首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finberg KE  Whittlesey RL  Andrews NC 《Blood》2011,117(17):4590-4599
The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe(-/-) mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6(-/-) mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe(-/-) mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder.  相似文献   

2.
3.
4.
In response to iron loading, hepcidin synthesis is homeostatically increased to limit further absorption of dietary iron and its release from stores. Mutations in HFE, transferrin receptor 2 (Tfr2), hemojuvelin (HJV), or bone morphogenetic protein 6 (BMP6) prevent appropriate hepcidin response to iron, allowing increased absorption of dietary iron, and eventually iron overload. To understand the role each of these proteins plays in hepcidin regulation by iron, we analyzed hepcidin messenger RNA (mRNA) responsiveness to short and long-term iron challenge in iron-depleted Hfe, Tfr2, Hjv, and Bmp6 mutant mice. After 1-day (acute) iron challenge, Hfe(-/-) mice showed a smaller hepcidin increase than their wild-type strain-matched controls, Bmp6(-/-) mice showed nearly no increase, and Tfr2 and Hjv mutant mice showed no increase in hepcidin expression, indicating that all four proteins participate in hepcidin regulation by acute iron changes. After a 21-day (chronic) iron challenge, Hfe and Tfr2 mutant mice increased hepcidin expression to nearly wild-type levels, but a blunted increase of hepcidin was seen in Bmp6(-/-) and Hjv(-/-) mice. BMP6, whose expression is also regulated by iron, may mediate hepcidin regulation by iron stores. None of the mutant strains (except Bmp6(-/-) mice) had impaired BMP6 mRNA response to chronic iron loading. CONCLUSION: TfR2, HJV, BMP6, and, to a lesser extent, HFE are required for the hepcidin response to acute iron loading, but are partially redundant for hepcidin regulation during chronic iron loading and are not involved in the regulation of BMP6 expression. Our findings support a model in which acute increases in holotransferrin concentrations transmitted through HFE, TfR2, and HJV augment BMP receptor sensitivity to BMPs. A distinct regulatory mechanism that senses hepatic iron may modulate hepcidin response to chronic iron loading.  相似文献   

5.
6.
7.
The BMP/SMAD signalling pathway plays an important role in iron homeostasis, regulating hepcidin expression in response to body iron levels. However, the role of this pathway in the reduction in hepcidin associated with increased erythropoiesis (and secondary iron loading) is unclear. To investigate this, we established a mouse model of chronic stimulated erythropoiesis with secondary iron loading using the haemolytic agent phenylhydrazine. We then examined the expression of components of the BMP6/SMAD signalling pathway in these animals. We also examined this pathway in the Hbb(th3/+) mouse, a model of the iron loading anaemia β-thalassaemia intermedia. Increasing doses of phenylhydrazine led to a progressive increase in both liver iron levels and Bmp6 mRNA expression, but, in contrast, hepatic Hamp expression declined. The increase in Bmp6 expression was not associated with a corresponding change in the phosphorylation of hepatic SMAD1/5/8, indicating that stimulated erythropoiesis decreases the ability of BMP6 to alter SMAD phosphorylation. Increased erythropoiesis also reduces the capacity of phosphorylated SMAD (pSMAD) to induce hepcidin, as Hamp levels declined despite no changes in pSMAD1/5/8. Similar results were seen in Hbb(th3/+) mice. Thus the erythroid signal probably affects some components of BMP/SMAD signalling, but also may exert some independent effects.  相似文献   

8.
Regulation of TMPRSS6 by BMP6 and iron in human cells and mice   总被引:1,自引:0,他引:1  
Mutations in transmembrane protease, serine 6 (TMPRSS6), encoding matriptase-2, are responsible for the familial anemia disorder iron-refractory iron deficiency anemia (IRIDA). Patients with IRIDA have inappropriately elevated levels of the iron regulatory hormone hepcidin, suggesting that TMPRSS6 is involved in negatively regulating hepcidin expression. Hepcidin is positively regulated by iron via the bone morphogenetic protein (BMP)-SMAD signaling pathway. In this study, we investigated whether BMP6 and iron also regulate TMPRSS6 expression. Here we demonstrate that, in vitro, treatment with BMP6 stimulates TMPRSS6 expression at the mRNA and protein levels and leads to an increase in matriptase-2 activity. Moreover, we identify that inhibitor of DNA binding 1 is the key element of the BMP-SMAD pathway to regulate TMPRSS6 expression in response to BMP6 treatment. Finally, we show that, in mice, Tmprss6 mRNA expression is stimulated by chronic iron treatment or BMP6 injection and is blocked by injection of neutralizing antibody against BMP6. Our results indicate that BMP6 and iron not only induce hepcidin expression but also induce TMPRSS6, a negative regulator of hepcidin expression. Modulation of TMPRSS6 expression could serve as a negative feedback inhibitor to avoid excessive hepcidin increases by iron to help maintain tight homeostatic balance of systemic iron levels.  相似文献   

9.
10.
Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.  相似文献   

11.
Mutations of the HFE2 gene are linked to juvenile hemochromatosis, a severe hereditary iron overload disease caused by chronic hyperabsorption of dietary iron. HFE2 encodes hemojuvelin (Hjv), a membrane-associated bone morphogenetic protein (BMP) coreceptor that enhances expression of the liver-derived iron regulatory hormone hepcidin. Hjv is primarily expressed in skeletal muscles and at lower levels in the heart and the liver. Moreover, a soluble Hjv form circulates in plasma and is thought to act as a decoy receptor, attenuating BMP signaling to hepcidin. To better understand the regulatory function of Hjv, we generated mice with tissue-specific disruption of this protein in hepatocytes or in muscle cells. The hepatic ablation of Hjv resulted in iron overload, quantitatively comparable to that observed in ubiquitous Hjv-/- mice. Serum iron and ferritin levels, transferrin saturation, and liver iron content were significantly (P < 0.001) elevated in liver-specific Hjv-/- mice. Hepatic Hjv mRNA was undetectable, whereas hepcidin expression was markedly suppressed (12.6-fold; P < 0.001) and hepatic BMP6 mRNA up-regulated (2.4-fold; P < 0.01), as in ubiquitous Hjv-/- counterparts. By contrast, the muscle-specific disruption of Hjv was not associated with iron overload or altered hepcidin expression, suggesting that muscle Hjv mRNA is dispensable for iron metabolism. Our data do not support any significant iron-regulatory function of putative muscle-derived soluble Hjv in mice, at least under physiological conditions. CONCLUSION: The hemochromatotic phenotype of liver-specific Hjv-/- mice suggests that hepatic Hjv is necessary and sufficient to regulate hepcidin expression and control systemic iron homeostasis.  相似文献   

12.
Hepcidin is the master regulator of iron homeostasis. In the liver, iron-dependent hepcidin activation is regulated through Bmp6 and its membrane receptor hemojuvelin (Hjv), whereas, in response to iron deficiency, hepcidin repression seems to be controlled by a pathway involving the serine protease matriptase-2 (encoded by Tmprss6). To determine the relationship between Bmp6 and matriptase-2 pathways, Tmprss6(-/-) mice (characterized by increased hepcidin levels and anemia) and Bmp6(-/-) mice (exhibiting severe iron overload because of hepcidin deficiency) were intercrossed. We showed that loss of Bmp6 decreased hepcidin levels; increased hepatic iron; and, importantly, corrected hematologic abnormalities in Tmprss6(-/-) mice. This finding suggests that elevated hepcidin levels in patients with familial iron-refractory, iron-deficiency anemia are the result of excess signaling through the Bmp6/Hjv pathway.  相似文献   

13.
Lin L  Valore EV  Nemeth E  Goodnough JB  Gabayan V  Ganz T 《Blood》2007,110(6):2182-2189
The peptide hormone hepcidin is the principal regulator of systemic iron homeostasis. We examined the pathway by which iron stimulates the production of hepcidin. In humans who ingested 65 mg of iron, the increase in transferrin saturation preceded by hours the increase in urinary hepcidin excretion. Increases in urinary hepcidin concentrations were proportional to the increment in transferrin saturation. Paradoxically, in previous studies in primary hepatocytes and cell lines, hepcidin response to iron or iron transferrin was not observed. We now report that freshly isolated murine primary hepatocytes responded to holotransferrin but not apotransferrin by increasing hepcidin mRNA. Hepcidin increase was not due to contamination of the transferrin preparations by endotoxin, a potent pathologic stimulus of hepcidin synthesis. Using this culture system, we showed that holotransferrin concentrations regulate hepcidin mRNA concentrations through a hemojuvelin/BMP2/4-dependent pathway. Although BMP9 is known to be expressed in the liver and potently increased the basal concentrations of hepcidin mRNA, it did not interact with hemojuvelin, and interference with its signaling pathway did not affect iron regulation. Fresh primary hepatocytes constitute a sufficient system for the regulation of hepcidin by physiologic iron stimuli and will greatly facilitate studies of major disorders of iron homeostasis.  相似文献   

14.
The iron hormone hepcidin is inhibited by matriptase-2 (MT2), a liver serine protease encoded by the TMPRSS6 gene. Cleaving the bone morphogenetic protein (BMP) coreceptor hemojuvelin (HJV), MT2 impairs the BMP/son of mothers against decapentaplegic homologs (SMAD) signaling pathway, down-regulates hepcidin, and facilitates iron absorption. TMPRSS6 inactivation causes iron-deficiency anemia refractory to iron administration both in humans and mice. Genome-wide association studies have shown that the SNP rs855791, which causes the MT2 V736A amino acid substitution, is associated with variations of serum iron, transferrin saturation, hemoglobin, and erythrocyte traits. In the present study, we show that, in vitro, MT2 736(A) inhibits hepcidin more efficiently than 736(V). Moreover, in a genotyped population, after exclusion of samples with iron deficiency and inflammation, hepcidin, hepcidin/transferrin saturation, and hepcidin/ferritin ratios were significantly lower and iron parameters were consistently higher in homozygotes 736(A) than in 736(V). Our results indicate that rs855791 is a TMPRSS6 functional variant and strengthen the idea that even a partial inability to modulate hepcidin influences iron parameters and, indirectly, erythropoiesis.  相似文献   

15.
Iron overload induces BMP6 expression in the liver but not in the duodenum   总被引:2,自引:0,他引:2  

Background

The bone morphogenetic protein BMP6 regulates hepcidin production by the liver. However, it is not yet known whether BMP6 derives from the liver itself or from other sources such as the small intestine, as has been recently suggested. This study was aimed at investigating the source of BMP6 further.

Design and Methods

We used three different strains of mice (C57BL/6, DBA/2, and 129/Sv) with iron overload induced either by an iron-enriched diet or by inactivation of the Hfe gene. We examined Bmp6 expression at both the mRNA (by quantitative PCR) and protein (by immunohistochemistry and Western blotting analyses) levels.

Results

We showed that iron overload induces Bmp6 mRNA expression in the liver but not in the duodenum of these mice. Bmp6 is also detected by immunohistochemistry in liver tissue sections of mice with iron overload induced either by an iron-enriched diet or by inactivation of the Hfe gene, but not in liver tissue sections from iron-loaded Bmp6-deficient mice. Bmp6 in the duodenum was below immunodetection threshold, thus confirming quantitative PCR data. Lack of specificity of available antibodies together with slight heterogeneity between 129 substrains may account for the differences with previously published data.

Conclusions

Our data strongly support the importance of liver BMP6 for regulation of iron metabolism. Indeed, they demonstrate that intestinal Bmp6 expression is modulated by iron neither at the mRNA nor at the protein level.  相似文献   

16.
17.

Background

Impaired regulation of hepcidin in response to iron is the cause of genetic hemochromatosis associated with defects of HFE and transferrin receptor 2. However, the role of these proteins in the regulation of hepcidin expression is unclear.

Design and Methods

Hepcidin expression, SMAD and extracellular signal-regulated kinase (Erk) phosphorylation and furin expression were analyzed in hepatic HepG2 cells in which HFE and transferrin receptor 2 were down-regulated or expressed, or furin activity specifically inhibited. Furin expression was also analyzed in the liver of transferrin receptor 2 null mice.

Results

We showed that the silencing of HFE and transferrin receptor 2 reduced both Erk phosphorylation and furin expression, that the exogenous expression of the two enhanced the induction of phosphoErk1/2 and furin by holotransferrin, but that this did not occur when the pathogenic HFE mutant C282Y was expressed. Furin, phosphoErk1/2 and phosphoSMAD1/5/8 were down-regulated also in transferrin receptor 2-null mice. Treatment of HepG2 cells with an inhibitor of furin activity caused a strong suppression of hepcidin mRNA, probably due to the inhibition of bone morphogenic protein maturation.

Conclusions

The data indicate that transferrin receptor 2 and HFE are involved in holotransferrin-dependent signaling for the regulation of furin which involved Erk phosphorylation. Furin in turn may control hepcidin expression.  相似文献   

18.
19.
Bone morphogenetic protein (BMP) signaling induces hepatic expression of the peptide hormone hepcidin. Hepcidin reduces serum iron levels by promoting degradation of the iron exporter ferroportin. A relative deficiency of hepcidin underlies the pathophysiology of many of the genetically distinct iron overload disorders, collectively termed hereditary hemochromatosis. Conversely, chronic inflammatory conditions and neoplastic diseases can induce high hepcidin levels, leading to impaired mobilization of iron stores and the anemia of chronic disease. Two BMP type I receptors, Alk2 (Acvr1) and Alk3 (Bmpr1a), are expressed in murine hepatocytes. We report that liver-specific deletion of either Alk2 or Alk3 causes iron overload in mice. The iron overload phenotype was more marked in Alk3- than in Alk2-deficient mice, and Alk3 deficiency was associated with a nearly complete ablation of basal BMP signaling and hepcidin expression. Both Alk2 and Alk3 were required for induction of hepcidin gene expression by BMP2 in cultured hepatocytes or by iron challenge in vivo. These observations demonstrate that one type I BMP receptor, Alk3, is critically responsible for basal hepcidin expression, whereas 2 type I BMP receptors, Alk2 and Alk3, are required for regulation of hepcidin gene expression in response to iron and BMP signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号