclei after rhizotomy, examination of the central root that was still attached to the trigeminal ganglion showed an increase in CGRP-IR within fibers, some of which ended in growth conelike enlargements. Rhizotomy induced a dramatic increase in CGRP-IR within trigeminal motoneurons and their fibers, which was strongest 10 days after rhizotomy and weaker at 30 days, which was still stronger than normal. These results indicate that the majority of CGRP-IR found in the trigeminal nucleus originates from trigeminal primary afferents and that an upregulation of CGRP-IR occurs in trigeminal motoneurons and in regenerating fibers in the part of the central root that was still attached to the ganglion. In addition, the persistence of CGRP-IR fibers in the trigeminal nucleus provides one possible explanation for the preservation of pain in humans following trigeminal rhizotomy. © 1996 Wiley-Liss, Inc. 相似文献
10.
Hiroyuki Ichikawa Kazuo Yamashita Teruko Takano-Yamamoto Tomosada Sugimoto 《Brain research》2001,919(1):147-154
Osteopontin-immunoreactivity (OPN-ir) was examined in the oro-facial tissues and trigeminal sensory nuclei (principal sensory nucleus and spinal trigeminal nucleus) to ascertain the peripheral ending and central projection of OPN-containing primary sensory neurons in the trigeminal ganglion (TG). No staining was observed using mouse monoclonal anti-OPN antibody preabsorbed with recombinant mature OPN. OPN-immunoreactive (ir) peripheral endings were classified into two types: encapsulated and unencapsulated types. Unencapsulated endings were subdivided into two types: simple and complex types. Simple endings were characterized by the thin neurite that was usually devoid of ramification. These endings were seen in the hard plate and gingiva. The complex type was characterized by the thick ramified neurite, and observed in the vibrissa, hard palate, and molar periodontal ligament. Encapsulated endings were found only in the hard palate. The trigeminal sensory nuclei contained OPN-ir cell bodies and neuropil. The neuropil was devoid of ir in laminae I and II of the medullary dorsal horn (MDH), and had various staining intensities in other regions of the trigeminal sensory nuclei. Transection of the infraorbital and inferior alveolar nerves caused an increase of OPN-ir intensity in ipsilateral TG neurons. The staining intensity of the neuropil also increased in the trigeminal sensory nuclei ipsilateral to the neurotomy excepting laminae I and II of the MDH. The present study indicates that OPN-ir primary sensory neurons in the TG innervate encapsulated and unencapsulated corpuscular endings. Such neurons probably project their central terminals to the trigeminal sensory nuclei except for the superficial laminae of the MDH. 相似文献
11.
Yeo EJ Cho YS Paik SK Yoshida A Park MJ Ahn DK Moon C Kim YS Bae YC 《The Journal of comparative neurology》2010,518(20):4134-4146
Trigeminal primary afferents that express the transient receptor potential vanilloid 1 (TRPV1) are important for the transmission of orofacial nociception. However, little is known about how the TRPV1-mediated nociceptive information is processed at the first relay nucleus in the central nervous system (CNS). To address this issue, we studied the synaptic connectivity of TRPV1-positive (+) terminals in the rat trigeminal caudal nucleus (Vc) by using electron microscopic immunohistochemistry and analysis of serial thin sections. Whereas the large majority of TRPV1+ terminals made synaptic contacts of an asymmetric type with one or two postsynaptic dendrites, a considerable fraction also participated in complex glomerular synaptic arrangements. A few TRPV1+ terminals received axoaxonic contacts from synaptic endings that contained pleomorphic synaptic vesicles and were immunolabeled for glutamic acid decarboxylase, the synthesizing enzyme for the inhibitory neurotransmitter γ-aminobutyric acid (GABA). We classified the TRPV1+ terminals into an S-type, containing less than five dense-core vesicles (DCVs), and a DCV-type, containing five or more DCVs. The number of postsynaptic dendrites was similar between the two types of terminals; however, whereas axoaxonic contacts were frequent on the S-type, the DCV-type did not receive axoaxonic contacts. In the sensory root of the trigeminal ganglion, TRPV1+ axons were mostly unmyelinated, and a small fraction was small myelinated. These results suggest that the TRPV1-mediated nociceptive information from the orofacial region is processed in a specific manner by two distinct types of synaptic arrangements in the Vc, and that the central input of a few TRPV1+ afferents is presynaptically modulated via a GABA-mediated mechanism. 相似文献
12.
The effect of anandamide, which activates both the cannabinoid 1 (CB1) receptor and the vanilloid receptor 1 (VR1), was studied on calcitonin gene-related peptide (CGRP) release from cultured primary sensory neurons, the majority of which coexpress the CB1 receptor and VR1. Concentrations of anandamide < 1 micro m produced a small but significant CB1 receptor-mediated inhibition of basal CGRP release while higher concentrations induced VR1-mediated CGRP release. The excitatory effect of anandamide was potentiated by the CB1 receptor antagonist SR141716A. In the presence of SR141716A at concentrations < 100 nm, anandamide was equipotent with capsaicin in stimulating CGRP release. However, at higher concentrations anandamide produced more CGRP release than equimolar concentrations of capsaicin. Three and ten nanomolar anandamide inhibited the capsaicin-evoked CGRP release. In the presence of SR141716A, treatments which activated protein kinase A, protein kinase C and phospholipase C significantly potentiated the anandamide-evoked CGRP release at all anandamide concentrations. Although this potentiation was reduced when the CB1 receptor antagonist was omitted from the buffer, the CGRP release evoked by 300 nm and 1 micro m anandamide was still significantly larger than that seen with nonpotentiated cells. These data indicate that anandamide may regulate CGRP release from capsaicin-sensitive primary sensory neurons in vivo, and that the net effect of anandamide on transmitter release from capsaicin-sensitive primary sensory neurons depends on the concentration of anandamide and the state of the CB1 receptor and VR1. These findings also suggest that anandamide could be one of the molecules responsible for the development of inflammatory heat hyperalgesia. 相似文献
13.
Substance P in the cerebral vasculature: depletion by capsaicin suggests a sensory role 总被引:8,自引:0,他引:8
Substance P-like immunoreactivity (SPI) was investigated in the chicken retina by means of the indirect immunofluorescence method with flat-mounts. SPI cells were located mostly in the peripheral retinal regions, while in the central region, none or only a few cells were seen. Based upon their 3-dimensional profiles, SPI cells can be divided into two types: one type belongs to the stratified amacrine cells of the first sublayer and the other to those of the third to fifth sublayer. 相似文献
14.
Pang YW Li JL Nakamura K Wu S Kaneko T Mizuno N 《The Journal of comparative neurology》2006,498(1):129-141
The major neuronal components of the trigeminal mesencephalic nucleus (Vmes) are primary afferent neurons that convey proprioceptive information from the cranioorofacial regions. In the present study, we examined expression of vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, in the primary afferent neurons of the Vmes (Vmes neurons) in neonatal and adult rats. VGLUT1 immunoreactivity was detected in the cell bodies of Vmes neurons in neonatal rats younger than 11 days old, but not in older rats. However, in situ hybridization signals for VGLUT1 mRNA were detected in both neonatal and adult rats. No VGLUT2 immunoreactivity was detected in Vmes neurons of neonatal or adult rats. VGLUT1 immunoreactivity was also seen in the peripheral sensory endings on the equatorial regions of intrafusal fibers of muscle spindles in the masseter muscles in both neonatal and adult rats. In adult rats injected with cholera toxin B subunit (CTb) into the masseter nerve, central axon terminals of Vmes neurons were identified on masseter motoneurons within the trigeminal motor nucleus (Vm) by transganglionically and retrogradely transported CTb. VGLUT1-immunopositive axon terminals in close apposition to CTb-labeled Vm motoneurons were also detected by dual-immunofluorescence histochemistry for VGLUT1/CTb. Electron microscopy after dual immunolabeling for VGLUT1/CTb by the VGLUT1/immunoperoxidase and CTb/immunogold-silver methods further revealed synaptic contact of VGLUT1- and CTb-immunopositive axon terminals upon CTb-labeled neuronal profiles within the Vm. These data indicate that VGLUT1 is expressed in both the central axon terminals and the peripheral sensory endings of Vmes neurons, although no VGLUT1 immunoreactivity was detectable in the cell bodies of Vmes neurons in adult rats. 相似文献
15.
Ichikawa H Yabuuchi T Jin HW Terayama R Yamaai T Deguchi T Kamioka H Takano-Yamamoto T Sugimoto T 《Brain research》2006,1081(1):113-118
Immunohistochemistry for brain-derived neurotrophic factor (BDNF) was performed on the rat trigeminal ganglion (TG). The immunoreactivity (IR) was detected in 46% of TG neurons. These neurons were mostly small- or medium-sized (range, 149.7-1246.3 microm2; mean +/- SD = 373.4 +/- 151.6 microm2). A double immunofluorescence method also revealed that 54% of BDNF-immunoreactive (IR) neurons were immunoreactive for calcitonin-gene-related peptide. In addition, 93% of BDNF-IR TG neurons contained vanilloid receptor subtype 1. However, the co-expression of BDNF and vanilloid receptor 1-like receptor was very rare (less than 1%). In the trigeminal sensory nuclei, laminae II of the medullary dorsal horn was abundant in presumed BDNF-IR axon terminals. Such profiles were also detected in the dorsolateral part of the subnucleus oralis. The retrograde tracing and immunohistochemical methods demonstrated that BDNF-IR was common among cutaneous TG neurons (47%) but not tooth pulp TG neurons (13%). The present study indicates that BDNF-IR TG neurons have unmyelinated axons and project to the superficial medullary dorsal horn. It is likely that BDNF-containing neurons in both the trigeminal and spinal sensory systems have similarities in morphology and function. However, the content of BDNF in TG neurons probably depends on their peripheral targets. BDNF seems to convey nociceptive cutaneous input to the trigeminal sensory nuclei. 相似文献
16.
Srinivasan R Wolfe D Goss J Watkins S de Groat WC Sculptoreanu A Glorioso JC 《The European journal of neuroscience》2008,28(7):1241-1254
Phosphorylation of the vanilloid receptor (TRPV1) by protein kinase C epsilon (PKCepsilon) plays an important role in the development of chronic pain. Here, we employ a highly defective herpes simplex virus vector (vHDNP) that expresses dominant negative PKCepsilon (DNPKCepsilon) as a strategy to demonstrate that PKCepsilon is essential for: (i) maintenance of basal phosphorylation and normal TRPV1 responses to capsaicin (CAPS), a TRPV1 agonist and (ii) enhancement of TRPV1 responses by phorbol esters. Phorbol esters induced translocation of endogenous PKCepsilon to the plasma membrane and thereby enhanced CAPS currents. These results were extended to an in-vivo pain model in which vHDNP delivery to dorsal root ganglion neurons caused analgesia in CAPS-treated, acutely inflamed rat hind paws. These findings support the conclusion that in addition to receptor sensitization, PKCepsilon is essential for normal TRPV1 responses in vitro and in vivo. 相似文献
17.
In decerebrate—decerebellate cats, stimulation of trigeminal afferents inhibited neurons in dorsal column (DC) nuclei driven by activation of DC input and produced primary afferent depolarization in DC primary afferent terminals. This inhibition was most likely mediated by a trigeminal—brainstem—DC nuclear loop. 相似文献
18.
Expression of substance P and vanilloid receptor (VR1) in trigeminal sensory neurons projecting to the mouse nasal mucosa 总被引:9,自引:0,他引:9
Dinh QT Groneberg DA Mingomataj E Peiser C Heppt W Dinh S Arck PC Klapp BF Fischer A 《Neuropeptides》2003,37(4):245-250
Substance P and neurokinin A (NKA) have potent pro-inflammatory effects in the airways. The release of these neuropeptides from primary afferent (sensory) nerve endings to various stimuli is considered to be induced by activation of the capsaicin (vanilloid) receptor (VR1). In this study, retrograde neuronal tracing studies were combined with immunohistochemistry for VR1 and substance P to investigate the occurrence and distribution of substance P and VR1 receptor expression in mouse trigeminal neurons that were identified by retrograde labeling with Fast blue dye from the nasal mucosa. Fast blue signaling was observed in mucosa layers of the right nasal cavity and in sensory trigeminal neurons close to the division of the ophthalmic and maxillary nerve. Expression patterns of VR1 and substance P were found with different frequencies: 11.3+/-1.2% (mean+/-SEM) were immunoreactive for VR1, 4.9+/-1.1% for VR1 and SP, and 6.4+/-1.3% only for VR1 but not for SP. These VR1-positive neurons were partly binding to lectin I-B4, indicating VR1-expression in non-peptidergic upper airway C-fibers. In conclusion, based on the extent of SP and VR1 co-localization in nasal afferent neurons, the present study suggests that, following a peripheral activation of the VR1 receptor on SP afferents, there could be a triggering of SP-mediated phenomena, including those related to inflammation, such as plasma extravasation. 相似文献
19.
Schicho R Florian W Liebmann I Holzer P Lippe IT 《The European journal of neuroscience》2004,20(7):1811-1818
It is still unknown which receptors of peripheral sensory pathways encode and integrate an acid-induced nociceptive event in the gastric mucosa. The transient receptor potential vanilloid receptor 1 (TRPV1) and the acid-sensing ion channel 3 (ASIC3) are two nociception-related receptors. Here we investigated (i) to what extent these receptors are distributed in stomach-innervating neurons of dorsal root and nodose ganglia, using immunohistochemistry and retrograde tracing, and (ii) whether their expression is altered in response to a noxious acid challenge of the stomach. We also explored the presence of TRPV1 in the gastric enteric nervous system because of its possible expression by intrinsic sensory neurons. Most stomach-innervating neurons in nodose ganglia were immunoreactive for TRPV1 (80%) and ASIC3 (75%), these results being similar in the dorsal root ganglia (71 and 82%). RT-PCR and Western blotting were performed up to 6 h after oral application of 0.5 m HCl to conscious rats. TRPV1 protein was increased in dorsal root but not in nodose ganglia whereas TRPV1 and ASIC3 mRNAs remained unchanged. TRPV1 mRNA was detected in longitudinal muscle-myenteric plexus preparations of control stomachs and was not altered by the acid challenge. Combined vagotomy and ganglionectomy abolished expression of TRPV1, indicating that it may derive from an extrinsic source. In summary, noxious acid challenge of the stomach increased TRPV1 protein in spinal but not vagal or intrinsic sensory afferents. The TRPV1 receptor may be a key molecule in the transduction of acid-induced nociception of the gastric mucosa and a mediator of visceral hypersensitivity. 相似文献
20.
A combination of tracing and multiple color immunofluorescence revealed that 69% of rat dorsal root ganglion (DRG) neurons innervating the urinary bladder expressed the vanilloid receptor TRPV1. In contrast, only 32% of DRG neurons innervating the skin of the L6 dermatome expressed TRPV1. However, a similar fraction of visceral (60-62%) and of cutaneous (59-60%) TRPV1-positive DRG neurons expressed the peptidergic markers substance P and calcitonin gene-related peptide, while the fraction of TRPV1-positive neurons that was labeled by the non-peptidergic marker Isolectin B4 was 58% for cutaneous and only 24% for visceral afferents. These results underscore differences of expression of functional markers in visceral and cutaneous afferents and support different mechanisms of activation of TRPV1 in viscera and in skin. 相似文献