首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 通过螺旋断层放疗系统一系列调强放疗验证方法的研究,探讨其调强放疗的质量保证验证方法是否可行.方法 采用断层放疗计划系统进行调强放疗计划设计.为实现其剂量验证,笔者采用圆柱形固体水模体、0.056cm3 AISL电离室及EDR2胶片来实现对计划进行绝对剂量及相对剂量验证.将剂最胶片和电离室分别置于模体中,调用患者治疗计划束流数据对模体进行模拟照射;由此得出轴向截面上的等剂量分布和点绝对剂量,与计划模体的等剂量曲线及计算剂量结果进行比对.束流照射前,利用调强放疗兆伏特CT对摆位模体实行图像引导,与计划系统中模体千伏特CT图像进行配准比较,实现验证模体摆位准确性.结果 轴向测得注量分布与断层放疗计划系统计算结果相一致,测量点绝对剂量测量的结果与计划系统的计算误差均在±3%以内.测量模体的摆位误差基本可保持在1mm以内,但由于床从摆位虚拟中心到束流中心之间存在垂直下降2mm的系统误差,需要在模体或患者摆位中予以考虑.结论 3个月临床实践证明断层放疗的调强放疗所采用上述质量保证措施是切实可行的,建立了其质最保证体系.  相似文献   

2.
Helical tomotherapy is an innovative means of delivering intensity-modulated radiation therapy (IMRT) using a device that merges features of a linear accelerator and a helical computed tomography (CT) scanner. The tomotherapy unit can generate CT images from the megavoltage radiation it uses for treatment as often as needed during a course of radiation therapy. These megavoltage CT (MVCT) images offer verification of patient position prior to and potentially during radiation therapy, and provide considerably more anatomical detail than the conventional radiation therapy port films used for patient set-up verification. Also, MVCT imaging may enable reconstruction of the radiation dose delivered, thereby providing unprecedented verification of the actual treatment. These key features of helical tomotherapy distinguish it from other IMRT approaches. We report results from a pilot feasibility trial of 10 patients with non-small-cell lung cancer (NSCLC) on whom we obtained MVCT images using a prototype helical tomotherapy system. All patients underwent conventional CT imaging for radiation therapy treatment planning. Specific aims were to subjectively compare MVCT and conventional CT images and then to objectively compare the 2 modalities by contouring tumors and performing a volumetric comparison. Seven patients had disease located primarily in the lung parenchyma, 2 primarily in the mediastinum, and 1 in both. When evaluated by location, all 7 patients with lesions primarily in the lung parenchyma had subjectively high-quality MVCT images. Objectively, the volumetric agreement between conventional and MVCT for parenchymal lesions was excellent in 5 of the 7 patients. Megavoltage CT imaging via the helical tomotherapy prototype provided adequate information for use in verification of patient position and dose reconstruction for lesions within the pulmonary parenchyma, but presently appears suboptimal for primarily mediastinal disease. Further studies are ongoing to optimize MVCT imaging and better define its utility in patients with NSCLC.  相似文献   

3.

Background and purpose

IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this could be achieved using a dose reconstruction method from 2D detector array measurements as available in the COMPASS system (IBA Dosimetry). The first step in the clinical introduction of this system instead of the currently used film QA procedures is to test the reliability of the dose reconstruction. In this paper we investigated the validation of the method in a homogeneous phantom with the film QA procedure as a reference. We tested whether COMPASS QA results correctly identified treatment plans that did or did not fulfil QA requirements in head and neck (H&N) IMRT.

Materials and methods

A total number of 24 treatments were selected from an existing database with more than 100 film based H&N IMRT QA results. The QA results were classified as either good, just acceptable or clinically rejected (mean gamma index <0.4, 0.4-0.5 or >0.5, respectively with 3%/3 mm criteria). Film QA was repeated and compared to COMPASS QA with a MatriXX detector measurement performed on the same day.

Results

Good agreement was found between COMPASS reconstructed dose and film measured dose in a phantom (mean gamma 0.83 ± 0.09, 1SD with 1%/1 mm criteria, 0.33 ± 0.04 with 3%/3 mm criteria). COMPASS QA results correlated well with film QA, identifying the same patients with less good QA results. Repeated measurements with film and COMPASS showed changes in delivery after a modified MLC calibration, also visible in a standard MLC check in COMPASS. The time required for QA reduced by half by using COMPASS instead of film.

Conclusions

Agreement of COMPASS QA results with film based QA supports its clinical introduction for a phantom geometry. A standard MLC calibration check is sensitive to <1 mm changes that could be significant in H&N IMRT. These findings offer opportunities to further investigate the method based on a 2D detector array to 3D dose reconstruction in a patient anatomy.  相似文献   

4.
5.
目的:利用0.13cc电离室对头颈部肿瘤调强适形放射治疗(IMRT)计划进行剂量学验证.方法:将20例头颈部肿瘤患者的IMRT计划分别移植到经过CT扫描的调强体模,生成验证计划,将0.13cc电离室放置到调强体模中在加速器下执行验证计划,在治疗计划系统中算出电离室所在区域的吸收剂量为计划剂量,按验证计划照射测量到的电离室吸收剂量为实测剂量,将二者进行比较得出误差.相对误差=(计划剂量-实测剂量)/实测剂量.百分误差超过±5%,说明计划在执行中剂量误差过大,计划需要修正.结果:20例患者中有17例患者验证的误差在±5%以内,表明计划通过;有3例患者误差超过±5%以内,计划需重新修改,计划通过率为85%.结论:剂量学验证确定IMRT治疗剂量的置信度,保证治疗计划的准确实施,提供了临床评价治疗计划的依据.  相似文献   

6.
目的 比较EDR2胶片与二维电离室阵列在螺旋断层治疗(HT)计划质量保证过程中的剂量学特性,并分析测量方法间的可能差异.方法 采用IBA公司I′mRT MatriXX二维电离室阵列其相配套MULTICube等效固体水模体,同时夹放EDR2胶片对15例患者HT计划实施剂量学验证,分别实行轴位和纵向摆位测量以获取模体冠、矢状面剂量分布.照后将两种方法所测得的剂量分布与其对应模体计划中计算结果进行比对,以γ分析法(3 mm/3%)评估验证情况及实施效率.结果 15例患者冠状面、矢状面二维电离室阵列和EDR2胶片测量的γ≤1平均通过率分别为97.00%±1.56%和95.98%±2.52%(t=-2.22,P=0.043)、98.28%±1.55%和95.42%±1.99%(t=0.75,P=0.464);其中>90%、>95%通过率比例分别为93.3%、66.7%.两种方法测量所得剂量分布与计算结果在相同平面的几何分布均有较好的符合度,且亦存在一定相关性(r=0.14,P=0.001).结论 日常HT质量保证中二维电离室阵列可有效替代胶片和电离室测量,而胶片验证作为"金标准"为定期相互比对提供了可能.
Abstract:
Objective The aim of this work is to compare the performances of EDR2 film dosimetry with two-dimensional ion chamber array (2DICA) in quality assurance (QA) procedures and to investigate the origin of possible discrepancies between the two methods.Methods A 2DICA, I′mRT MatriXX and MULTICube equivalent solid water phantom from IBA Company were used to verify the dose distribution of 15 tomotherapy plan cases.The combined phantom which includes EDR2 film on the array was set up to measure the dose distribution from coronal and sagittal orientations.After the irradiation, the dose distributions of 2DICA and film were compared with those calculated in the planning system for verification.The results and efficiency were evaluated independently in the two methods.Results The mean number of points satifying γ parameter ≤1 in the coronal and sagittal planes was 97.00%±1.56%& 95.98%±2.52%(t=-2.22,P=0.043) and 98.28%±1.55%& 95.42%±1.99%(t=0.75,P=0.464) of the 15 cases respectively for 2DICA and EDR2 film.The ratio of more than 90% and 95% were 93.3% and 66.7%.The results we presented show a very good agreement between the two methods when used to assess the dose distribution between calculated and measured doses,and a certain degree of correlation (r=0.14,P=0.001).Conclusions The 2DICA may effectively replace both film and ion chamber dosimetry in routine IMRT QA.The good agreement between 2DICA and EDR2 film may give a possible check regularly just as a gold standard.  相似文献   

7.
Image-guided IMRT is a revolutionary concept whose clinical implementation is rapidly evolving. Methods of executing beam intensity modulation have included individually designed compensators, static multi-leaf collimators (MLC), dynamic MLC, and sequential (serial) tomotherapy. We have developed helical tomotherapy as an innovative solution to overcome some of the limitations of other IMRT systems. The unique physical design of helical tomotherapy allows the realization of the concepts of adaptive radiotherapy and conformal avoidance. In principle, these advances should improve normal tissue sparing and permit dose reconstruction and verification, thereby allowing significant biologically effective dose escalation. Recent radiobiological findings can be translated into altered fractionation schemes that aim to improve the local control and long-term survival. This strategy is being tested at the University of Wisconsin using helical tomotherapy with its highly precise delivery and verification system along with meticulous and practical forms of immobilization. Innovative techniques such optical guidance, respiratory gating, and ultrasound assessments are being designed and tailored for helical tomotherapy use. The intrinsic capability of helical tomotherapy for megavoltage CT (MVCT) imaging for IMRT image-guidance is being optimized. The unique features of helical tomotherapy might allow implementation of image-guided IMRT that was previously impossible or impractical. Here we review the technological, physical, and radiobiological rationale for the ongoing and upcoming clinical trials that will use image-guided IMRT in the form of helical tomotherapy; and we describe our plans for testing our hypotheses in a rigorous prospective fashion.  相似文献   

8.
目的 比较髓母细胞瘤常规加速器不同三维放疗技术与断层治疗计划的剂量分布。
方法 2011年12例髓母细胞瘤患者在CT模拟分段扫描后图像耦合,分别进行7个野三维适形放疗(3DCRT)、9和13个野调强放疗(IMRT)计划[全脑全脊髓(PTV)36 Gy,后颅窝加量至54 Gy],对PTV、危及器官剂量参数进行分析并与国外断层治疗计划比较。
结果 3DCRT需设置3个中心,而IMRT只要2个中心。PTV剂量分布9个野IMRT好于3DCRT、13个野IMRT,靶区均匀性指数分别为0.93、0.82、0.89(F=6.17,P=0.02),靶区适形指数分别为0.97、 0.88、0.95(F=5.23,P=0.01)。9个野IMRT与断层治疗的剂量分布类似。
结论 常规加速器全脑全脊髓9个野IMRT可达断层治疗剂量分布且简便易行。  相似文献   

9.
10.
Purpose: We present a new technique to improve dose uniformity and potentially reduce acute toxicity with tangential whole-breast radiotherapy (RT) using intensity-modulated radiation therapy (IMRT). The technique of multiple static multileaf collimator (sMLC) segments was used to facilitate IMRT.

Methods and Materials: Ten patients with early-stage breast cancer underwent treatment planning for whole-breast RT using a new method of IMRT. The three-dimensional (3D) dose distribution was first calculated for equally weighted, open tangential fields (i.e., no blocks, no wedges). Dose calculation was corrected for density effects with the pencil-beam superposition algorithm. Separate MLC segments were constructed to conform to the beam’s-eye-view projections of the 3D isodose surfaces in 5% increments, ranging from the 120% to 100% isodose surface. Medial and lateral MLC segments that conformed to the lung tissue in the fields were added to reduce transmission. Using the beam-weight optimization utility of the 3D treatment planning system, the sMLC segment weights were then determined to deliver the most uniform dose to 100 reference points that were uniformly distributed throughout the breast. The accuracy of the dose calculation and resultant IMRT delivery was verified with film dosimetry performed on an anthropomorphic phantom. For each patient, the dosimetric uniformity within the breast tissue was evaluated for IMRT and two other treatment techniques. The first technique modeled conventional practice where wedges were derived manually without consideration of inhomogeneity effects (or density correction). A recalculation was performed with density correction to represent the actual dose delivered. In the second technique, the wedges were optimized using the same beam-weight optimization utility as the IMRT plan and included density correction. All dose calculations were based on the pencil-beam superposition algorithm.

Results: For the sMLC technique, treatment planning required approximately 60 min. Treatment delivery (including patient setup) required approximately 8–10 min. Film dosimetry measurements performed on an anthropomorphic phantom generally agreed with calculations to within ± 3%. Compared to the wedge techniques, IMRT with sMLC segments resulted in smaller “hot spots” and a lower maximum dose, while maintaining similar coverage of the treatment volume. A median of only 0.1% of the treatment volume received ≥ 110% of the prescribed dose when using IMRT versus 10% with standard wedges. A total of 6–8 segments were required with the majority of the dose delivered via the open segments. The addition of the lung-block segments to IMRT was of significant benefit for patients with a greater proportion of lung parenchyma within the irradiated volume. Since August 1999, 32 patients have been treated in the clinic with the IMRT technique. No patient experienced RTOG grade III or greater acute skin toxicity.

Conclusion: The use of intensity modulation with an sMLC technique for tangential breast RT is an efficient and effective method for achieving uniform dose throughout the breast. It is dosimetrically superior to the treatment techniques that employ only wedges. Preliminary findings reveal minimal or no acute skin reactions for patients with various breast sizes.  相似文献   


11.
目的 比较乳腺癌保乳术后同步推量放疗中应用常规调强放疗(IMRT)及螺旋断层放疗(HT)剂量分布的差异,为HT在乳腺癌保乳术后的临床应用提供依据。方法 随机选择10例乳腺癌保乳术后患者,统一勾画计划靶区(PTV)与原发灶靶区(PGTV)并导入HT计划系统及瓦里安Eclipse计划系统,分别设计IMRT和HT计划,处方剂量均为PTV 50Gy/25f、PGTV 60Gy/25f,通过比较靶区剂量适形度、均匀性以及心肺受照剂量来评估IMRT与HT的优劣。结果 HT计划中靶区剂量的均匀性、适形度明显优于IMRT(P<0.05),患侧肺V5、V10、V20、V30及肺平均剂量均明显低于IMRT(P<0.05),但健侧肺V5增加;心脏剂量明显降低(P<0.05)。结论 对于乳腺癌保乳术后同步推量放疗,HT与IMRT计划都可以满足临床剂量的要求,但HT计划在剂量学方面相对于IMRT计划具有优势,可以显著降低对正常器官的毒副作用。  相似文献   

12.
PURPOSE: Magnetic resonance (MR) and computed tomography (CT) image fusion with CT-based dose calculation is the gold standard for prostate treatment planning. MR and CT fusion with CT-based dose calculation has become a routine procedure for intensity-modulated radiation therapy (IMRT) treatment planning at Fox Chase Cancer Center. The use of MRI alone for treatment planning (or MRI simulation) will remove any errors associated with image fusion. Furthermore, it will reduce treatment cost by avoiding redundant CT scans and save patient, staff, and machine time. The purpose of this study is to investigate the dosimetric accuracy of MRI-based treatment planning for prostate IMRT. METHODS AND MATERIALS: A total of 30 IMRT plans for 15 patients were generated using both MRI and CT data. The MRI distortion was corrected using gradient distortion correction (GDC) software provided by the vendor (Philips Medical System, Cleveland, OH). The same internal contours were used for the paired plans. The external contours were drawn separately between CT-based and MR imaging-based plans to evaluate the effect of any residual distortions on dosimetric accuracy. The same energy, beam angles, dose constrains, and optimization parameters were used for dose calculations for each paired plans using a treatment optimization system. The resulting plans were compared in terms of isodose distributions and dose-volume histograms (DVHs). Hybrid phantom plans were generated for both the CT-based plans and the MR-based plans using the same leaf sequences and associated monitor units (MU). The physical phantom was then irradiated using the same leaf sequences to verify the dosimetry accuracy of the treatment plans. RESULTS: Our results show that dose distributions between CT-based and MRI-based plans were equally acceptable based on our clinical criteria. The absolute dose agreement for the planning target volume was within 2% between CT-based and MR-based plans and 3% between measured dose and dose predicted by the planning system in the physical phantom. CONCLUSIONS: Magnetic resonance imaging is a useful tool for radiotherapy simulation. Compared with CT-based treatment planning, MR imaging-based treatment planning meets the accuracy for dose calculation and provides consistent treatment plans for prostate IMRT. Because MR imaging-based digitally reconstructed radiographs do not provide adequate bony structure information, a technique is suggested for producing a wire-frame image that is intended to replace the traditional digitally reconstructed radiographs that are made from CT information.  相似文献   

13.
INTRODUCTION: Patients with vertebral metastasis that receive radiation therapy are typically treated to the spinal cord tolerance dose. As such, it is difficult to successfully deliver a second course of radiation therapy for patients with overlapping treatment volumes. In this study, an image-guided helical tomotherapy system was evaluated for the retreatment of previously irradiated vertebral metastasis. METHODS AND MATERIALS: Helical tomotherapy dose gradients and maximum cord doses were measured in a cylindrical phantom for geometric test cases with separations between the planning target volume (PTV) and the spinal cord organ at risk (OAR) of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm. Megavoltage computed tomography (CT) images were examined for their ability to localize spinal anatomy for positioning purposes by repeat imaging of the cervical spine in an anthropomorphic phantom. In addition to the phantom studies, 8 patients with cord compressions that had received previous radiation therapy were retreated to a mean dose of 28 Gy using conventional fractionation. RESULTS AND DISCUSSION: Megavoltage CT images were capable of positioning an anthropomorphic phantom to within +/-1.2 mm (2sigma) superior-inferiorly and within +/-0.6 mm (2sigma) anterior-posteriorly and laterally. Dose gradients of 10% per mm were measured in phantom while PTV uniformity indices of less than 11% were maintained. The calculated maximum cord dose was 25% of the prescribed dose for a 10-mm PTV-to-OAR separation and 71% of the prescribed dose for a PTV-to-OAR separation of 2 mm. Eight patients total have been treated without radiation-induced myelopathy or any other adverse effects from treatment. CONCLUSIONS: A technique has been evaluated for the retreatment of vertebral metastasis using image-guided helical tomotherapy. Phantom and patient studies indicated that a tomotherapy system is capable of delivering dose gradients of 10% per mm and positioning the patient within 1.2 mm without the use of special stereotactic immobilization.  相似文献   

14.

Background

The purpose of this study is to implement an electronic method to perform and analyze intensity-modulated radiation therapy quality assurance (IMRT QA) using an aSi megavoltage electronic portal imaging device in a network comprised of independent treatment planning, record and verify (R&V), and delivery systems.

Methods

A verification plan was generated in the treatment planning system using the actual treatment plan of a patient. After exporting the treatment fields to the R&V system, the fields were delivered in QA mode with the aSi imager deployed. The resulting dosimetric images are automatically stored in a DICOM-RT format in the delivery system treatment console computer. The relative dose density images are subsequently pushed to the R&V system. The absolute dose images are then transferred electronically from the treatment console computer to the treatment planning system and imported into the verification plan in the dosimetry work space for further analysis. Screen shots of the gamma evaluation and isodose comparison are imported into the R&V system as an electronic file (e.g. PDF) to be reviewed prior to initiation of patient treatment. A relative dose image predicted by the treatment planning system can also be sent to the R&V system to be compared with the relative dose density image measured with the aSi imager.

Results

Our department does not have integrated planning, R&V, and delivery systems. In spite of this, we are able to fully implement a paperless and filmless IMRT QA process, allowing subsequent analysis and approval to be more efficient, while the QA document is directly attached to its specific patient chart in the R&V system in electronic form. The calculated and measured relative dose images can be compared electronically within the R&V system to analyze the density differences and ensure proper dose delivery to patients.

Conclusions

In the absence of an integrated planning, verifying, and delivery system, we have shown that it is nevertheless possible to develop a completely electronic IMRT QA process.  相似文献   

15.
AimsImage-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) represent two important technical developments that will probably improve patient outcome. Helical tomotherapy, provided by the TomoTherapy HiArt? system, provides an elegant integrated solution providing both technologies, although others are available. Here we report our experience of clinical implementation of daily online IGRT and IMRT using helical tomotherapy.Materials and methodsMethods were needed to select patients who would probably benefit. Machine-specific commissioning, a quality assurance programme and patient-specific delivery quality assurance were also needed. The planning target volume dose was prescribed as the median dose, with the added criterion that the 95% isodose should cover 99% of the target volume. Although back-up plans, for delivery on conventional linear accelerators, were initially prepared, this practice was abandoned because they were used very rarely.ResultsIn the first 12 months, 114 patients were accepted for treatment, and 3343 fractions delivered. New starts averaged 2.6 per week, with an average of 17.5 fractions treated per day, and the total number capped at 22. This has subsequently been raised to 24. Of the first 100 patients, 96 were treated with radical intent. Five were considered to have been untreatable on our standard equipment. IGRT is radiographer led and all patients were imaged daily, with positional correction made before treatment, using an action level of 1 mm. A formal training programme was developed and implemented before installation. The in-room time fell significantly during the year, reflecting increasing experience and a software upgrade. More recently, after a couch upgrade in April 2009, the mean in-room time fell to 18.6 min.ConclusionsSuccessful implementation of tomotherapy was the result of careful planning and effective teamwork. Treatment, including daily image guidance, positional correction and intensity-modulated delivery, is fast and efficient, and can be integrated into routine service. This should encourage the adoption of these technologies.  相似文献   

16.
PURPOSE: To develop and implement a non-invasive immobilization system guided by a dedicated quality assurance (QA) program for dynamic intensity-modulated radiotherapy (IMRT) of intracranial and head and neck disease, with IMRT delivered using the NOMOS Corporation's Peacock System and MIMiC collimator. METHODS AND MATERIALS: Thermoplastic face masks are combined with cradle-shaped polyurethane foaming agents and a dedicated quality assurance program to create a customized headholder system (CHS). Plastic shrinkage was studied to understand its effect on immobilization. Fiducial points for computerized tomography (CT) are obtained by placing multiple dabs of barium paste on mask surfaces at intersections of laser projections used for patient positioning. Fiducial lines are drawn on the cradle along laser projections aligned with nasal surfaces. Lateral CT topograms are annotated with a crosshair indicating the origin of the treatment planning and delivery coordinate system, and with lines delineating the projections of superior-inferior field borders of the linear accelerator's secondary collimators, or with those of the fully open MIMiC. Port films exposed with and without the MIMIC are compared to annotated topograms to measure positional variance (PV) in superior-inferior (SI), right-left (RL), and anterior posterior (AP) directions. MIMiC vane patterns superposed on port films are applied to verify planned patterns. A 12-patient study of PV was performed by analyzing positions of 10 anatomic points on repeat CT topograms, plotting histograms of PV, and determining average PV. RESULTS AND DISCUSSION: A 1.5+/-0.3 mm SD shrinkage per 70 cm of thermoplastic was observed over 24 h. Average PV of 1.0+/-0.8, 1.2+/-1.1, and 1.3+/-0.8 mm were measured in SI, AP, and RL directions, respectively. Lateral port films exposed with and without the MIMiC showed PV of 0.2+/-1.3 and 0.8+/-2.2 mm in AP and SI directions. Vane patterns superimposed on port films consistently verified the planned patterns. CONCLUSION: The CHS provided adequately reproducible immobilization for dynamic IMRT, and may be applicable to decrease PV for other cranial and head and neck external beam radiation therapy.  相似文献   

17.
Purpose: To verify that optimized dose distributions provided by an intensity-modulated radiation therapy (IMRT) system are delivered accurately to human patients.

Methods and Materials: Anthropomorphic phantoms are used to measure IMRT doses. Four types of verification are developed for: I) system commissioning with beams optimized to irradiate simulated targets in phantoms, II) plans with patient-optimized beams directed to phantoms simulating the patient, III) patient–phantom hybrid plans with patient-optimized beams calculated in phantom without further optimization, and IV) in vivo measurements. Phantoms containing dosimeters are irradiated with patient-optimized beams. Films are scanned and data were analyzed with software. Percent difference between verified and planned maximum target doses is defined as “dose discrepancy” (Δvp). The frequency distribution of type II Δvp from 204 verification films of 92 IMRT patients is fit to a Gaussian. Measurements made in vivo yield discrepancies specified as Δivp, also fit to a Gaussian.

Results and Discussion: Verification methods revealed three systematic errors in plans that were corrected prior to treatment. Values of |Δvp| for verification type I are <2%. Type II verification discrepancies are characterized by a Gaussian fit with a peak 0.2% from the centroid, and 158 |Δvp| <5%. The 46 values of |Δvp| >5% arise from differences between phantom and patient geometry, and from simulation, calculation, and other errors. Values of |Δvp| for verification III are less than half of the values of |Δvp| for verification II. A Gaussian fit of Δivp from verification IV shows more discrepancy than the fit of Δvp, attributed to dose gradients in detectors, and exacerbated by immobilization uncertainty.

Conclusions: Dosimetric verification is a critical step in the quality assurance (QA) of IMRT. Hybrid Verification III is suggested as a preliminary quality standard for IMRT.  相似文献   


18.
PURPOSE: Data from the randomized Intergroup Trial 116 suggest effectiveness of adjuvant radiochemotherapy in patients with advanced gastric cancer. Late toxicity, however, especially with respect to the kidneys, may pose significant longtime problems. Intensity-modulated radiotherapy (IMRT) may reduce toxicity to organs at risk. To evaluate the relative merits of different IMRT approaches, we performed a plan comparison between a step-and-shoot class solution and an AP-PA setup, a conventional box technique and the Peacock tomotherapy approach. METHODS AND MATERIALS: Computed tomographies and structure data from 15 patients who had been treated postoperatively for advanced (T3/T4/N+) gastric cancer at our department formed the basis of our plan comparison study. For each patient data set, 5 plans or plan combinations (conventional 3D plan, AP-PA plan, step-and-shoot IMRT, tomotherapy with 1-cm or 2-cm collimation) were chosen, and evaluation was performed for a total dose of 45 Gy delivered as the median dose to the target volume for each plan or plan combination. RESULTS: Median kidney dose generated from the IMRT plans is reduced individually by >50% for the kidney with the highest exposure (usually the left kidney) from 20 to 30 Gy with conventional 3D planning down to values between 8 and 10 Gy for IMRT. On average, median dose to the right kidney is the same for the conventional box technique and IMRT (between 8 and 10 Gy) but lower for the AP-PA technique. In 3 patients, kidney dose might have been ablative for both kidneys with both the AP-PA technique and the box technique, whereas it was acceptable with IMRT. Median dose to the liver was subcritical with all modalities but lowest with AP-PA fields. Differences between step-and-shoot IMRT and tomotherapy plans are small when compared to the differences between IMRT plans and conventional conformal 3D plans. For some patients, however, their body and target diameters obviate treatment with tomotherapy. Treatment time for the step-and-shoot approach and for tomotherapy with 2-cm collimation can be kept <20 min. CONCLUSIONS: For postoperative radiotherapy of advanced gastric cancer, step-and-shoot IMRT as well as tomotherapy can deliver efficient doses to target volumes while delivering dose to the kidneys in a fashion that is different from a conventional technique and is clearly advantageous in a small number of patients. An advantage for the majority of patients is likely with the normal tissue complication probability data presented in this series, but, given the uncertainty of the reaction of the kidney to inhomogeneous dose distributions, cannot be considered unequivocal at the moment. Different technical limitations apply to the different IMRT techniques. The choice of approach is therefore determined by departmental circumstances.  相似文献   

19.
PURPOSE: To date, most intensity-modulated radiation therapy (IMRT) delivery has occurred using linear accelerators (linacs), although helical tomotherapy has become commercially available. To quantify the dosimetric difference, we compared linac-based and helical tomotherapy-based treatment plans for IMRT of the oropharynx. METHODS AND MATERIALS: We compared the dosimetry findings of 10 patients who had oropharyngeal carcinoma. Five patients each had cancers in the base of the tongue and tonsil. Each plan was independently optimized using either the CORVUS planning system (Nomos Corporation, Sewickly, PA), commissioned for a Varian 2300 CD linear accelerator (Varian Medical Systems, Palo Alto, CA) with 1-cm multileaf collimator leaves, or helical tomotherapy. The resulting treatment plans were evaluated by comparing the dose-volume histograms, equivalent uniform dose (EUD), dose uniformity, and normal tissue complication probabilities. RESULTS: Helical tomotherapy plans showed improvement of critical structure avoidance and target dose uniformity for all patients. The average equivalent uniform dose reduction for organs at risk (OARs) surrounding the base of tongue and the tonsil were 17.4% and 27.14% respectively. An 80% reduction in normal tissue complication probabilities for the parotid glands was observed in the tomotherapy plans relative to the linac-based plans. The standard deviation of the planning target volume dose was reduced by 71%. In our clinic, we use the combined dose-volume histograms for each class of plans as a reference goal for helical tomotherapy treatment planning optimization. CONCLUSIONS: Helical tomotherapy provides improved dose homogeneity and normal structure dose compared with linac-based IMRT in the treatment of oropharyngeal carcinoma resulting in a reduced risk for complications from focal hotspots within the planning target volume and for the adjacent parotid glands.  相似文献   

20.
目的 近年来放射治疗设备不断更新,放疗技术持续发展,肿瘤放疗方式有了更多的选择.本研究通过评估食管癌的螺旋断层放疗(tomotherapy, TOMO)及三维适形调强放疗(intensity modulation radiation therapy, IMRT)的剂量学特性,为临床上食管癌放疗方式的选择提供依据.方法 选取2014-07-13-2015-02-25浙江省肿瘤医院胸部肿瘤放疗科10例食管癌患者,勾画靶区及正常器官后,分别传输至Raystation及TOMO计划系统,给予肿瘤原发灶(PGTV)61.6 Gy/28次,计划靶区(PTV)56.0 Gy/28次,根据RTOG 1106标准限制危及器官(organs at risk, OAR)剂量.分别对靶区的剂量体积直方图(dose volume histogram, DVH)、均匀性指数(homogeneity index, HI)、适形性指数(conformal index CI)和OAR(肺、心脏、脊髓)受照最大剂量及平均剂量进行评估.结果 两种计划都能满足处方剂量要求和危及器官受量限制.TOMO计划中PGTV的中位均匀性指数(HI)为0.057 5,优于IMRT计划的0.073 5, P=0.047.TOMO计划中PTV的中位适形性指数(CI)为0.785,优于IMRT计划的0.682 5, P=0.009.TOMO计划中PGTV的中位最大剂量Dmax为64.9 Gy,明显低于IMRT计划的66.5 Gy, P=0.005;TOMO计划中PTV的中位最大剂量Dmax为64.1 Gy,明显低于IMRT计划的64.9 Gy, P=0.028. TOMO计划的中位总的肺剂量为10.8 Gy,低于IMRT计划的11.9 Gy, P=0.005.TOMO计划的中位总的心脏剂量为22.6 Gy,明显低于IMRT计划的24.3 Gy, P=0.028. TOMO计划的中位脊髓最大剂量为40.2 Gy,明显低于IMRT计划的41.7 Gy, P=0.007.结论 食管癌放疗中TOMO放疗计划对比IMRT放疗计划,具有更好的靶区覆盖适形性及剂量分布均匀性,同时明显减少双肺、心脏及脊髓的受照剂量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号