首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.

Aims/hypothesis

T helper type (Th) 17 cells have been shown to play important roles in mouse models of several autoimmune diseases that have been classified as Th1 diseases. In the NOD mouse, the relevance of Th1 and Th17 is controversial, because single-cytokine-deficient NOD mice develop diabetes similarly to wild-type NOD mice.

Methods

We studied the impact of IL-17/IFN-γ receptor double deficiency in NOD mice on the development of insulitis/diabetes compared with IL-17 single-deficient mice and wild-type mice by monitoring diabetes-related phenotypes. The lymphocyte phenotypes were determined by flow cytometric analysis.

Results

IL-17 single-deficient NOD mice showed delayed onset of diabetes and reduced severity of insulitis, but the cumulative incidence of longstanding diabetes in the IL-17-deficient mice was similar to that in wild-type mice. The IL-17/IFN-γ receptor double-deficient NOD mice showed an apparent decline in longstanding diabetes onset, but not in insulitis compared with that in the IL-17 single-deficient mice. We also found that double-deficient NOD mice had a severe lymphopenic phenotype and preferential increase in regulatory T cells among CD4+ T cells compared with the IL-17 single-deficient mice and wild-type NOD mice. An adoptive transfer study with CD4+CD25? T cells from young non-diabetic IL-17 single-deficient NOD mice, but not those from older mice, showed significantly delayed disease onset in immune-deficient hosts compared with the corresponding wild-type mice.

Conclusions/interpretation

These results indicate that IL-17/Th17 participates in the development of insulitis and that both IL-17 and IFN-γ signalling may synergistically contribute to the development of diabetes in NOD mice.  相似文献   

3.
IL-21 is a pleiotropic type 1 cytokine that shares the common cytokine receptor γ-chain, γ(c), with IL-2, IL-4, IL-7, IL-9, and IL-15. IL-21 is most homologous to IL-2. These cytokines are encoded by adjacent genes, but they are functionally distinct. Whereas IL-2 promotes development of regulatory T cells and confers protection from autoimmune disease, IL-21 promotes differentiation of Th17 cells and is implicated in several autoimmune diseases, including type 1 diabetes and systemic lupus erythematosus. However, the roles of IL-21 and IL-2 in CNS autoimmune diseases such as multiple sclerosis and uveitis have been controversial. Here, we generated Il21-mCherry/Il2-emGFP dual-reporter transgenic mice and showed that development of experimental autoimmune uveitis (EAU) correlated with the presence of T cells coexpressing IL-21 and IL-2 into the retina. Furthermore, Il21r(-/-) mice were more resistant to EAU development than wild-type mice, and adoptive transfer of Il21r(-/-) T cells induced much less severe EAU, underscoring the need for IL-21 in the development of this disease and suggesting that blocking IL-21/γ(c)-signaling pathways may provide a means for controlling CNS auto-inflammatory diseases.  相似文献   

4.
Correlation studies between cytokines expressed in islets and autoimmune diabetes development in NOD mice and BB rats have demonstrated that β-cell destructive insulitis is associated with increased expression of proinflammatory cytokines (IL-1, TNFα, and IFNα) and type 1 cytokines (IFNγ, TNFβ, IL-2 and IL-12), whereas non-destructive (benign) insulitis is associated with increased expression of type 2 cytokines (IL-4 and IL-10) and the type 3 cytokine (TGFβ). Cytokines (IL-1, TNFα, TNFβ and IFNγ) may be directly cytotoxic to β-cells by inducing nitric oxide and oxygen free radicals in the β-cells. In addition, cytokines may sensitize β-cells to T-cell-mediated cytotoxicity in vivo by upregulating MHC class I expression on the β-cells (an action of IFNγ), and inducing Fas (CD95) expression on β-cells (actions of IL-1, and possibly TNFα and IFNγ). Transgenic expression of cytokines in β-cells of non-diabetes-prone mice and NOD mice has suggested pathogenic roles for IFNα, IFNγ, IL-2 and IL-10 in insulin-dependent diabetes mellitus (IDDM) development, and protective roles for IL-4, IL-6 and TNFα. Systemic administrations of a wide variety of cytokines can prevent IDDM development in NOD mice and/or BB rats; however, a given cytokine may retard or accelerate IDDM development, depending on the dose and frequency of administration, and the age and the diabetes-prone animal model studied (NOD mouse or BB rat). Islet-reactive CD4+ T-cell lines and clones that adoptively transfer IDDM into young NOD mice have a Th1 phenotype (IFNγ-producing), but other islet-specific Th1 clones that produce TGFβ can adoptively transfer protection against IDDM in NOD mice. NOD mice with targeted deletions of IL-12 and IFNγ genes still develop IDDM, albeit delayed and slightly less often. In contrast, post-natal deletions of IL-12 and IFNγ, also IL-1, TNFα, IL-2, and IL-6—by systemic administrations of neutralizing antibodies, soluble receptors and receptor antagonists, and receptor-targeted cytotoxic drugs—significantly decrease IDDM incidence in NOD mice and/or BB rats. These cytokine deletion studies have provided the best evidence for pathologic roles for proinflammatory cytokines (IL-1, TNFα, and IL-6) and type 1 cytokines (IFNγ, IL-2 and IL-12) in IDDM development. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.

Aims/hypothesis

Research on the pathogenesis of type 1 diabetes relies heavily on good animal models. The aim of this work was to study the translational value of animal models of type 1 diabetes to the human situation.

Methods

We compared the four major animal models of spontaneous type 1 diabetes, namely the NOD mouse, BioBreeding (BB) rat, Komeda rat and LEW.1AR1-iddm rat, by examining the immunohistochemistry and in situ RT-PCR of immune cell infiltrate and cytokine pattern in pancreatic islets, and by comparing findings with human data.

Results

After type 1 diabetes manifestation CD8+ T cells, CD68+ macrophages and CD4+ T cells were observed as the main immune cell types with declining frequency, in infiltrated islets of all diabetic pancreases. IL-1β and TNF-α were the main proinflammatory cytokines in the immune cell infiltrate in NOD mice, BB rats and LEW.1AR1-iddm rats, as well as in humans. The Komeda rat was the exception, with IFN-γ and TNF-α being the main cytokines. In addition, IL-17 and IL-6 and the anti-inflammatory cytokines IL-4, IL-10 and IL-13 were found in some infiltrating immune cells. Apoptotic as well as proliferating beta cells were observed in infiltrated islets. In healthy pancreases no proinflammatory cytokine expression was observed.

Conclusions/interpretation

With the exception of the Komeda rat, the animal models mirror very well the situation in humans with type 1 diabetes. Thus animal models of type 1 diabetes can provide meaningful information on the disease processes in the pancreas of patients with type 1 diabetes.  相似文献   

6.

Aims/hypothesis

Recent reports indicate that B lymphocyte-induced maturation protein 1 (BLIMP-1), encoded by the Prdm1 gene, expands its control over T cells and is associated with susceptibility to colitis in mice with T cell-specific BLIMP-1 deficiency. In this study, we aimed to investigate the potential role of BLIMP-1 in regulating autoimmune diabetes and T helper type 17 (Th17) cells.

Methods

We generated T cell-specific Blimp1 (also known as Prdm1) transgenic (Tg) or conditional knockout (CKO) NOD mice, in which Blimp1 is overexpressed or deleted in T cells, respectively. By side-by-side analysing these Tg or CKO mice, we further dissected the potential mechanisms of BLIMP-1-mediated modulation on autoimmune diabetes.

Results

Overproduction of BLIMP-1 in T cells significantly attenuated insulitis and the incidence of diabetes in NOD mice. Consistent with these results, the diabetogenic effect of splenocytes was remarkably impaired in Blimp1 Tg mice. Moreover, overproduction of BLIMP-1 repressed the proliferation and activation of lymphocytes and enhanced the function of regulatory T cells (Tregs) in NOD mice. In contrast, mice lacking BLIMP-1 in T cells markedly increased Th1 and Th17 cells, and developed highly proliferative and activated lymphocytes. Strikingly, overexpansion of Th1 and Th17 cells in CKO mice was significantly reduced by introducing a Blimp1 transgene, reinforcing the emerging role of BLIMP-1 in autoimmunity.

Conclusions/interpretation

We conclude that BLIMP-1 orchestrates a T cell-specific modulation of autoimmunity by affecting lymphocyte proliferation and activation, Th1 and Th17 cell differentiation, and Treg function. Our results provide a theoretical basis for developing BLIMP-1-manipulated therapies for autoimmune diabetes.  相似文献   

7.
Type 1 diabetes in the NOD mouse is under polygenic control, with a major susceptibility gene, Idd1, in the major histocompatibility complex (MHC). To investigate the contribution of the NOD MHC to type 1 diabetes susceptibility, a B6.NOD-H-2 congenic strain, in which the NOD MHC was introgressed onto the genetic background of the C57BL/6 strain, was established. Despite possession of the diabetogenic MHC from the NOD mouse, none of the B6.NOD-H-2 mice developed type 1 diabetes, indicating that the NOD MHC alone is not sufficient for type 1 diabetes and that non-MHC genes are also necessary. One of the strongest non-MHC genes is Idd3, and Il2 which encodes interleukin 2, is a candidate gene for Idd3. To test whether a combination of the NOD MHC with the NOD allele of Il2 is sufficient for type 1 diabetes, B6.NOD-H-2 mice were crossed with C3H mice, which possess the NOD allele at Il2, and F2 mice homozygous for NOD alleles at both the MHC and Il2 were produced. None of the F2 mice developed type 1 diabetes, suggesting that NOD alleles at MHC (Idd1) and Il2 (Idd3) are not sufficient for type 1 diabetes in the NOD mouse.  相似文献   

8.
9.
Defects in lymphocyte apoptosis may lead to autoimmune disorders and contribute to the pathogenesis of type 1 diabetes. Lymphocytes of nonobese diabetic (NOD) mice, an animal model of autoimmune diabetes, have been found resistant to various apoptosis signals, including the alkylating drug cyclophosphamide. Using an F2 intercross between the apoptosis-resistant NOD mouse and the apoptosis-susceptible C57BL/6 mouse, we define a major locus controlling the apoptosis-resistance phenotype and demonstrate its linkage (logarithm of odds score = 3.9) to a group of medial markers on chromosome 1. The newly defined gene cannot be dissociated from Ctla4 and Cd28 and in fact marks a 20-centimorgan region encompassing Idd5, a previously postulated diabetes susceptibility locus. Interestingly, we find that the CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) and the CD28 costimulatory molecules are defectively expressed in NOD mice, suggesting that one or both of these molecules may be involved in the control of apoptosis resistance and, in turn, in diabetes susceptibility.  相似文献   

10.

Aims/hypothesis

Recent studies have identified carbon monoxide (CO) as a potential therapeutic molecule for the treatment of autoimmune diseases owing to its anti-inflammatory and anti-apoptotic properties. We explored the efficacy and the mechanisms of action of the CO-releasing molecule (CORM)-A1 in preclinical models of type 1 diabetes.

Methods

The impact of CORM-A1 on diabetes development was evaluated in models of spontaneous diabetes in NOD mice and in diabetes induced in C57BL/6 mice by multiple low-dose streptozotocin (MLDS). Ex vivo analysis was performed to determine the impact of CORM-A1 both on T helper (Th) cell and macrophage differentiation and on their production of soluble mediators in peripheral tissues and in infiltrates of pancreatic islets. The potential effect of CORM-A1 on cytokine-induced apoptosis in pancreatic islets or beta cells was evaluated in vitro.

Results

CORM-A1 conferred protection from diabetes in MLDS-induced mice and reduced diabetes incidence in NOD mice as confirmed by preserved insulin secretion and improved histological signs of the disease. In MLDS-challenged mice, CORM-A1 attenuated Th1, Th17, and M1 macrophage response and facilitated Th2 cell differentiation. In addition, CORM-A1 treatment in NOD mice upregulated the regulatory arm of the immune response (M2 macrophages and FoxP3+ regulatory T cells). Importantly, CORM-A1 interfered with in vitro cytokine-induced beta cell apoptosis through the reduction of cytochrome c and caspase 3 levels.

Conclusions/interpretation

The ability of CORM-A1 to protect mice from developing type 1 diabetes provides a valuable proof of concept for the potential exploitation of controlled CO delivery in clinical settings for the treatment of autoimmune diabetes.  相似文献   

11.
Interleukin 9 (IL-9) is a γc-family cytokine that is highly produced by T-helper 9 (Th9) cells and regulates a range of immune responses, including allergic inflammation. Here we show that IL-2–JAK3–STAT5 signaling is required for Th9 differentiation, with critical STAT5 binding sites in the Il9 (the gene encoding IL-9) promoter. IL-2 also inhibited B cell lymphoma 6 (BCL6) expression, and overexpression of BCL6 impaired Th9 differentiation. In contrast, IL-21 induced BCL6 and diminished IL-9 expression in wild-type but not Bcl6−/− cells, and Th9 differentiation was increased in Il21−/− and Il21r−/− T cells. Interestingly, BCL6 bound in proximity to many STAT5 and STAT6 binding sites, including at the Il9 promoter. Moreover, there was increased BCL6 and decreased STAT binding at this site in cells treated with blocking antibodies to IL-2 and the IL-2 receptor, suggesting a possible BCL6–STAT5 binding competition that influences IL-9 production. BCL6 binding was also increased when cells were Th9-differentiated in the presence of IL-21. Thus, our data reveal not only direct IL-2 effects via STAT5 at the Il9 gene, but also opposing actions of IL-2 and IL-21 on BCL6 expression, with increased BCL6 expression inhibiting IL-9 production. These data suggest a model in which increasing BCL6 expression decreases efficient Th9 differentiation, indicating possible distinctive approaches for controlling this process.T cells can differentiate into an array of specialized T-helper populations, including Th1 cells, which mediate antiviral responses; Th2 cells, which mediate host defense to parasites and allergic inflammation; and Th17 cells, which are involved in inflammatory processes and diseases such as psoriasis and inflammatory bowel disease (15). Th9 cells are a population of cells differentiated in the presence of IL-4 and TGF-β to secrete IL-9 and mediate allergic inflammation and immunity to intestinal parasites (69). The IL-9 receptor consists of IL-9R and the common cytokine receptor γ chain, γc, which is shared by the receptors for IL-2, IL-4, IL-7, IL-15, and IL-21 (10) and mutated in humans with X-linked severe combined immunodeficiency (11). IL-9R is broadly expressed, including on hematopoietic progenitors, mast cells, macrophages, dendritic cells, B cells, airway epithelial cells, immature neurons, eosinophils, natural killer T (NKT) cells, natural killer (NK) cells, Th9 cells, Th17 cells, and Treg cells (69, 12, 13). This distribution helps to explain diverse actions of IL-9. IL-9 increases CD4+ T-cell growth, IgE production by B cells, Treg function, Th17 differentiation, mast cell growth and survival, expression of FcεR1α, production of IL-6 by mast cells, and the maturation of hematopoietic progenitor cells (8, 9, 13). IL-9 also induces the production of IL-8, IL-13, and eotaxin by airway smooth muscle cells and goblet cell metaplasia in airway epithelial cells (14). Recently, IL-9–producing cells have also been shown to exhibit robust antitumor immunity for melanoma (15, 16).Like IL-9, IL-2 is a type 1 four α-helical bundle cytokine produced primarily by CD4+ T cells following antigen activation (10, 17). IL-2 signals via intermediate or high-affinity receptors containing IL-2Rβ and the common cytokine receptor γ chain, γc. IL-2 augments Th1 and Th2 differentiation but inhibits Th17 and TFH differentiation (1823), and interestingly is known to be important for IL-9 production (24, 25), but how IL-2 regulates Th9 differentiation and IL-9 production remains unclear.Here we provide evidence for a direct role for the IL-2–JAK3–STAT5 signaling pathway in regulating Th9 differentiation. We also found that IL-2 and IL-21 have opposing roles in Th9 differentiation, with IL-2 promoting and IL-21 inhibiting formation of these cells, inversely correlating with their differential regulation of BCL6 expression. We also demonstrate that BCL6 binds to the STAT5 and STAT6 binding region at the Il9 locus, suggesting possible competitive binding among these factors and consistent with direct regulation of the Il9 gene by BCL6. Collectively, our results support a model in which there is an inverse relationship between BCL6 expression and Th9 differentiation, with cross-regulatory effects of IL-2 and IL-21.  相似文献   

12.
Summary The macrophage product interleukin (IL)-12 is known to drive Th1 reactions in physiological and pathological immune responses. Here we report that treatment with the homodimeric IL-12p40 subunit, an antagonist of the bioactive IL-12p35/p40 heterodimer, suppresses diabetes development in cyclophosphamide-injected NOD mice. Female mice of 70 days old received cyclophosphamide (250 mg/kg) to accelerate and synchronize diabetes development, and daily injections of 1 μg IL-12(p40)2. While there was no delay of the first diabetes cases, the incidence of overt diabetes was significantly decreased in treated mice (46 vs 23 %, p < 0.05). Analysis of mRNA expression in the pancreas showed that administration of the IL-12 antagonist had dampened interferon-gamma gene expression, decreased the ratio of interferon-gamma/IL-10 mRNA levels and in parallel suppressed the expression of the inducible nitric oxide synthase. At the same time intra-islet infiltration was significantly decreased (p < 0.001). Interestingly, the administration of IL-12(p40)2 also affected IL-12 gene expression, by downregulation of p35 mRNA. We conclude that IL-12 p40 homodimer suppresses diabetes development in the NOD mouse by dampening islet inflammation via selective downregulation of Th1 type responses. The naturally occurring IL-12 antagonist IL-12(p40)2 represents a new and specific Th1 directed approach to prevent autoimmune diabetes. [Diabetologia (1997) 40: 641–646] Received: 7 January 1997 and in revised form: 10 March 1997  相似文献   

13.
Endogenous purines including inosine have been shown to exert immunomodulatory and anti-inflammatory effects in a variety of disease models. The dosage of inosine required for protection is very high because of the rapid metabolism of inosine in vivo. The aim of this study was to determine whether a metabolic-resistant purine analogue, INO-2002, exerts anti-inflammatory effects in two animal models of type I diabetes. Type I diabetes was induced chemically with streptozotocin or genetically using the non-obese diabetic (NOD) female mouse model. Mice were treated with INO-2002 or inosine as required at 30, 100, or 200 mg/kg per day, while blood glucose and diabetes incidence were monitored. The effect of INO-2002 on the pancreatic cytokine profile was also determined. INO-2002 reduced both the hyperglycaemia and incidence of diabetes in both streptozotocin-induced and spontaneous diabetes in NOD mice. INO-2002 proved to be more effective in protecting against diabetes than the naturally occurring purine, inosine, when administered at the same dose. INO-2002 treatment decreased pancreatic levels of interleukin (IL)-12 and tumour necrosis factor-alpha, while increasing levels of IL-4 and IL-10. INO-2002 also reduced pancreatic levels of the chemokine MIP-1 alpha. The inosine analogue, INO-2002, was protected more effectively than the naturally occurring purine, inosine, against development of diabetes in two separate animal models. INO-2002 exerts protective effects by changing the pancreatic cytokine expression from a destructive Th1 to a protective Th2 profile. The use of analogues of inosine such as INO-2002 should be considered as a potential preventative therapy in individuals susceptible to developing type I diabetes.  相似文献   

14.
Summary Oral administration of insulin suppresses the development of diabetes in nonobese diabetic (NOD) mice and deviates the cytokine balance in the islets of Langerhans from a Th1 to a Th2 type cytokine pattern. However, the effect of oral insulin is limited and disease suppression is limited to a narrow dose range. Therefore we tried to improve the outcome of suboptimal insulin dosing by bacterial adjuvant. Mice treated with a suboptimal dose of oral insulin showed no change in diabetes incidence although a shift from Th1 towards Th2 cytokine expression occurred in inflamed islets. Significant suppression of diabetes development was only seen in NOD mice receiving both, insulin and the bacterial preparation OM-89 as adjuvant. OM-89 is a protein extract of Escherichia coli, with nonspecific immunostimulatory properties. Potentiation of the effect of oral insulin by the adjuvant was associated with upregulation of interleukin (IL)-4 Th2 cells in infiltrated islets and sustained local IL-2 gene expression. RT PCR analyses of cytokine expression in the gut showed a clear deviation to Th2 type reactivity and downregulation of inducible nitric oxide (NO) synthase (iNOS) expression by the bacterial adjuvant but not by oral insulin alone. Since macrophages are the primary target cells of adjuvant action we tested its effect on mouse macrophages in vitro. Treatment with OM-89 induced transient release of tumour necrosis factor alpha and nitrite but rendered macrophages refractory to restimulation by the potent macrophage activator lipopolysaccharide. In conclusion, the protective effect of oral insulin can be potentiated by pretreatment with the bacterial adjuvant OM-89. This effect correlates with enhanced Th2 cytokine and decreased iNOS gene expression in the gut, probably due to the downregulation of proinflammatory mediators by exposure to the adjuvant. [Diabetologia (1997) 40: 902–909] Received: 28 January 1997 and in revised form 16 April 1997  相似文献   

15.
Iodine-induced experimental autoimmune thyroiditis in the nonobese diabetic (NOD)-H2h4 mouse is a prototype of animal models of Hashimoto's thyroiditis in humans. Recent studies have shown the resistance to thyroiditis of NOD-H2h4 mice genetically deficient for either IL-17 or interferon (IFN)-γ, implicating both of T helper type 1 (Th1) and Th17 immune responses in disease pathogenesis. However, we hypothesized that robust induction of a single arm of effector T cells (either Th1 or Th17) might be sufficient for inducing thyroiditis in NOD-H2h4 mice. To address this hypothesis, enhanced immune responses consisting of either Th1 or Th17 were induced by anti-CD25 antibody-mediated depletion of regulatory T cells (Treg) in thyroiditis-resistant IL-17 knockout (KO) or IFN-γ receptor (IFN-γR) KO, respectively, NOD-H2h4 mice. Depletion of Treg in IL-17 KO mice (i.e. Th1 enhancement) elicited antithyroglobulin autoantibodies and thyroiditis. Immunohistochemical analysis of the thyroid glands revealed the similar intrathyroidal lymphocyte infiltration patterns, with CD4+ T and CD19+ B cells being dominant between the wild-type and Treg-depleted IL-17 KO mice. In contrast, Treg-depleted IFN-γR KO mice remained thyroiditis resistant. Intracellular cytokine staining assays showed differentiation of Th1 cells in IL-17 KO mice but not of Th17 cells in IFN-γR KO mice. Our findings demonstrate that a robust Th1 immune response can by itself induce thyroiditis in otherwise thyroiditis-resistant IL-17 KO mice. Thus, unlike Th17 cells in IFN-γR KO mice, Th1 cells enhanced by Treg depletion can be sustained and induce thyroiditis.  相似文献   

16.
17.
Interleukin (IL)-10 is an immunoregulatory cytokine that is produced by diverse cell populations. Studies in mice suggest that the cellular source of IL-10 is a key determinant in various disease pathologies, yet little is known regarding the control of tissue-specific human IL-10 expression. To assess cell type-specific human IL-10 regulation, we created a human IL-10 transgenic mouse with a bacterial artificial chromosome (hIL10BAC) in which the IL10 gene is positioned centrally. Since human IL-10 is biologically active in the mouse, we could examine the in vivo capacity of tissue-specific human IL-10 expression to recapitulate IL-10-dependent phenotypes by reconstituting Il10−/− mice (Il10−/−/hIL10BAC). In response to LPS, Il10−/−/hIL10BAC mice proficiently regulate IL-10-target genes and normalize sensitivity to LPS toxicity via faithful human IL-10 expression from macrophages and dendritic cells. However, in the Leishmania donovani model of pathogen persistence, Il10−/−/hIL10BAC mice did not develop the characteristic IL-10+IFN-γ+CD4 T cell subset thought to mediate persistence and, like Il10−/− mice, cleared the parasites. Furthermore, the IL-10-promoting cytokine IL-27 failed to regulate transgenic human IL-10 production in CD4+ T cells in vitro which together suggests that the hIL10BAC encodes for weak T cell-specific IL-10 expression. Thus, the hIL10BAC mouse is a model of human gene structure and function revealing tissue-specific regulatory requirements for IL-10 expression which impacts disease outcomes.  相似文献   

18.
Hoyer KK  Kuswanto WF  Gallo E  Abbas AK 《Blood》2009,113(2):389-395
Imbalance of T-helper cell (Th) differentiation and subsequent cytokine dysregulation is implicated in inflammatory and autoimmune diseases. In particular, 2 cytokines produced by different Th cell populations, interferon-gamma (IFN-gamma) and interleukin-17 (IL-17), have been shown to play a critical role in autoimmunity. We have examined the roles of these cytokines in a mouse model of systemic autoimmunity resulting from the deletion of IL-2 in which autoimmune hemolytic anemia (AIHA) is a prominent feature. We demonstrate that, in IL-2-knockout (KO) BALB/c mice, elimination of the Th1 cytokine, IFN-gamma, delays the development of AIHA. Further, CD4(+) T cells from IL-2/IFN-gamma-KO mice produce elevated levels of IL-17 compared with wild-type (WT) and IL-2-KO, and these mice eventually develop intestinal inflammation. In contrast, elimination of the Th17 cytokine, IL-17, from IL-2-KO mice fails to suppress early acute AIHA development. These results suggest that in a systemic autoimmune disease with multiple manifestations, Th1 cells drive the early autoantibody response and IL-17-producing cells may be responsible for the more chronic tissue inflammation.  相似文献   

19.

Aims/hypothesis

The relative contribution of T helper (Th)1 and Th17 cells in graft rejection is inconclusive, on the basis of evidence provided by different T cell-related cytokine-deficient animal models and graft types.

Methods

We used novel antigen-presenting-cell-specific Il-12p35 (also known as Il12a)-knockout (KO), IL-23p19-knockdown (KD) and IL-27p28-KD strategies to investigate T cell differentiation in islet graft rejection.

Results

In vitro dendritic cell–T cell coculture experiments revealed that dendritic cells from Il-12p35-KO and IL-23p19-KD mice showed reduced ability to stimulate IFN-γ and IL-17 production in T cells, respectively. To further explore the T cell responses in islet graft rejection, we transplanted islets into streptozotocin-induced diabetic NOD/severe combined immunodeficiency (SCID) recipient mice with IL-12-, IL-23-, or IL-27-deficient backgrounds and then challenged them with NOD.BDC2.5 T cells. The survival of islet grafts was significantly prolonged in Il-12p35-KO and IL-23p19-KD recipients compared with the control recipients. T cell infiltrations and Th1 cell populations were also decreased in the grafts, correlating with prolonged graft survival.

Conclusions/interpretation

Our results suggest that IL-12 and IL-23 promote and/or maintain Th1 cell-mediated islet graft rejection. Thus, blockade of IL-12 and IL-23 might act as therapeutic strategies for reducing rejection responses.
  相似文献   

20.
Yang ZD  Chen M  Wu R  McDuffie M  Nadler JL 《Diabetologia》2002,45(9):1307-1314
AIMS/HYPOTHESIS: Pro-inflammatory cytokines are increased during the active stages of Type I (insulin-dependent) diabetes mellitus. The aim of this study was to investigate the applicability of using a new anti-inflammatory compound, Lisofylline, to prevent diabetes in non-obese diabetic (NOD) mice. Lisofylline has previously been shown to block Th1 cell differentiation and to reduce IL-1 beta-induced dysfunction in rat islets. METHODS: Lisofylline was added to isolated NOD islets in vitro, with or without IL-1 beta. Insulin secretion and DNA damage of the islets was assessed. Lisofylline was administered to female non-obese diabetic mice starting at 4, 7 and 17 weeks of age for 3 weeks. Cytokines and blood glucose concentrations were monitored. Histology and immunohistochemistry were carried out in pancreatic sections. Splenocytes isolated from donor mice were intravenously injected into immunodeficient NOD (NOD.scid) mice. RESULTS: In vitro, Lisofylline preserved beta-cell insulin secretion and inhibited DNA damage of islets in the presence of IL-1 beta. In vivo, Lisofylline suppressed IFN-gamma production, reduced the onset of insulitis and diabetes, and inhibited diabetes after transfer of splenocytes from Lisofylline-treated donors to NOD.scid recipients. However, cotransfer of splenocytes from both Lisofylline-treated and diabetic NOD donors did not suppress diabetes in recipient mice. CONCLUSION/INTERPRETATION: Lisofylline prevents the onset of autoimmune diabetes in NOD mice by a mechanism that does not seem to enhance the function of regulatory T cells, but could be associated with suppression of proinflammatory cytokines and reduction of cellular infiltration in islets. This study suggests that Lisofylline could have therapeutic benefits in preventing the onset of Type I diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号