首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary MboI, HinfI and ThaI cleavage maps have been constructed for the region of the mitochondrial DNA from S. cerevisiae where transfer RNA genes are principally located. About 40 cleavage sites have been localized between the C and P genetic markers. The MboI map covers about 50% of the total mitochondrial genome. For constructing maps we have used a series of rho deletion mutants whose mitochondrial DNAs have a typical single deletion structure as judged by previous genetic and physical analyses. The mutant DNAs carry known transfer RNA genes and genetic markers and, therefore, the comparison between genetic and restriction maps has allowed us to localize individual transfer RNA genes within defined physical segments.Abbreviations bp base pairs - mtDNA mitochondrial DNA - tRNA transfer RNA - rRNA ribosomal RNA - ThaI formerly TacI  相似文献   

2.
Summary A physical map of the mitochondrial DNA isolated from B. oleracea (cauliflower) inflorescences was constructed with the restriction endonucleases Sall, Kpnl and Bgll. Physical mapping was made using the multi enzyme method with either unlabeled or labeled DNA fragments isolated by preparative electrophoresis and a clone bank prepared by inserting incomplete Sall restriction digests of mitochondrial DNA into a cosmid vector.The different mapping studies led to a circular map, about 217 kb in size, containing the entire sequence complexity of the genome. The 26S and 18S – 5S ribosomal RNA genes appeared to be separated by about 75 kb in this map. However, the particular cross-hybridization between several restriction fragments and the sequential diversity of some cosmids indicated that intra molecular recombination may occur naturally in higher plant mitochondria. Namely, one recombinational event resulted in the ribosomal RNA genes mapping closer together.Abbreviations mtDNA mitochondrial DNA - kb kilobasepairs - rRNA ribosomal RNA - LGT agarose low gelling temperature agarose  相似文献   

3.
Three previously described genes that affect baker's yeast (Saccharomyces cerevisiae) mitochondrial DNA (mtDNA) or mitochondrial RNA, tpm2-1, mnal-1, and mgml-1, are shown to be alleles of the same gene. This report demonstrates that tpm2-1 does not affect recombination of mtDNA. Therefore, there is no evidence that this dynamin-like protein is involved in movement of mtDNA within a cell.  相似文献   

4.
Falcone  Claudio 《Current genetics》1984,8(6):449-455
Summary The mitochondrial genomes of yeasts are circular DNA molecules that vary greatly in size in different species. The mitochondrial DNA of the yeast H. petersonii is about 42 kbp in length, about one half the size of the corresponding genome in S. cerevisiae. Sequences homologous to protein-encoding genes from S. cerevisiae have been identified and localized on this genome by hybridization with DNA from petite mutants. The comparison between the mitochondrial genomes of H. petersonii and S. cerevisiae showed differences in the overall genome organization, but both include genes with mosaic organization. In fact, sequences homologous to the first intron of the S. cerevisiae cob short gene are found in (or adjacent to) the cob and cox1 genes present in the genome of H. petersonii. Moreover, an intron homologous to that present in the 21S rRNA gene of S. cerevisiae seems to have been conserved in the large ribosomal RNA gene of H. petersonii, in a similar position.  相似文献   

5.
Summary The mitochondrial chromosome of Cochliobolus heterostrophus is a circle approximately 115 kb in circumference, among the largest known from fungi. A physical map of C. heterostrophus mtDNA was constructed using the restriction enzymes BamHI, EcoRI, and PvulI by DNA-DNA hybridizations with cloned or purified mtDNA BamHI fragments. The following sequences were located on the mtDNA map: (1) the large and small mitochondrial ribosomal RNA genes (identified by heterologous hybridization to cloned Neurospora crassa rRNA genes); (2) the sequence homologous to a mitochondrial plasmid present in one field isolate of C. heterostrophus; and (3) a 1.05 kb EcoRI fragment that functions as an autonomously replicating sequence in Saccharomyces cerevisiae. An examination of mtDNA from 23 isolates of C. heterostrophus collected worldwide revealed polymorphisms in restriction enzyme sites. One such polymorphism, coupled with data on a polymorphism in nuclear rDNA, suggests that there are two genetically distinct but geographically overlapping mating populations of C. heterostrophus in the world.  相似文献   

6.
Summary The mitochondrial DNA (mtDNA) of a cytoplasmic petite mutant (DS401) of Saccharomyces cerevisiae genetically marked for the ATPase proteolipid, serine tRNA and varl genes has been characterized by restriction endonuclease analysis and DNA sequencing. The DS401 mtDNA segment is 5.3 kb long spanning the region between 79.1 and 86.8 units of the wild type genome. Most of the DS401 mtDNA consists of A+T rich sequences. In addition, however, there are ten short sequences with a high content of G+C and two sequences that have been identified as the ATPase proteolipid and the serine tRNA genes. The two genes map at 81 and 83 units and are transcribed from the same DNA strand. Even though there are other possible coding sequences in the DNA segment, none are sufficiently long to code for a gene product of the size of the varl protein. Based on the relative organization of the G+C rich clusters and genes, a model has been proposed for the processing of mitochondria) RNA. This model postulates the existence of mitochondrial double strand specific RNases that cleave the RNA at the G+C clusters.  相似文献   

7.
Summary Mitochondrial DNA from the aquatic fungus Blastocladiella emersonii Cantino and Hyatt has been isolated and characterized. By restriction enzyme analysis the size of the mitochondrial genome was found to be 35.5 kb pairs. A restriction site map was constructed using the cleavage data for 6 endonucleases which showed the mitochondrial genome to be circular. The genes for the small and large ribosomal RNA, the ATPase subunits 6 and 9, the cytochrome c oxidase subunits 1, 2, and 3, and the apocytochrome b were located in the mitochonridal genome of B. emersonii by hybridizations with mitochondrial DNA probes from Saccharomyces cerevisiae and Neurospora crassa  相似文献   

8.
Summary Mitochondrial DNA (mtDNA) found in the basidiomycete Schizophyllum commune (strain 4–40) is a circular molecule 49.75 kbp in lenght. A physical map containing 61 restriction sites revealed no repeat structures. Cloned genes from Neurospora crassa, Aspergillus nidulans, and Saccharomyces cerevisiae were used in Southern hybridizations to locate nine mitochondrial genes, including a possible pseudogene of ATPase 9, on the restriction map. A probe from a functional ATPase 9 gene identified homologous fragments only in the nuclear genome of S. commune. Restriction fragment length polymorphisms (RFLPs) between mtDNA isolated from different strains of S. commune were used to show that mitochondria do not migrate with nuclei during dikaryosis.  相似文献   

9.
Mitochondrial DNA was isolated from a yeast-like microorganism, Endomyces (Dipodascus) magnusii. The mtDNA consisted of circular molecules 40.4 kb long. A restriction map was constructucted using the cleavage data of seven endonuclease. The arrangement of several genes within the mitochondrial genome of E. magnusii was established by specific hybridization with probes prepared from the mtDNA of Saccharomyces cerevisiae.  相似文献   

10.
Specific mutations in nuclear MGI genes encoding the α, β and γ subunits of the mitochondrial inner membrane F1-ATPase complex allow mitochondrial DNA (mtDNA) to be lost from K. lactis. In the absence of a mutation in any of these three nuclear genes, loss of mtDNA is lethal. These results imply that mtDNA encodes a gene that is essential. Likely candidates for such an essential role are the ATP6, 8 and 9 genes coding for proteins of the ATP synthase-F0 component. The present study removes ATP9 from contention as a vital mitochondrial gene because in a respiratory deficient mutant, Gly 3.9, lacking a nuclear mgi mutation, we have found that a rearrangement in mtDNA has deleted 22 amino acids from the carboxy terminus of the 75 amino-acid subunit-9 protein. Rearrangement in mtDNA has occurred by recombination at a 23-bp repeated sequence in the introns of the ATP9 and large ribosomal RNA (LSU) subunit genes. These two introns, of 394 (ATP9) and 410 (LSU) nucleotides, both belong to group 1. Received: 5 December 1996 / 6 March 1997  相似文献   

11.
Summary The extranuclearly-inherited ragged growth phenotype (Rgd) of Aspergillus amstelodami is always accompanied by excision and head-to-tail amplification of mtDNA sequences. In one mutant strain (Rgd1) the amplified mtDNA segment (rgd1 DNA, monomeric length 0.9 kb) maps downstream of the large subunit ribosomal RNA gene (Region 1), whereas in all other strains analyzed the amplified sequences (rdg3-7DNA) are located in Region 2 between genes coding for cytochrome b and ATPase subunit 6. The various region 2 sequences differ in lengths (1.5 to 2.7 kb) but have in common a 215 bp sequence mapping between an. unidentified protein gene (corresponding to URF4 of human mtDNA) and an arginine tRNA gene. This common sequence may contain an origin of replication, because a looped-out hairpin structure similar to that of yeast and human mitochondrial origin sequences can be formed. Furthermore, Region 2 DNA suppresses replication of Region 1 DNA, indicating that the former group of molecules contains the more efficient origin. The nucleotide sequence of the rgd6 repeat unit starts and ends within protein genes of mtDNA, and no homologies were found between heads and tails or their flanking sequences.Abbreviations mtDNA DNA isolated from DNase — treated mitochondria - Rgd ragged mutant strain - rgdDNA highly-reiterated DNA sequences isolated simultaneously with the wild-type genome from mitochondria of ragged mutants - bp base pairs - kb kilobase pairs - URF unassigned reading frame  相似文献   

12.
Mitochondria were isolated from the dimorphic zygomycete Mucor racemosus by differential centrifugation. DNA from the organelles was purified by cesium chloride-ethidium bromide isopycnic centrifugation. Examination of the mitochondrial DNA by electron microscopy revealed a circular chromosome approximately 63.8 kbp in circumference. The chromosome was digested with restriction endonucleases and the resulting DNA fragments were separated by agarose-gel electrophoresis. Electrophoretic mobilities and stoichiometry of the fragments indicated a mixed population of mtDNA molecules each with a size of about 63.4 kbp. Physical maps were constructed from analyses of fragments generated in single and double restriction digests and from the hybridization of fragments to probes for the large and small mitochondrial rRNA genes from Saccharomyces cerevisiae. The Mucor mitochondrial chromosome was found to exist in the form of two flip-flop isomers with inverted repeat sequences encoding both rRNA genes.  相似文献   

13.
A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.  相似文献   

14.
The nuclear gene MRP10 of Saccharomyces cerevisiae was cloned by complementation of a respiratory deficient mutant N518/L1. This mutant is defective in mitochondrial translation and shows a tendency to accumulate deletions in mitochondrial DNA (ρ ). Analysis revealed Mrp10p to be a component of the 37 S subunit of the mitochondrial ribosomes. Disruption of MRP10 in a haploid strain of yeast elicits a phenotype identical to that of the original mutant. The respiratory defect of the null mutant is rescued by re-introducing the MRP10 gene in a wild-type mitochondrial DNA background. These results indicate that Mrp10p belongs to the class of yeast mitochondrial ribosomal proteins that are essential for translation. Searches of current databases failed to reveal any homologs among known bacterial or eucaryotic cytoplasmic ribosomal proteins. Some sequence similarity, however, was detected between Mrp10p and Yml37p, previously identified as a component of the yeast mitochondrial 50 S ribosomal subunit. Received: 21 November 1996  相似文献   

15.
16.
The transfer of organelle nucleic acid to the nucleus has been observed in both plants and animals. Using a unique assay to monitor mitochondrial DNA escape to the nucleus in the yeast Saccharomyces cerevisiae, we previously showed that mutations in several nuclear genes, collectively called yme mutants, cause a high rate of mitochondrial DNA escape to the nucleus. Here we demonstrate that mtDNA escape occurs via an intracellular mechanism that is dependent on the composition of the growth medium and the genetic state of the mitochondrial genome, and is independent of an RNA intermediate. Isolation of several unique second-site suppressors of the high rate of mitochondrial DNA-escape phenotype of yme mutants suggests that there are multiple independent pathways by which this nucleic acid transfer occurs. We also demonstrate that the presence of centromeric plasmids in the nucleus can reduce the perceived rate of DNA escape from the mitochondria. We propose that mitochondrial DNA-escape events are manifested as unstable nuclear plasmids that can interact with centromeric plasmids resulting in a decrease in the number of observed events. Received: 21 April / 7 June 1999  相似文献   

17.
Summary The ribosomal RNA genes of Yarrowia lipolytica have been identified, both in restriction digests of total genomic DNA and in a pBR322 gene bank, by hybridisation with cloned Saccharomyces cerevisiae rDNA. The Y. lipolytica rDNA repeat unit is 8.9 kb in size and contains the genes for the 25S and 18S, but not the 5S, rRNA species. The number of copies of these repeat units is approx. 50 per haploid genome. Several clones were found which did not conform to the standard restriction map due to differences outside the coding region. It appears that there is either heterogeneity of the spacer sequence within a strain or that the Y. lipolytica rDNA genes may be present as a number of separate clusters within this yeast's genome.  相似文献   

18.
A 3667-base pair (bp) fragment of the mitochondrial genome of the crustaceanDaphnia pulex has been sequenced and found to contain the complete genes for the small subunit ribosomal RNA, ND2, seven tRNAs and the control region. This organization is identical to that found inDrosophila yakuba mtDNA yetD. pulex mtDNA exhibits several unique features when compared to other mitochondrial sequences. The sequenced fragment is only 62.6% A+T which is much lower than that of any other arthropod mtDNA sequenced to date.D. pulex mtDNA also exhibits length conservation having shorter coding and non-coding regions. The putative control region is 689 bp in length and includes a sequence that has the potential to fold into a hairpin structure with a perfect 20-bp pair stem and a 22-base loop.  相似文献   

19.
Mitochondrial (mt) DNA of the asexual ascomycetous yeast Arxula adeninivorans LS3 was isolated and characterized. The mtDNA has a GC content of 30.3 mol%. It is circular and its size, as estimated by restriction analysis performed with nine endonucleases, was 35.5 kbp. Using mt gene-probes from Saccharomyces cerevisiae six structural genes (cob, cox1, cox2, oli1, oli2, and 21S rRNA) were located on the mitochondrial genome of A. adeninivorans. The comparison between the mt genomes of A. adeninivorans and other yeasts showed differences in genome organization.  相似文献   

20.
Summary DNA encoding ribosomal RNA (rRNA) of Alternaria alternata Japanese pear pathotype has been cloned in , replacement vector, , Fix. Restriction endonuclease mapping and Southern hybridization with the 18S and 28S rRNAs of Saccharomyces cerevisiae revealed the A. alternata rDNA to be tandemly repeating 8.15-kilobase pair unit. The restriction fragments of the unit were then subcloned in the plasmid vector Bluescribe M13- and partially sequenced. The determined sequences were compared with previously reported sequences of S. cerevisiae rRNAs and their genes. The locations of DNA sequences encoding the 5.8S, 18S, and 28S rRNAs were determined by homology search using reported sequences. The complete DNA sequence for 5.8S rRNA of the fungus was found to be highly conserved at more than 90 % homology in the fungi analyzed. However, sequence diversities were observed in limited regions involved in a helix structure, the helix (e), found at position 116–137.Deceased  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号