首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
A number of protein toxins have an enzymatically active part, which is able to modify a cytosolic target. Some of these toxins, for instance ricin, Shiga toxin and cholera toxin, which we will focus on in this article, exert their effect on cells by first binding to the cell surface, then they are endocytosed, and subsequently they are transported retrogradely all the way to the ER before translocation of the enzymatically active part to the cytosol. Thus, studies of these toxins can provide information about pathways of intracellular transport. Retrograde transport to the Golgi and the ER seems to be dependent not only on different Rab and SNARE proteins, but also on cytosolic calcium, phosphatidylinositol 3-kinase and cholesterol. Comparison of the three toxins reveals differences indicating the presence of more than one pathway between early endosomes and the Golgi apparatus or, alternatively, that transport of different toxin-receptor complexes present in a certain subcompartment is differentially regulated.  相似文献   

2.
Many plant and bacterial toxins act upon cytosolic targets and must therefore penetrate a membrane barrier to function. One such class of toxins enters the cytosol after delivery to the endoplasmic reticulum (ER). These proteins, which include cholera toxin (CT), Pseudomonas aeruginosa exotoxin A (ETA), and ricin, move from the plasma membrane to the endosomes, pass through the Golgi apparatus, and travel to the ER. Translocation from the ER to the cytosol is hypothesized to involve the ER-associated degradation (ERAD) pathway. We developed a genetic strategy to assess the role of mammalian ERAD in toxin translocation. Populations of CHO cells were mutagenized and grown in the presence of two lethal toxins, ETA and ricin. Since these toxins bind to different surface receptors and attack distinct cytoplasmic targets, simultaneous acquisition of resistance to both would likely result from the disruption of a shared trafficking or translocation mechanism. Ten ETA- and ricin-resistant cell lines that displayed unselected resistance to CT and continued sensitivity to diphtheria toxin, which enters the cytosol directly from acidified endosomes, were screened for abnormalities in the processing of a known ERAD substrate, the Z form of alpha1-antitrypsin (alpha1AT-Z). Compared to the parental CHO cells, the rate of alpha1AT-Z degradation was decreased in two independent mutant cell lines. Both of these cell lines also exhibited, in comparison to the parental cells, decreased translocation and degradation of a recombinant CTA1 polypeptide. These findings demonstrated that decreased ERAD function was associated with increased cellular resistance to ER-translocating protein toxins in two independently derived mutant CHO cell lines.  相似文献   

3.
Shiga toxin (Stx) follows a complex intracellular pathway in order to kill susceptible cells. After binding to cell surface glycolipids, the toxin is internalized and trafficked in retrograde fashion to the endoplasmic reticulum (ER). From the ER lumen, the toxin must gain access to the cytoplasm, where it enzymatically inactivates the 28S rRNA, inhibiting protein synthesis. The host molecules involved in this pathway and the mechanisms utilized by the toxin to access the cytoplasm from the ER are largely unknown. We found that Stx is capable of energy-dependent transport across the ER lumen, as has recently been demonstrated for the cholera and ricin toxins. Genetic screening for molecules involved in Shiga toxin trafficking yielded a cDNA encoding a prematurely truncated protein. Characterization of this cDNA revealed that it encodes a novel Hsp40 chaperone, designated HEDJ or ERdj3, localized to the ER lumen, where it interacts with BiP, a molecule known to be involved in protein retrotranslocation out of the ER. We demonstrated that within the ER lumen Stx interacts with HEDJ and other chaperones known to be involved in retrotranslocation of proteins across the ER membrane. Moreover, sequential immunoprecipitation revealed that Shiga toxin was present in a complex that included HEDJ and Sec61, the translocon through which proteins are retrotranslocated to the cytoplasm. These findings suggest that HEDJ is a component of the ER quality control system and that Stx utilizes HEDJ and other ER-localized chaperones for transport from the ER lumen to the cytosol.  相似文献   

4.
The plant toxin ricin binds to both glycoproteins and glycolipids with terminal galactose, and the toxin will therefore be endocytosed by the different mechanisms operating in a given cell. After endocytosis the toxin is transported to the Golgi apparatus by a process that differs from the Rab9-dependent transport of mannose-6-phosphate receptors. Retrograde toxin transport from the Golgi apparatus to the endoplasmic reticulum (ER) seems to be a requirement for subsequent toxin translocation to the cytosol where the toxin inhibits protein synthesis enzymatically. By using ricin we have characterized different types of endocytosis and the transport steps used by this toxin.  相似文献   

5.
The plant toxin ricin binds to terminal galactose-containing cell-surface receptors. The toxin is endocytosed and transported to the Golgi apparatus. Recent evidence suggests that ricin binds to galactosylated calreticulin, which may carry the toxin from the Golgi apparatus to the endoplasmic reticulum (ER). From the ER, the ricin A fragment is translocated to the cytosol. Ricin is perceived to be a candidate for ER-associated degradation (ERAD) and is translocated through the Sec61p translocon to the cytosol. Part of the toxin is degraded by the proteasome, but a fraction of the ricin avoids degradation and inhibits protein synthesis by inactivating ribosomes, ultimately leading to cell death.  相似文献   

6.
The plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli is a 104-kDa autotransporter protein that exhibits proteolytic activity against the actin-binding protein alpha-fodrin. Intracellular cleavage of epithelial fodrin by Pet disrupts the actin cytoskeleton, causing both cytotoxic and enterotoxic effects. Intoxication requires the serine protease activity of Pet and toxin endocytosis from clathrin-coated pits. The additional events in the intracellular trafficking of Pet are largely uncharacterized. Here, we determined by confocal microscopy that internalized Pet is transferred from the early endosomes to the Golgi apparatus and then travels to the endoplasmic reticulum (ER). Pet associates with the Sec61p translocon before it moves into the cytosol as an intact, 104-kDa protein. This translocation process contrasts with the export of other ER-translocating toxins, in which only the catalytic A subunit of the AB toxin enters the cytosol. However, like intoxication with these AB toxins, Pet intoxication was inhibited in a subset of mutant CHO cell lines with aberrant activity in the ER-associated degradation pathway of ER-to-cytosol translocation. This is the first report which documents the cell surface-to-ER and ER-to-cytosol trafficking of a bacterial non-AB toxin.  相似文献   

7.
Shiga toxin (Stx) is a main virulence factor of Stx‐producing Escherichia coli (STEC) that contributes to diarrhea and hemorrhagic colitis and occasionally to fatal systemic complications. Therefore, the development of an antidote to neutralize Stx toxicity is urgently needed. After internalization into cells, Stx is transferred to the Golgi apparatus via a retrograde vesicular transport system. We report here that 2‐methylcoprophilinamide (M‐COPA), a compound that induces disassembly of the Golgi apparatus by inactivating ADP‐ribosylation factor 1 (Arf1), suppresses Stx‐induced apoptosis. M‐COPA inhibited transport of Stx from the plasma membrane to the Golgi apparatus and suppressed degradation of anti‐apoptotic proteins and the activation of caspases. These findings suggest that inhibition of Stx retrograde transport by M‐COPA could be a novel approach to suppress Stx toxicity.  相似文献   

8.
Infection of children with Shiga toxin (Stx)-producing Escherichia coli (STEC) is the leading cause of hemolytic-uremic syndrome (HUS). Stx2, one of two toxins liberated by the bacteria, is directly linked with HUS. We have previously shown that Stx2-specific human monoclonal antibodies (HuMAbs) protect mice and piglets from fatal systemic complications of Stx2. The present study investigates the mechanisms by which our most efficacious A- and B-subunit-specific HuMAbs neutralize the cytotoxic effects of Stx2 in vitro. Whereas the B-subunit-specific HuMAb 5H8 blocked binding of Stx2 to its receptor on the cell surface, the A-subunit-specific HuMAb 5C12 did not interfere with the toxin-receptor binding. Further investigations revealed that 5C12 did not block endocytosis of Stx2 by HeLa cells as both Stx2 and 5C12 colocalized with early endosomes. However, 5C12 blocked the retrograde transport of the toxin into the Golgi and the endoplasmic reticulum, preventing the toxin from entering the cytosol where the toxin exerts its cytotoxic effect. The endocytosed 5C12/Stx2 complexes appear to be rapidly transported to the plasma membrane and/or to the slow recycling perinuclear compartments, followed by their slow recycling to the plasma membrane, and release into the extracellular environment.  相似文献   

9.
Shiga toxin type 1 (Stx1) belongs to the Shiga family of bipartite AB toxins that inactivate eukaryotic 60S ribosomes. The A subunit of Stxs are N-glycosidases that share structural and functional features in their catalytic center and in an internal hydrophobic region that shows strong transmembrane propensity. Both features are conserved in ricin and other ribosomal inactivating proteins. During eukaryotic cell intoxication, holotoxin likely moves retrograde from the Golgi apparatus to the endoplasmic reticulum. The hydrophobic region, spanning residues I224 through N241 in the Stx1 A subunit (Stx1A), was hypothesized to participate in toxin translocation across internal target cell membranes. The TMpred computer program was used to design a series of site-specific mutations in this hydrophobic region that disrupt transmembrane propensity to various degrees. Mutations were synthesized by PCR overlap extension and confirmed by DNA sequencing. Mutants StxAF226Y, A231D, G234E, and A231D-G234E and wild-type Stx1A were expressed in Escherichia coli SY327 and purified by dye-ligand affinity chromatography. All of the mutant toxins were similar to wild-type Stx1A in enzymatic activity, as determined by inhibition of cell-free protein synthesis, and in susceptibility to trypsin digestion. Purified mutant or wild-type Stx1A combined with Stx1B subunits in vitro to form a holotoxin, as determined by native polyacrylamide gel electrophoresis immunoblotting. StxA mutant A231D-G234E, predicted to abolish transmembrane propensity, was 225-fold less cytotoxic to cultured Vero cells than were the wild-type toxin and the other mutant toxins which retained some transmembrane potential. Furthermore, compared to wild-type Stx1A, A231D-G234E Stx1A was less able to interact with synthetic lipid vesicles, as determined by analysis of tryptophan fluorescence for each toxin in the presence of increasing concentrations of lipid membrane vesicles. These results provide evidence that this conserved internal hydrophobic motif contributes to Stx1 translocation in eukaryotic cells.  相似文献   

10.
Pertussis toxin (PT) is an important virulence factor produced by Bordetella pertussis. PT holotoxin comprises one enzymatically active A subunit (S1), associated with a pentamer of B subunits. PT is an ADP-ribosyltransferase that modifies several mammalian heterotrimeric G proteins. Some bacterial toxins are believed to undergo retrograde intracellular transport through the Golgi apparatus to the endoplasmic reticulum (ER). The ER-associated degradation (ERAD) pathway involves the removal of misfolded proteins from the ER and degradation upon their return to the cytosol; this pathway may be exploited by PT and other toxins. In the cytosol, ERAD substrates are ubiquitinated at lysine residues, targeting them to the proteasome for degradation. We hypothesize that S1 avoids ubiquitination and proteasome degradation due to its lack of lysine residues. We predicted that the addition of lysine residues would reduce PT toxicity by allowing ubiquitination and degradation to occur. Variant forms of PT were engineered, replacing one, two, or three arginines with lysines in a variety of locations on S1. Several variants were identified with wild-type in vitro enzymatic activity but reduced cellular activity, consistent with our hypothesis. Significant recovery of the cellular activity of these variants was observed when CHO cells were pretreated with a proteasome inhibitor. We concluded that the replacement of arginine residues with lysine in the S1 subunit of PT renders the toxin subject to proteasomal degradation, suggesting that wild-type PT avoids proteasome degradation due to an absence of lysine residues.  相似文献   

11.
The active pool of internalized cholera toxin (CT) moves from the endosomes to the Golgi apparatus en route to the endoplasmic reticulum (ER). The catalytic CTA1 polypeptide is then translocated from the ER to the cytosol, possibly through the action of the ER-associated degradation (ERAD) pathway. Translocation was previously measured indirectly through the downstream effects of CT action. We have developed a direct biochemical assay for CTA1 translocation that is independent of toxin activity. Our assay is based upon the farnesylation of a CVIM motif-tagged CTA1 polypeptide (CTA1-CVIM) after it enters the cytosol. When expressed from a eukaryotic vector in transfected CHO cells, CTA1-CVIM was targeted to the ER, but was not secreted. Instead, it was translocated into the cytosol and degraded in a proteosome-dependent manner. Translocation occurred rapidly and was monitored by the appearance of farnesylated CTA1-CVIM in the detergent phase of cell extracts generated with Triton X-114. Detergent-phase partitioning of CTA1-CVIM resulted from the cytoplasmic addition of a 15-carbon fatty acid farnesyl moiety to the cysteine residue of the CVIM motif. Our use of the CTA1-CVIM translocation assay provided supporting evidence for the ERAD model of toxin translocation and generated new information on the timing of CTA1 translocation.  相似文献   

12.
Bacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the archetype member, we review recent advances in understanding the molecular mechanisms involved in the retrograde trafficking of AB5 toxins and highlight how these basic science advances are leading to the development of a promising new therapeutic approach based on inhibiting toxin transport.  相似文献   

13.
Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli that occasionally causes fatal systemic complications. We recently developed a tetravalent peptide (PPP-tet) that neutralizes the cytotoxicity of Stx2 using a multivalent peptide library approach. In this study, we used this technique to identify a series of tetravalent peptides that bound to Stx1, another major Stx family member, with high affinity by targeting one receptor-binding site of the B subunit. One peptide, MMA-tet, markedly inhibited Stx1 and Stx2 cytotoxicity with greater potency than PPP-tet. After forming a complex with Stx1 through its specific receptor-binding region, MMA-tet did not affect vesicular transport of the toxin to the endoplasmic reticulum but substantially rescued inhibition of the protein synthesis induced by Stx1. Oral application of MMA-tet protected mice from a fatal dose of an E. coli O157:H7 strain producing both toxins. MMA-tet may be a promising therapeutic agent against the infection.  相似文献   

14.
Analytical methodology to detect ricin and Shiga toxins (Stx) in food matrices is important for food safety and biosecurity. Monoclonal antibodies (mAbs) that bind each toxin were used for capture in sandwich enzyme-linked immunosorbent assay, and IgY polyclonal antibodies were prepared as detection antibodies. The ricin assay systems, using colorimetric or chemiluminescent substrates, detected native, but not heat-denatured ricin. The lower limit of detection (LOD) was 0.13?ng?mL?1 in milk and 0.8?ng?g?1 in ground beef. The Stx2 assay systems detected native Stx2, but not heat-denatured Stx2 or Stx1. The LOD was 0.13?ng?mL?1 in milk and 0.7?ng?g?1 in ground beef. Using a standard 96-well-plate format, the assays can detect less than 1?×?10?4 of an estimated lethal oral dose of either toxin in a serving of milk. The IgY detection antibodies for ricin were more heat-stable than mouse polyclonal anti-ricin at 65°C.  相似文献   

15.
Rapid apoptosis induced by Shiga toxin in HeLa cells   总被引:5,自引:0,他引:5       下载免费PDF全文
Apoptosis was induced rapidly in HeLa cells after exposure to bacterial Shiga toxin (Stx1 and Stx2; 10 ng/ml). Approximately 60% of HeLa cells became apoptotic within 4 h as detected by DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and electron microscopy. Stx1-induced apoptosis required enzymatic activity of the Stx1A subunit, and apoptosis was not induced by the Stx2B subunit alone or by the anti-globotriaosylceramide antibody. This activity was also inhibited by brefeldin A, indicating the need for toxin processing through the Golgi apparatus. The intracellular pathway leading to apoptosis was further defined. Exposure of HeLa cells to Stx1 activated caspases 3, 6, 8, and 9, as measured both by an enzymatic assay with synthetic substrates and by detection of proteolytically activated forms of these caspases by Western immunoblotting. Preincubation of HeLa cells with substrate inhibitors of caspases 3, 6, and 8 protected the cells against Stx1-dependent apoptosis. These results led to a more detailed examination of the mitochondrial pathway of apoptosis. Apoptosis induced by Stx1 was accompanied by damage to mitochondrial membranes, measured as a reduced mitochondrial membrane potential, and increased release of cytochrome c from mitochondria at 3 to 4 h. Bid, an endogenous protein known to permeabilize mitochondrial membranes, was activated in a Stx1-dependent manner. Caspase-8 is known to activate Bid, and a specific inhibitor of caspase-8 prevented the mitochondrial damage. Although these data suggested that caspase-8-mediated cleavage of Bid with release of cytochrome c from mitochondria and activation of caspase-9 were responsible for the apoptosis, preincubation of HeLa cells with a specific inhibitor of caspase-9 did not protect against apoptosis. These results were explained by the discovery of a simultaneous Stx1-dependent increase in endogenous XIAP, a direct inhibitor of caspase-9. We conclude that the primary pathway of Stx1-induced apoptosis and DNA fragmentation in HeLa cells is unique and includes caspases 8, 6, and 3 but is independent of events in the mitochondrial pathway.  相似文献   

16.
17.
In a previous paper, we reported that a chimeric toxin composed of the enzymatic domain of the Shiga toxin A polypeptide (StxA1) genetically fused to the human CD4 (hCD4) molecule selectively kills cells infected with human immunodeficiency virus type 1 (HIV-1). Although other hCD4-containing chimeras cytotoxic to HIV-infected cells have been developed, there is limited information regarding their receptor binding and internalization. Therefore, the goals of this study were to purify the StxA1-hCD4 fusion protein, identify the receptor(s), and investigate the cytosolic trafficking route used by the chimeric toxin. Sufficient quantities of the StxA1-hCD4 hybrid were isolated for this investigation by using the pET expression and purification system. Cos-1 cells were rendered sensitive to the StxA1-hCD4 chimera by transfection with the env gene, which encodes HIV-1 envelope glycoproteins. The entry and translocation pathway used by the StxA1-hCD4 hybrid toxin was investigated by assessing the protective capacities of chemical reagents which interfere with microfilament movement, acidification of endosomes, and the integrity of the Golgi apparatus. Our findings indicated that the chimera uses HIV-1 glycoprotein gp120, and perhaps gp41, as a receptor which directs its entry through receptor cycling. Uptake is pH independent, and the StxA1-hCD4 hybrid is apparently translocated to the Golgi complex as with other bipartite toxins.  相似文献   

18.
Transmembrane glycoproteins, synthesized at the endoplasmic reticulum (ER), generally reach the Golgi apparatus in COPII‐coated vesicles en route to the cell surface. Here, we show that the bona fide nonglycoprotein Nox5, a transmembrane superoxide‐producing NADPH oxidase, is transported to the cell surface in a manner resistant to co‐expression of Sar1 (H79G), a GTP‐fixed mutant of the small GTPase Sar1, which blocks COPII vesicle fission from the ER. In contrast, Sar1 (H79G) effectively inhibits ER‐to‐Golgi transport of glycoproteins including the Nox5‐related oxidase Nox2. The trafficking of Nox2, but not that of Nox5, is highly sensitive to over‐expression of syntaxin 5 (Stx5), a t‐SNARE required for COPII ER‐to‐Golgi transport. Thus, Nox2 and Nox5 mainly traffic via the Sar1/Stx5‐dependent and ‐independent pathways, respectively. Both participate in Nox1 trafficking, as Nox1 advances to the cell surface in two differentially N‐glycosylated forms, one complex and one high mannose, in a Sar1/Stx5‐dependent and ‐independent manner, respectively. Nox2 and Nox5 also can use both pathways: a glycosylation‐defective mutant Nox2 is weakly recruited to the plasma membrane in a less Sar1‐dependent manner; N‐glycosylated Nox5 mutants reach the cell surface in part as the complex form Sar1‐dependently, albeit mainly as the high‐mannose form in a Sar1‐independent manner.  相似文献   

19.
Internalisation of the plant toxin ricin occurs by retrograde transport which delivers the toxin to the ER where it intersects with the MHC class I system for peptide antigen display. Here, we describe the generation of an inactivated, non-toxic, ricin molecule fused to a peptide which elicits a CD8+ T-cell response in mice directed against pneumonia virus of mice, a pneumovirus related to human respiratory syncytial virus. The ricin fusion elicited a significant T-cell response when delivered by intraperitoneal inoculation in the absence of adjuvent. Challenge experiments showed that the T-cell response resulting from inoculation with the ricin-peptide fusion molecule delayed the onset of virus-induced disease.  相似文献   

20.
AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号