首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The early and late effects of cis-DDP treatment on liver cell kinetics were analyzed after its intraperitoneal injection into 17-day old rats. Frequency of binucleate hepatocytes, cellular DNA content distribution, 3H-thymidine labelling and ultrastructure of the nuclei were analyzed. Two days after treatment, a block of mononucleate hepatocytes in the S phase and in the G2 phase was demonstrated by the increase of intermediate 2c-4c and 4c DNA values in the absence of changes in 3H-thymidine labelling; 8c binucleate cells, which are essential for the formation of tetraploid mononucleate cells, were not found. In cell nuclei, large areas of more condensed chromatin appeared, perhaps providing further evidence for a G2 block. Seven days after treatment, there was a tendency to catch up with the normal situation, as shown by the unblocking of the S phase in mononucleate cells indicated by both cytophotometry and autoradiography. The presence of 8c binucleate cells and 4c-8c mononucleate cells indicates that 4c mononucleate hepatocytes are either diploid cells in the G2 phase or true tetraploid G1 cells. The decrease in the heterochromatin areas and the appearance of hypertrophic nucleoli demonstrate an increase in the metabolic activity of the nuclei. Thirty six days after treatment, the incidence of different DNA hepatocyte classes and the 3H-thymidine labelling were already similar in control and in treated rats.  相似文献   

2.
Biflorin is a natural quinone isolated from Capraria biflora L. Previous studies demonstrated that biflorin inhibits in vitro and in vivo tumor cell growth and presents potent antioxidant activity. In this paper, we report concentration-dependent cytotoxic, genotoxic, antimutagenic, and protective effects of biflorin on Salmonella tiphymurium, yeast Saccharomyces cerevisiae, and V79 mammalian cells, using different approaches. In the Salmonella/microsome assay, biflorin was not mutagenic to TA97a TA98, TA100, and TA102 strains. However, biflorin was able to induce cytotoxicity in haploid S. cerevisiae cells in stationary and exponential phase growth. In diploid yeast cells, biflorin did not induce significant mutagenic and recombinogenic effects at the employed concentration range. In addition, the pre-treatment with biflorin prevented the mutagenic and recombinogenic events induced by hydrogen peroxide (H2O2) in S. cerevisiae. In V79 mammalian cells, biflorin was cytotoxic at higher concentrations. Moreover, at low concentrations biflorin pre-treatment protected against H2O2-induced oxidative damage by reducing lipid peroxidation and DNA damage as evaluated by normal and modified comet assay using DNA glycosylases. Our results suggest that biflorin cellular effects are concentration dependent. At lower concentrations, biflorin has significant antioxidant and protective effects against the cytotoxicity, genotoxicity, mutagenicity, and intracellular lipid peroxidation induced by H2O2 in yeast and mammalian cells, which can be attributed to its hydroxyl radical-scavenging property. However, at higher concentrations, biflorin is cytotoxic and genotoxic.  相似文献   

3.
The effect of Type 1 diabetes on the toxicity of thioacetamide was investigated in a murine model. In streptozotocin-induced diabetic C57BL6 mice a LD90 dose of thioacetamide (1000 mg/kg, ip in saline) caused only 10% mortality. Alanine aminotransferase activity revealed approximately 2.7-fold less liver injury in the diabetic (DB) mice compared to the non-DB controls, at 36 h after thioacetamide (TA) administration, which was confirmed via histopathological analysis. HPLC analyses revealed lower plasma t(1/2) of TA in the DB mice. Covalent binding of [(14)C]TA to liver tissue was lower in the DB mice, suggesting lower bioactivation of TA. Compensatory hepatic S-phase stimulation as assessed by [(3)H]thymidine incorporation occurred much earlier and was substantially higher in the DB mice compared to the non-DB cohorts. Morphometric analysis of cells in various phases of cell division assessed via immunohistochemical staining for proliferating cell nuclear antigen revealed more cells in G(1), S, G(2), and M phases in the DB mice, indicating robust tissue repair in concordance with the findings of [(3)H]thymidine pulse labeling studies. The importance of tissue repair in the resistance of DB mice was further investigated by blocking cell division in the DB mice by colchicine (1 mg/kg, ip) at 40 h after TA administration, well after the bioactivation of TA. Antimitotic action of colchicine, confirmed by decreased S-phase stimulation, led to progression of liver injury and increased mortality in DB mice. These findings suggest that lower bioactivation of TA and early onset of liver tissue repair are the pivotal underpinnings for the resistance of DB mice.  相似文献   

4.
Fluorodeoxyuridine (5-FdUrd) is an antineoplastic agent with clinical activity against different types of solid tumours. To enhance the effectiveness of this drug, we have synthesised new heterodinucleoside phosphate dimers of 5-FdUrd. These dimers were compared to 5-FdUrd for their cytotoxic effect and the cell cycle dependence of cytotoxicity, as well as for their capacity to induce apoptosis and inhibit thymidylate synthetase (TS) in androgen-independent human PC-3 prostate tumour cells. Incubation of the cells with the dimers N(4)-palmitoyl-2'-deoxycytidylyl-(3'-->5')-5-fluoro-2'-deoxyuri din e (dCpam-5-FdUrd) and 2'-deoxy-5-flourouridylyl-(3'-->5')-2'-deoxy-5-fluoro-N(4)-octa decylc ytidine (5-FdUrd-5-FdC18) resulted in a marked cytotoxicity with IC(50) values of 4 microM, similar to 5-FdUrd. In contrast to 5-FdUrd, 100% toxicity was achieved with concentrations of 100-200 microM 5-FdUrd-5-FdC18. Flow cytometric analysis revealed an increase in the cell population in S-phase after treatment with 5-FdUrd, 5-FdUrd-5-FdC18, and dCpam-5-FdUrd from 36 to 63%, 50%, and 77%, respectively. dCpam-5-FdUrd was more potent than 5-FdUrd in arresting the cell cycle. Significant S-phase arrest was indicated by a decreased proportion of cells in G1- and G2/M-phases. Cell cycle arrest and inhibition of cell proliferation were followed by apoptosis, as shown by a 6- to 8-fold increased binding of Apo2.7 antibody, a 9- to 11-fold increase in caspase-3 activity, DNA fragmentation, and by cell morphology showing the appearance of apoptotic bodies. Importantly, 5-FdUrd-5-FdC18 increased the number of apoptotic cells to 160% compared to 5-FdUrd under the same conditions. As with 5-FdUrd, the two dimers also inhibited TS in a time- and concentration-dependent manner, although requiring 100-fold higher concentrations. In conclusion, dCpam-5-FdUrd and 5-FdUrd-5-FdC18 exert stronger cytotoxicity and induce more S-phase arrest and apoptosis than does 5-FdUrd in PC-3 cells, suggesting their potential role in the treatment of human prostate cancer.  相似文献   

5.
Previously, we have shown that the peroxisome proliferator (PP), nafenopin, induces S-phase in␣rat hepatocytes and suppresses apoptosis in hepatocytes from both rat and guinea-pig. Here, we confirm and extend these findings by defining the time course of␣growth perturbation and by correlating this with species differences in loss of gap junctional intercellular communication (GJIC). GJIC is associated with nongenotoxic carcinogenesis, possibly reflecting a tumour suppresser role of the connexins. Fluorescence microscopy of Hoechst 33258-stained rat or guinea-pig hepatocyte monolayers showed 1% apoptosis during the first 8 h of culture, peaking to 2–2.5% at 20–24 h. Nafenopin suppressed apoptosis compared with controls in both rat and guinea-pig, measured at 20 h and 24 h onwards, respectively. The induction of S-phase in rat hepatocytes by nafenopin could be detected as early as 4 h after compound addition whereas S-phase was not altered by nafenopin in guinea-pig hepatocytes. Intercellular communication as measured by intercellular transfer of microinjected Lucifer Yellow CH was observed during the first 14 h of primary rat hepatocyte culture peaking at a maximum value of 88 ± 3.0% after 7 h. In hepatocyte cultures from guinea-pig, dye-coupling levels were maintained between 88 ± 3.0 and 93 ± 3.0% within 2–10 h of culture and by 12 h showed only a slight decrease to 72 ± 3.0%. In the rat, significant inhibition was observed at 4 h after administration of nafenopin since GJIC was reduced by 20 ± 5% compared with vehicle control. By contrast, in the presence of nafenopin, the level of dye-coupling between guinea-pig hepatocytes did not decrease but remained between 85 ± 5 and 93 ± 3.0%, similar to that observed in control guinea-pig cultures. The data obtained contribute to our understanding of the role of GJIC inhibition in the perturbation of cell survival and proliferation caused by nongenotoxic hepatocarcinogens. Received: 11 November 1997 / Accepted: 30 March 1998  相似文献   

6.
Liver injury initiated by non-lethal doses of CCl(4) and thioacetamide (TA) progresses to hepatic failure and death of type 2 diabetic (DB) rats due to failed advance of liver cells from G(0)/G(1) to S-phase and inhibited tissue repair. Objective of the present study was to investigate cellular signaling mechanisms of failed cell division in DB rats upon hepatotoxicant challenge. In CCl(4)-treated non-diabetic (non-DB) rats, increased IL-6 levels, sustained activation of extracellular regulated kinases 1/2 (ERK1/2) MAPK, and sustained phosphorylation of retinoblastoma protein (p-pRB) via cyclin D1/cyclin-dependent kinase (cdk) 4 and cyclin D1/cdk6 complexes stimulated G(0)/G(1) to S-phase transition of liver cells. In contrast to the non-DB rats, CCl(4) administration led to lower plasma IL-6, decreased ERK1/2 activation, lower cyclin D1, and cdk 4/6 expression resulting in decreased p-pRB and inhibition of liver cell division in the DB rats. Furthermore, higher TGFbeta1 expression and p21 activation may also contribute to decreased p-pRB in DB rats compared to non-DB rats. Similarly, after TA administration to DB rats, down-regulation of cyclin D1 and p-pRB leads to markedly decreased advance of liver cells from G(0)/G(1) to S-phase and tissue repair compared to the non-DB rats. Hepatic ATP levels did not differ between the DB and non-DB rats obviating its role in failed tissue repair in the DB rats. In conclusion, decreased p-pRB may contribute to blocked advance of cells from G(0)/G(1) to S-phase and failed cell division in DB rats exposed to CCl(4) or TA, leading to progression of liver injury and hepatic failure.  相似文献   

7.
Furan is classified as a nongenotoxic hepatocarcinogen. It is thought to be activated to a toxic metabolite, cis-2-butene-1,4-dial, which is acutely toxic to liver cells. The resulting cytotoxicity is followed by compensatory cell proliferation, increasing the likelihood of tumor production. We examined the genotoxic activity of cis-2-butene-1,4-dial in several strains of Salmonella typhimurium commonly used in the Ames assay. This reactive compound tested positive in TA104, a strain that is sensitive to aldehydes. Mutagenic activity was concentration-dependent (1000 +/- 180 revertants/micromol). Incubation of cis-2-butene-1,4-dial with glutathione prior to addition of bacteria inhibited both the acute toxic and genotoxic activity of this compound. No evidence of mutagenic activity was seen at nontoxic concentrations in TA97, TA98, TA100, and TA102. Our findings are consistent with the hypothesis that cis-2-butene-1,4-dial reacts with DNA to form mutagenic adducts. Our data suggest that cis-2-butene-1,4-dial may be an important genotoxic as well as toxic intermediate in furan-induced tumorigenesis.  相似文献   

8.
For reactive oxygen species (ROS)–sensitive and CD44 receptor–mediated delivery of photosensitizers, chlorin e6 (ce6) tetramer was synthesized using tetra acid (TA) via selenocystamine linkages and then conjugated with hyaluronic acid (HA) (abbreviated as HAseseCe6TA). HAseseCe6TA nanophotosensitizers were fabricated by dialysis procedure. HAseseCe6TA nanophotosensitizers showed spherical morphology with small particle sizes less than 100 nm and monomodal pattern. When H2O2 was added, size distribution was changed to multimodal pattern and morphological observation showed disintegration of nanophotosensitizers, indicating that HAseseCe6TA nanophotosensitizers have ROS sensitivity. Furthermore, H2O2 addition resulted in acceleration of Ce6 release from HAseseCe6TA nanophotosensitizers. In vitro cell culture study, HAseseCe6TA nanophotosensitizers increase Ce6 uptake ratio, ROS production efficiency, and photodynamic therapy efficacy in both B16F10 cells and CT26 cells. Especially, CD44-receptor blocking of cancer cells by pretreatment of HA showed that fluorescence intensity in B16F10 cells was significantly decreased while fluorescence intensity in CT26 cells was not significantly changed, indicating that HAseseCe6TA nanophotosensitizers can be delivered by CD44 receptor–mediated pathway. In vivo animal tumor xenograft study, HAseseCe6TA nanophotosensitizers was selectively delivered to B16F10 tumor rather than CT26 tumor. These results indicated that HAseseCe6TA nanophotosensitizers have ROS sensitivity and have CD44 receptor–recognition properties.  相似文献   

9.
Dieldrin-induced hepatocarcinogenesis, which is seen only in the mouse, apparently occurs through a nongenotoxic mechanism. Previous studies have demonstrated that dieldrin induces hepatic DNA synthesis in mouse, but not rat liver. A number of nongenotoxic hepatocarcinogens have been shown to increase hepatocyte nuclear ploidy following acute and subchronic treatment in rodents, suggesting that an induction of hepatocyte DNA synthesis may occur without a concomitant increase in cell division. The current study examined the effects of dieldrin on changes in hepatocyte DNA synthesis, mitosis, apoptosis, and ploidy in mouse liver (the sensitive strain and target tissue for dieldrin-induced carcinogenicity) and the rat liver (an insensitive species). Male F344 rats and B6C3F1 mice were treated with 0, 1, 3, or 10 mg dieldrin/kg diet and were sampled after 7, 14, 28, or 90 d on diet. Liver from mice fed 10 mg dieldrin/kg diet exhibited significantly increased DNA synthesis and mitosis at 14, 28, or 90 d on diet. In rats, no increase in DNA synthesis or mitotic index was observed. The apoptotic index in liver of mice and rats did not change over the 90-d study period. Exposure of mice to only the highest dose of dieldrin produced a significant increase in octaploid (8N) hepatocytes and a decrease in diploid (2N) hepatocytes, which were restricted primarily to centrilobular hepatocytes, with the periportal region showing little or no change from control. No changes in hepatocyte nuclear ploidy were observed in the rat. This study demonstrates that exposure to high concentrations of dieldrin is accompanied by increased nuclear ploidy and mitosis in mouse, but not rat, liver. It is proposed that the observed increase in nuclear ploidy in the mouse may reflect an adaptive response to dieldrin exposure.  相似文献   

10.
In a recent chronic inhalation exposure study, unleaded gasoline (UG) produced kidney tumors in male rats and liver tumors in female mice, but did not increase the incidence of liver tumors in male mice or rats of either sex. To examine the possible basis for this pattern of hepatocarcinogenesis, unscheduled DNA synthesis (UDS) as an indicator of genotoxic activity and replicative DNA synthesis (RDS) as an indicator of cell proliferation were measured in rat and mouse hepatocytes following in vivo and in vitro exposures to UG and 2,2,4-trimethylpentane (TMP), a nephrotoxic component of UG. Primary hepatocyte cultures, prepared from cells isolated from Fischer-344 rats, B6C3F1 mice, or human surgical material, were incubated with [3H]thymidine and the test agent. UDS was measured by quantitative autoradiography as net nuclear grains (NG). By similar methods, UDS and RDS (S-phase cells) were measured in hepatocytes isolated from rats and mice treated by gavage with TMP (500 mg/kg) or UG (100 to 5,000 mg/kg). A dose-related increase in UDS activity was observed in rat hepatocytes treated in vitro with 0.05 to 0.10% (v/v) UG. These doses were, however, toxic in both mouse and human hepatocyte cultures. Weak UDS activity was observed in hepatocytes isolated from male and female mice treated 12 hr previously with UG. No UDS was induced in rat hepatocytes treated in vivo or in vitro with TMP. Twenty- and fourfold increases in the percentage of cells in S-phase were observed 24 hr after treatment with TMP in male and female mice, respectively, as compared to a fivefold increase in male rats. UG increased the percentage of S-phase cells in male mice by ninefold but failed to induce RDS in females. Thus, there appears to be genotoxic compounds in UG that can be detected in cultured hepatocytes and in the livers of exposed mice. The lack of UDS activity in rat liver was consistent with the reported lack of liver tumors in chronically exposed rats. However, neither the UDS nor the RDS responses in mice exposed by gavage correlated to the sex-specific pattern of liver tumors observed in the 2-year bioassay.  相似文献   

11.
Dieldrin-induced hepatocarcinogenesis, which is seen only in the mouse, apparently occurs through a nongenotoxic mechanism. Previous studies have demonstrated that dieldrin induces hepatic DNA synthesis in mouse, but not rat liver. A number of nongenotoxic hepatocarcinogens have been shown to increase hepatocyte nuclear ploidy following acute and subchronic treatment in rodents, suggesting that an induction of hepatocyte DNA synthesis may occur without a concomitant increase in cell division. The current study examined the effects of dieldrin on changes in hepatocyte DNA synthesis, mitosis, apoptosis, and ploidy in mouse liver (the sensitive strain and target tissue for dieldrin-induced carcinogenicity) and the rat liver (an insensitive species). Male F344 rats and B6C3F1 mice were treated with 0, 1, 3, or 10 mg dieldrin/kg diet and were sampled after 7, 14, 28, or 90 d on diet. Liver from mice fed 10 mg dieldrin/kg diet exhibited significantly increased DNA synthesis and mitosis at 14, 28, or 90 d on diet. In rats, no increase in DNA synthesis or mitotic index was observed. The apoptotic index in liver of mice and rats did not change over the 90-d study period. Exposure of mice to only the highest dose of dieldrin produced a significant increase in octaploid (8N) hepatocytes and a decrease in diploid (2N) hepatocytes, which were restricted primarily to centrilobular hepatocytes, with the periportal region showing little or no change from control. No changes in hepatocyte nuclear ploidy were observed in the rat. This study demonstrates that exposure to high concentrations of dieldrin is accompanied by increased nuclear ploidy and mitosis in mouse, but not rat, liver. It is proposed that the observed increase in nuclear ploidy in the mouse may reflect an adaptive response to dieldrin exposure.  相似文献   

12.
The aim of this paper was to evaluate genotoxic effects of borneol and its ability to change DNA-damaging effects of H2O2 in rat hepatocytes and testicular cells. Both in vitro and ex vivo approaches were used in the case of hepatocytes. Testicular cells were tested only ex vivo, i.e. shortly after isolation from rats supplemented by borneol. Cytotoxicity of borneol increased in in vitro conditions in a concentration-dependent manner and it was associated with DNA-damaging effects at toxic concentrations. While non-toxic concentrations of borneol applied in vitro protected cells against H2O2-induced DNA damage and interfered only partly with rejoining of H2O2-induced DNA strand breaks, cytotoxic concentrations of borneol manifested synergy with H2O2, i.e. enhanced DNA-damaging effects of H2O2. On the other side, borneol given to rats in drinking water decreased the level of DNA damage induced by H2O2 in both hepatocytes and testicular cells. Our results show that though at higher concentrations (2-h treatment with >2 mM borneol >0.3084 mg/ml) borneol acts cytotoxically and genotoxically on primary hepatocytes cultured in vitro, if given to rats during 7 days in a daily concentration of 17.14 or 34.28 mg/kg it reduces genotoxicity of H2O2 in both hepatocytes and testicular cells.  相似文献   

13.
CCA (Chromium Copper Arsenate) treated wood, widely used in outdoor residential structures and playgrounds, poses considerable dangers of leaching of its components to the environment.In this study, mouse kidney samples were used to evaluate the effects of CCA, chromium trioxide (CrO3) and arsenic pentoxide (As2O5) on cell pathophysiology by flow cytometry. Samples were collected after 14, 24, 48 and 96 h of animal exposure. While Cr had no statistically significant cytostatic effects, As2O5 induced a S-phase delay in animals exposed for 24 h, and over time a G0/G1 phase blockage. The effects of CCA in S-phase were similar, but more severe than those of As2O5. Since environmental and public health hazards due to the long durability of CCA-treated wood products, these data confirm that CCA has profoundly toxic effects on cell cycle, distinct from the compounds themselves. These cytostatic effects support cell cycle dynamics as a valuable endpoint to assess the toxicity of remaining CCA-treated infrastructures, and the expected increased waste stream over the coming decades.  相似文献   

14.
The ability was investigated of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) to stimulate DNA synthesis in hepatocytes isolated from C57Bl/6J mice following 1, 3, 7, 30 and 90 days pre-treatment with the hepatomegalic drug, phenobarbitone (PB). A 3-fold increase in S-phase labelled hepatocytes was observed in the absence of growth factors after 3 days treatment with PB, which was not seen at other investigated time points. This suggests that the proliferative influence present in vivo at this time interval is maintained in the ex vivo model. Maximum labelling indices of >5-fold the unstimulated control value were observed in hepatocytes isolated from control and 1 day PB pre-treated mice when cultured in the presence of 5 or 10 ng/ml EGF or HGF. Hepatocytes isolated from 3, 7, 30 or 90 day treated mice showed a considerably reduced responsiveness to growth factors; maximum labelling indices did not exceed by a factor of 2 the value obtained in the absence of growth factors. However, the apparent decrease in responsiveness to growth factors in hepatocytes isolated from 3 day pre-treated mice was due to an increased background level of proliferation and the attainment of a `ceiling level' of DNA synthesis at approx. 35%. DNA synthesis was not further enhanced by addition of both EGF and HGF. This maximal level of stimulation may indicate that only a specific hepatocyte sub-population is capable of responding to growth factors under the conditions employed. The loss in sensitivity to mitogenic stimuli after 7 days PB pre-treatment correlates with a reported decrease in receptor protein and mRNA levels in rats and coincides with the in vivo shift from hyperplasia to hypertrophy. Received: 14 June 1996 / Accepted: 12 November 1996  相似文献   

15.
Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.  相似文献   

16.
The effects of altered Ca2+ homeostasis on glutathione S-transferase (GST) isozyme expression in cultured primary rat hepatocytes were examined. Isolated hepatocytes were cultured on Vitrogen substratum in serum-free modified Chee's essential medium and treated with Ca2+ ionophore A23187 at 120 hr post-plating. GST activity increased slightly, albeit significantly, in a concentration-dependent manner in A23187-treated hepatocytes relative to untreated controls. Western blot analysis using GST class alpha and mu specific antibodies showed an approximately 1.6- and 1.5-fold increase in the class alpha, Ya and Yc subunits, respectively, whereas no significant increase (approximately 1.2-fold) in class mu GST expression was observed following A23187 treatment. Northern blot analysis revealed an approximately 5-fold increase in GST class alpha and an approximately 7-fold increase in class mu GST mRNA levels in ionophore-treated hepatocytes compared to untreated cells. Results of the Western and Northern blot analyses of the ionophore-treated hepatocytes were compared with those obtained for tert-butyl hydroperoxide-treated cells. Immunoblot analysis showed a significant increase in the expression of GST class alpha, Ya and Yc subunits, approximately 1.8- and 1.7-fold, respectively, for tert-butyl hydroperoxide-treated hepatocytes as compared to controls, with little or no increase in class mu GSTs. Northern blot analysis showed approximately 3- and 2-fold increases, respectively, in class alpha and mu GST mRNA levels, following the tert-butyl hydroperoxide treatment. The results of the present investigation show that alterations in Ca2+ homeostasis produced by either Ca2+ ionophore A23187 or tert-butyl hydroperoxide treatment of hepatocytes enhanced the expression of GST isozymes in primary cultured rat hepatocytes.  相似文献   

17.
Earlier studies have shown highly exaggerated mechanism-based liver injury of thioacetamide (TA) in rats following moderate diet restriction (DR) and in diabetes. The objective of the present study was to investigate the mechanism of higher liver injury of TA in DR rats. Since both DR and diabetes induce CYP2E1, we hypothesized that hepatic CYP2E1 plays a major role in the bioactivation-based liver injury of TA. When male Sprague-Dawley rats (250-275 g) were maintained on diet restriction (DR, 35% of ad libitum fed rats, 21 days) the total hepatic microsomal cytochrome P450 (CYP450) was increased 2-fold along with a 4.6-fold increase in CYP2E1 protein, which corresponded with a 3-fold increase in CYP2E1 activity as measured by chlorzoxazone hydroxylation. To further test the involvement of CYP2E1, 24 and 18 h after pretreatment with pyridine (PYR) and isoniazid (INZ), specific inducers of CYP2E1, male Sprague-Dawley rats received a single administration of 50 mg of TA/kg (i.p.). TA liver injury was >2.5- and >3-fold higher at 24 h in PYR + TA and INZ + TA groups, respectively, compared with the rats receiving TA alone. Pyridine pretreatment resulted in significantly increased total CYP450 content accompanied by a 2.2-fold increase in CYP2E1 protein and 2-fold increase in enzyme activity concordant with increased liver injury of TA, suggesting mechanism-based bioactivation of TA by CYP2E1. Hepatic injury of TA in DR rats pretreated with diallyl sulfide (DAS), a well known irreversible in vivo inhibitor of CYP2E1, was significantly decreased (60%) at 24 h. CCl(4) (4 ml/kg i.p.), a known substrate of CYP2E1, caused lower liver injury and higher animal survival confirming inhibition of CYP2E1 by DAS pretreatment. The role of flavin-containing monooxygenase (FMO) in TA bioactivation implicated by previous in vitro studies, and consequent increased TA-induced liver injury in DR rats was tested in vivo with a relatively selective inhibitor of FMO, indole-3-carbinol, and then treated with 50 mg of TA/kg. FMO activity and alanine aminotransferase levels measured at different time points revealed that TA liver injury was not decreased although FMO activity was significantly decreased, suggesting that hepatic FMO is unlikely to bioactivate TA. These findings suggest induction of CYP2E1 as the primary mechanism of increased bioactivation-based liver injury of TA in DR rats.  相似文献   

18.
19.
In the present study, we evaluated the inducibility of cytochrome P-450 (CYP) CYP1A, CYP2B, CYP3A, and CYP4A by beta-naphthoflavone, phenobarbital, dexamethasone, and clofibric acid, respectively, in primary hepatocyte cultures prepared from both fresh and cryopreserved rat hepatocytes. Rat hepatocytes were successfully thawed and cultured after cryopreservation in liquid nitrogen for up to 1 month. Percentage of total recovery, viable cell recovery, and final viability of the cells were 68%, 72%, and 85%, respectively. Regardless of whether they were cryopreserved or not, cultured hepatocytes exhibited near-normal morphology. Treatment of cryopreserved hepatocytes with beta-naphthoflavone caused an 8-fold increase in 7-ethoxyresorufin O-dealkylase (CYP1A1/2) activity, with an EC50 of 1.5 microM; treatment with phenobarbital caused a 26-fold increase in 7-pentoxyresorufin O-dealkylase (CYP2B1/2) activity, with an EC50 of 10 microM; treatment with dexamethasone caused a 10-fold increase in testosterone 6beta-hydroxylase (CYP3A1/2) activity, with an EC50 of 1.3 microM, whereas treatment with clofibric acid caused a 3-fold increase in lauric acid 12-hydroxylase (CYP4A1-3) activity, with an EC50 of 170 microM. The induction of CYP1A, CYP2B, CYP3A, and CYP4A enzymes by these inducers was confirmed by Western immunoblotting. The patterns of P-450 induction in cryopreserved rat hepatocytes, in terms of concentration response, reproducibility, magnitude, and specificity of response, were similar to those observed in freshly isolated hepatocytes. Additionally, the magnitude and specificity of induction was similar to that observed in vivo in rats. In conclusion, under the conditions examined, cryopreserved rat hepatocytes appear to be a suitable in vitro system for evaluating xenobiotics as inducers of P-450 enzymes.  相似文献   

20.
17 alpha-Ethinylestradiol (EE) can induce oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in rat testicular cells by an apparent estrogen receptor-mediated mechanism. We investigated differential susceptibility to EE in cell sub-populations from rat testes and the role of rat 8-oxo-guanine DNA glycosylase (rOGG1). Isolated rat testicular cells were incubated with EE concentrations ranging from 0.1 to 1000 nM. Single strand DNA breaks and oxidised purines as fapyguanine glycosylase (FPG) sensitive sites were assessed by the comet assay. In the total cell population and in round haploid cells, oxidised purines showed a bell-shaped concentration-response relationship with a maximally increased levels at 10 nM EE, whereas, no significant effects were seen in diploid, S-phase or tetraploid cells. The mRNA level of rOGG1 in testes cells was unaffected by EE, whereas, baseline levels were higher than in liver tissue and similar to colon tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号