首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND PURPOSE: To quantify inter- and intrafraction prostate motion in a standard VacLok (VL) immobilization device or in the BodyFix (BF) system incorporating a compression element which may reduce abdominal movement. MATERIALS AND METHODS: Thirty-two patients were randomly assigned to VL or BF. Interfraction prostate motion >3 mm was corrected pre-treatment. EPIs were taken daily at the start and end of the first and last treatment beams. Interfraction and intrafraction prostate motion were measured for centre of mass (COM) and individual markers. RESULTS: There were no significant differences in interfraction (p0.002) or intrafraction (p0.16) prostate motion with or without abdominal compression. Median intrafraction motion was slightly smaller than interfraction motion in the AP (7.0 mm vs. 7.6 mm) and SI direction (3.2 mm vs. 4.7 mm). The final image captured the maximal intrafraction displacement in only 40% of fractions. Our PTV incorporated >95% of total prostate motion. CONCLUSIONS: Intrafraction motion became the major source of error during radiotherapy after online correction of interfraction prostate motion. The addition of 120 mbar abdominal compression to custom pelvic immobilization influenced neither interfraction nor intrafraction prostate motion.  相似文献   

2.
PURPOSE: To assess our single institutional experience with daily localization, using fiducials for prostate radiotherapy. METHODS AND MATERIALS: From January 2004 to September 2005, 33 patients were treated with 1,097 intensity-modulated radiation treatments, using three implanted fiducials. Daily portal images were obtained before treatments. Shifts were made for deviations > or =3 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) dimensions. RESULTS: Of 1,097 treatments, 987 (90%) required shifts. Shifts were made in the LR, SI, and AP dimensions in 51%, 67%, and 58% of treatments, respectively. In the LR dimension, the median distance shifted was 5 mm. Of 739 shifts in the SI dimension, 73% were in the superior direction for a median distance of 6 mm, and 27% were shifted inferiorly for a median distance of 5 mm. The majority of shifts in the AP dimension were in the anterior direction (87%). Median distances shifted in the anterior and posterior directions were 5 mm and 4 mm, respectively. The median percentage of treatments requiring shifts per patient was 93% (range, 57-100%). Median deviations in the LR, SI, and AP dimensions were 3 mm, 4 mm, and 3 mm, respectively. Deviations in the SI and AP dimensions were more often in the superior rather than inferior (60% vs. 29%) and in the anterior rather than posterior (70% vs. 16%) directions. CONCLUSIONS: Interfraction prostate motion is significant. Daily portal imaging with implanted fiducials improves localization of the prostate, and is necessary for the reduction of treatment margins.  相似文献   

3.
PURPOSE: To evaluate the daily setup variation and the anatomic movement of the heart and lungs during breast irradiation with tangential photon beams, as measured with an electronic portal imaging device. METHODS AND MATERIALS: Analysis of 1,709 portal images determined changes in the radiation field during a treatment course in 8 patients. Values obtained for every image included central lung distance (CLD) and area of lung and heart within the irradiated field. The data from these measurements were used to evaluate variation from setup between treatment days and motion due to respiration and/or patient movement during treatment delivery. RESULTS: The effect of respiratory motion and movement during treatment was minimal: the maximum range in CLD for any patient on any day was 0.25 cm. The variation caused by day-to-day setup variation was greater, with CLD values for patients ranging from 0.59 cm to 2.94 cm. Similar findings were found for heart and lung areas. CONCLUSIONS: There is very little change in CLD and corresponding lung and heart area during individual radiation treatment fractions in breast tangential fields, compared with a relatively greater amount of variation that occurs between days.  相似文献   

4.
5.
PURPOSE: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. METHODS AND MATERIALS: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. RESULTS: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. CONCLUSIONS: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction.  相似文献   

6.
7.
PURPOSE: Radiopaque gold markers can be implanted in the prostate to visualize its position on portal images during radiation therapy. This procedure assumes that the markers do not move within the prostate. In this work we test this assumptiom. METHODS AND MATERIALS: Three markers were implanted transrectally in the prostate of patients undergoing external radiation therapy. An orthogonal pair of portal images was acquired periodically throughout the course of radiation therapy with an a-Si electronic portal imaging device (EPID). The marker coordinates were determined, and the distances between the implanted markers were recorded. The distance time trend is used to evaluate the magnitude of marker migration. RESULTS: The average standard deviation (SD) of the distances between markers was 1.3 mm (range 0.44 to 3.04 mm). Three of the 11 patients show a SD larger than 2 mm. For these patients, all three distances show a simultaneous reduction with time, compatible with a shrinking of the prostate. All had been treated with neoadjuvant hormone therapy. For 1 of the 3 patients, this reduction in volume was confirmed with a repeat computed tomographic scan. CONCLUSION: None of the 33 markers studied migrated significantly. The implantation of three radiopaque gold markers enables accurate and precise on-line verification of the prostate position during external beam radiation therapy. The use of three markers provides a tool to monitor prostate position and volume changes that can occur over time due to hormone or radiation therapy.  相似文献   

8.
PURPOSE: An on-line system to ensure accuracy of daily setup and therapy of the prostate has been implemented with no equipment modification required. We report results and accuracy of patient setup using this system. METHODS AND MATERIALS: Radiopaque fiducial markers were implanted into the prostate before radiation therapy. Lateral digitally reconstructed radiographs (DRRs) were obtained from planning CT data. Before each treatment fraction, a lateral amorphous silicon (aSi) portal image was acquired and the position of the fiducial markers was compared to the DRRs using chamfer matching. Couch translation only was used to account for marker position displacements, followed by a second lateral portal image to verify isocenter position. Residual displacement data for the aSi and previous portal film systems were compared. RESULTS: This analysis includes a total of 239 portal images during treatment in 17 patients. Initial prostate center of mass (COM) displacements in the superior, inferior, anterior, and posterior directions were a maximum of 7 mm, 9 mm, 10 mm and 11 mm respectively. After identification and correction, prostate COM displacements were <3 mm in all directions. The therapists found it simple to match markers 88% of the time using this system. Treatment delivery times were in the order of 9 min for patients requiring isocenter adjustment and 6 min for those who did not. CONCLUSIONS: This system is technically possible to implement and use as part of an on-line correction protocol and does not require a longer than standard daily appointment time at our center with the current action limit of 3 mm. The system is commercially available and is more efficient and user-friendly than portal film analysis. It provides the opportunity to identify and accommodate interfraction organ motion and may also permit the use of smaller margins during conformal prostate radiotherapy. Further integration of the system such as remote table control would improve efficiency.  相似文献   

9.
10.
11.

Purpose

The aim of this study was to quantify the impact of rectal stool/gas volumes on intrafraction prostate motion for patients undergoing prostate radiotherapy with daily endorectal balloon (ERB).

Methods

Total and anterior stool/gas rectal volumes were quantified in 30 patients treated with daily ERB. Real-time intrafraction prostate motion from 494 treatment sessions, at most 6 min in length, was evaluated using Calypso® tracking system.

Results

The deviation of prostate intrafraction motion distribution was a function of stool/gas volume, especially when stool/gas is located in the anterior part of the rectum. Compared to patients with small anterior stool/gas volumes (<10 cm3), those with large volume (10–60 cm3) had a twofold increase in 3D prostate motion and interquartile data range within the 6th minute of treatment time. The 10% of the overall CBCT session where large anterior rectal volumes were observed demonstrated larger percentage of time at displacement greater than our proposed internal margin 3 mm.

Conclusion

Volume and location of stool/gas can directly impact the ERB’s intrafraction immobilization ability. Although our patient preparation protocol and the 100 cm3 daily ERB effectively stabilized prostate motion for 90% of the fractions, a larger-sized ERB may improve prostate fixation for patients with greater and/or variable daily rectal volume.  相似文献   

12.
PURPOSE: To quantify intrafraction patient motion and its time dependence in immobilized intracranial and extracranial patients. The data can be used to optimize the intrafraction imaging frequency and consequent patient setup correction with an image guidance and tracking system, and to establish the required safety margins in the absence of such a system. METHOD AND MATERIALS: The intrafraction motion of 32 intracranial patients, immobilized with a thermoplastic mask, and 11 supine- and 14 prone-treated extracranial spine patients, immobilized with a vacuum bag, were analyzed. The motion was recorded by an X-ray, stereoscopic, image-guidance system. For each group, we calculated separately the systematic (overall mean and SD) and the random displacement as a function of elapsed intrafraction time. RESULTS: The SD of the systematic intrafraction displacements increased linearly over time for all three patient groups. For intracranial-, supine-, and prone-treated patients, the SD increased to 0.8, 1.2, and 2.2 mm, respectively, in a period of 15 min. The random displacements for the prone-treated patients were significantly higher than for the other groups, namely 1.6 mm (1 SD), probably caused by respiratory motion. CONCLUSIONS: Despite the applied immobilization devices, patients drift away from their initial position during a treatment fraction. These drifts are in general small if compared with conventional treatment margins, but will significantly contribute to the margin for high-precision radiation treatments with treatment times of 15 min or longer.  相似文献   

13.
PURPOSE: To develop a real-time electronic portal imaging device (EPID) procedure to identify intraprostatic gold markers and correct daily variations in target position during external beam radiotherapy for prostate cancer. METHODS AND MATERIALS: Pretherapy electronic portal images (EPIs) were acquired with a small portion of the therapeutic 18-MV dose from an orthogonal pair of treatment fields. The position of the intraprostatic gold markers on the EPIs was aligned with that on the simulation digitally reconstructed radiographs. If the initial three-dimensional target displacement (3DI) exceeded 5 mm or rotations exceeded 3 degrees, the beam was realigned before the remainder of the dose was delivered. Field-only EPIs were then acquired for all fields and offline analysis was performed to determine the final 3D target placement (3DF). RESULTS: Twenty patients completed protocol-specified treatment, and all markers were identified on 99.6% of the pretherapy EPIs. Overall, 53% of treatment fractions were realigned. The mean 3DI was 5.6 mm in all patients (range 3.7-9.3), and the mean 3DF was 2.8 mm (range 1.6-4.0), which was statistically significant (p < 0.001). Rotational corrections were made on 15% of treatments. Mean treatment duration was 1.4 min greater for protocol patients than for similar patients in whom localization was not performed. CONCLUSIONS: Frequent field misalignment occurs when external fiducial marks are used for patient alignment. Misalignments can be readily and rapidly identified and corrected with an EPID-based online correction procedure that integrates commercially available equipment and software.  相似文献   

14.
PURPOSE: To investigate the use of a fluoroscopic electronic portal imaging device (EPID) and radiopaque markers to detect internal cervix movement. METHODS AND MATERIALS: For 10 patients with radiopaque markers clamped to the cervix, electronic portal images were made during external beam irradiation. Bony structures and markers in the portal images were registered with the same structures in the corresponding digitally reconstructed radiographs of the planning computed tomogram. RESULTS: The visibility of the markers in the portal images was good, but their fixation should be improved. Generally, the correlation between bony structure displacements and marker movement was poor, the latter being substantially larger. The standard deviations describing the systematic and random bony anatomy displacements were 1.2 and 2.6 mm, 1.7 and 2.9 mm, and 1.6 and 2.7 mm in the lateral, cranial-caudal, and dorsal-ventral directions, respectively. For the marker movement those values were 3.4 and 3.4 mm, 4.3 and 5.2 mm, 3.2 and 5.2 mm, respectively. Estimated clinical target volume to planning target volume (CTV-PTV) planning margins (approximately 11 mm) based on the observed overall marker displacements (bony anatomy + internal cervix movement) are only marginally larger than the margins required to account for internal marker movement alone. CONCLUSIONS: With our current patient setup techniques and methods of setup verification and correction, the required CTV-PTV margins are almost fully determined by internal organ motion. Setup verification and correction using radiopaque markers might allow decreasing those margins, but technical improvements are needed.  相似文献   

15.

Purpose  

To determine the magnitude of setup and organ motion errors from a subset of prostate cancer patients treated with conventional conformal radiotherapy, and to estimate the CTV-PTV margin according to published margin recipes.  相似文献   

16.
PURPOSE: To compare the accuracy of imaging modalities, immobilization, localization, and positioning techniques in patients with prostate cancer. METHODS AND MATERIALS: Thirty-five patients with prostate cancer had gold marker seeds implanted transrectally and were treated with fractionated radiotherapy. Twenty of the 35 patients had limited immobilization; the remaining had a vacuum-based immobilization. Patient positioning consisted of alignment with lasers to skin marks, ultrasound or kilovoltage X-ray imaging, optical guidance using infrared reflectors, and megavoltage electronic portal imaging (EPI). The variance of each positioning technique was compared to the patient position determined from the pretreatment EPI. RESULTS: With limited immobilization, the average difference between the skin marks' laser position and EPI pretreatment position is 9.1 +/- 5.3 mm, the average difference between the skin marks' infrared position and EPI pretreatment position is 11.8 +/- 7.2 mm, the average difference between the ultrasound position and EPI pretreatment position is 7.0 +/- 4.6 mm, the average difference between kV imaging and EPI pretreatment position is 3.5 +/- 3.1 mm, and the average intrafraction movement during treatment is 3.4 +/- 2.7 mm. For the patients with the vacuum-style immobilization, the average difference between the skin marks' laser position and EPI pretreatment position is 10.7 +/- 4.6 mm, the average difference between kV imaging and EPI pretreatment position is 1.9 +/- 1.5 mm, and the average intrafraction movement during treatment is 2.1 +/- 1.5 mm. CONCLUSIONS: Compared with use of skin marks, ultrasound imaging for positioning provides an increased degree of agreement to EPI-based positioning, though not as favorable as kV imaging fiducial seeds. Intrafraction movement during treatment decreases with improved immobilization.  相似文献   

17.

Purpose

The imaging application Auto Beam Hold (ABH) allows for the online analysis of 2-dimensional kV images acquired during treatment. ABH can automatically detect fiducial markers and initiate a beam interrupt. In this study, we investigate the practical use and results of this intrafraction monitoring tool for patients with prostate cancer who have implanted gold seeds treated with a RapidArc technique.

Methods and materials

A total of 105 patients were included. For setup, the seeds were lined up using 2 orthogonal 2-dimensional kV images. After the setup procedure, ABH was applied at an interval of 3 seconds. The software requires a maximum-allowed deviation to be defined for each seed, which is referred to as a deviation limit (DL). Online, the ABH application evaluates the position of the seeds and indicates for each seed whether or not it exceeds the DL. Patients were divided in 3 groups. For the first group ABH was used with the DL at 6 mm, which corresponds to the planning target volume (PTV) margin. For the second group, the DL was set at 5 mm with an unchanged PTV margin of 6 mm. For the third group, the PTV margin was reduced to 5 mm with a DL of 5 mm. Offline, we performed an analysis of the number of beam stops and resulting re-setups.

Results

ABH initiated a beam interrupt 223 times (13%) during a total of 1736 sessions. By decreasing the DL from 6 mm to 5 mm, the amount of workload for re-setups increased from 6% (group 1) to 14% (groups 2 and 3). Re-setup, 3-dimensional shifts larger than the PTV margin were found in 44%, 35%, and 45% for groups 1,2, and 3, respectively.

Conclusions

Intrafraction imaging of prostate position during treatment using automatic detection of implanted gold seeds was successfully implemented. PTV margins were safely reduced from 6mm to 5mm without a substantial increase in workload.  相似文献   

18.
PURPOSE: To evaluate the efficacy of the No Action Level (NAL) off-line correction protocol in the reduction of systematic prostate displacements as determined from electronic portal images (EPI) using implanted markers. METHODS AND MATERIALS: Four platinum markers, two near the apex and two near the base of the prostate, were implanted for localization purposes in patients who received fractionated high dose rate brachytherapy. During the following course of 25 fractions of external beam radiotherapy, the position of each marker relative to the corresponding position in digitally reconstructed radiographs (DRRs) was measured in EPI in 15 patients for on average 17 fractions per patient. These marker positions yield the composite displacements due to both setup error and internal prostate motion, relative to the planning computed tomography scan. As the NAL protocol is highly effective in reducing systematic errors (recurring each fraction) due to setup inaccuracy alone, we investigated its efficacy in reducing systematic composite displacements. The analysis was performed for the center of mass (COM) of the four markers, as well as for the cranial and caudal markers separately. Furthermore, the impact of prostate rotation on the achieved positioning accuracy was determined. RESULTS: In case of no setup corrections, the standard deviations of the systematic composite displacements of the COM were 3-4 mm in the craniocaudal and anterior-posterior directions, and 2 mm in the left-right direction. The corresponding SDs of the random displacements (interfraction fluctuations) were 2-3 mm in each direction. When applying a NAL protocol based on three initial treatment fractions, the SDs of the systematic COM displacements were reduced to 1-2 mm. Displacements at the cranial end of the prostate were slightly larger than at the caudal end, and quantitative analysis showed this originates from left-right axis rotations about the prostate apex. Further analysis revealed that significant time trends are present in these prostate rotations. No significant trends were observed for the prostate translations. CONCLUSIONS: The NAL protocol based on marker positions in EPI halved the composite systematic displacements using only three imaged fractions per patient, and thus allowed for a significant reduction of planning margins. Although large rotations of the prostate, and time trends therein, were observed, the net impact on the measured displacements and on the accuracy obtained with NAL was small.  相似文献   

19.
PURPOSE: To improve an online portal imaging system such that implanted cylindrical gold markers of small diameter (no more than 1.0 mm) can be visualized. These small markers would make the implantation procedure much less traumatic for the patient than the large markers (1.6 mm in diameter), which are usually used today to monitor prostate interfraction motion during radiation therapy. METHODS AND MATERIALS: Several changes have been made to a mirror-video based online imaging system to improve image quality. First, the conventional camera tube was replaced by an avalanche-multiplication-based video tube. This new camera tube has very high gain at the target such that the camera noise, which is one of the main causes of image degradation of online portal imaging systems, was overcome and effectively eliminated. Second, the conventional linear-accelerator (linac) target was replaced with a low atomic number (low-Z) target such that more diagnostic X-rays are present in the megavoltage X-ray beam. Third, the copper plate buildup layer for the phosphor screen was replaced by a thin plastic layer for detection of the diagnostic X-ray components in the beam generated by the low-Z target. RESULTS: Radiopaque fiducial gold markers of different sizes, i.e., 1.0 mm (diameter) x 5 mm (length) and 0.8 mm (diameter) x 3 mm (length), embedded in an Alderson Rando phantom, can be clearly seen on the images acquired with our improved system. These markers could not be seen on images obtained with any commercial system available in our clinic. CONCLUSION: This work demonstrates the visibility of small-diameter radiopaque markers with an improved online portal imaging system. These markers can be easily implanted into the prostate and used to monitor the interfraction motion of the prostate.  相似文献   

20.

Purpose

To evaluate differences in target motion during prostate irradiation in the prone versus supine position using electromagnetic tracking to measure prostate mobility.

Materials/methods

Twenty patients received prostate radiotherapy in the supine position utilizing the Calypso Localization System® for prostate positioning and monitoring. For each patient, 10 treatment fractions were followed by a session in which the patient was repositioned prone, and prostate mobility was tracked. The fraction of time that the prostate was displaced by >3, 5, 7, and 10 mm was calculated for each patient, for both positions (400 tracking sessions).

Results

Clear patterns of respiratory motion were seen in the prone tracks due to the influence of increased abdominal motion. Averaged over all patients, the prostate was displaced >3 and 5 mm for 37.8% and 10.1% of the total tracking time in the prone position, respectively. In the supine position, the prostate was displaced >3 and 5 mm for 12.6% and 2.9%, respectively. With both patient setups, inferior and posterior drifts of the prostate position were observed. Averaged over all prone tracking sessions, the prostate was displaced >3 mm in the posterior and inferior directions for 11.7% and 9.5% of the total time, respectively.

Conclusions

With real-time tracking of the prostate, it is possible to study the effects of different setup positions on the prostate mobility. The percentage of time the prostate moved >3 and 5 mm was increased by a factor of three in the prone versus supine position. For larger displacements (>7 mm) no difference in prostate mobility was observed between prone and supine positions. To reduce rectal toxicity, radiotherapy in the prone position may be a suitable alternative provided respiratory motion is accounted for during treatment. Acute and late toxicity results remain to be evaluated for both patient positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号