首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mossy fiber sprouting and the genesis of ectopic granule cells contribute to reverberating excitation in the dentate gyrus of epileptic brain. This study determined whether the extent of sprouting after status epilepticus in rats correlates with the seizure-induced degeneration of GluR2-immunoreactive (GluR2+) hilar neurons (presumptive mossy cells) and also quantitated granule cell-like GluR2-immunoreactive hilar neurons. Stereological cell counting indicated that GluR2+ neurons account for 57% of the total hilar neuron population. Prolonged pilocarpine-induced status epilepticus killed 95% of these cells. A smaller percentage of GluR2+ neurons (74%) was killed when status epilepticus was interrupted after 1-3.5 h with a single injection of phenobarbital, and the number of residual GluR2+ neurons varied among animals by a factor of 6.2. GluR2+ neurons were not necessarily more vulnerable than other hilar neurons. In rats administered phenobarbital, the extent of recurrent mossy fiber growth varied inversely and linearly with the number of GluR2+ hilar neurons that remained intact (P=0.0001). Thus the loss of each GluR2+ neuron was associated with roughly the same amount of sprouting. These findings support the hypothesis that mossy fiber sprouting is driven largely by the degeneration of and/or loss of innervation from mossy cells. Granule cell-like GluR2-immunoreactive neurons were rarely encountered in the hilus of control rats, but increased 6- to 140-fold after status epilepticus. Their number did not correlate with the extent of hilar cell death or mossy fiber sprouting in the same animal. The morphology, number, and distribution of these neurons suggested that they were hilar ectopic granule cells.  相似文献   

2.
Prolonged dentate granule cell discharges produce hippocampal injury and chronic epilepsy in rats. In preparing to study this epileptogenic process in genetically altered mice, we determined whether the background strain used to generate most genetically altered mice, the C57BL/6 mouse, is vulnerable to stimulation‐induced seizure‐induced injury. This was necessary because C57BL/6 mice are reportedly resistant to the neurotoxic effects of kainate‐induced seizures, which we hypothesized to be related to strain differences in kainate's effects, rather than genetic differences in intrinsic neuronal vulnerability. Bilateral perforant pathway stimulation‐induced granule cell discharge for 4 hours under urethane anesthesia produced degeneration of glutamate receptor subunit 2 (GluR2)‐positive hilar mossy cells and peptide‐containing interneurons in both FVB/N (kainate‐vulnerable) and C57BL/6 (kainate‐resistant) mice, indicating no strain differences in neuronal vulnerability to seizure activity. Granule cell discharge for 2 hours in C57BL/6 mice destroyed most GluR2‐positive dentate hilar mossy cells, but not peptide‐containing hilar interneurons, indicating that mossy cells are the neurons most vulnerable to this insult. Stimulation for 24 hours caused extensive hippocampal neuron loss and injury to the septum and entorhinal cortex, but no other detectable damage. Mice stimulated for 24 hours developed hippocampal sclerosis, granule cell mossy fiber sprouting, and chronic epilepsy, but not the granule cell layer hypertrophy (granule cell dispersion) produced by intrahippocampal kainate. These results demonstrate that perforant pathway stimulation in mice reliably reproduces the defining features of human mesial temporal lobe epilepsy with hippocampal sclerosis. Experimental studies in transgenic or knockout mice are feasible if electrical stimulation is used to produce controlled epileptogenic insults. J. Comp. Neurol. 515:181–196, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video‐monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1‐immunocytochemistry, GluR2‐immunocytochemistry, Timm stain, glial fibrillary acidic protein‐immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin‐immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin‐positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.  相似文献   

4.
Genetic dissection of the signals that induce synaptic reorganization   总被引:7,自引:0,他引:7  
Synaptic reorganization of mossy fibers following kainic acid (KA) administration has been reported to contribute to the formation of recurrent excitatory circuits, resulting in an epileptogenic state. It is unclear, however, whether KA-induced mossy fiber sprouting results from neuronal cell loss or the seizure activity that KA induces. We have recently demonstrated that certain strains of mice are resistant to excitotoxic cell death, yet exhibit seizure activity similar to what has been observed in rodents susceptible to KA. The present study takes advantage of these strain differences to explore the roles of seizure activity vs cell loss in triggering mossy fiber sprouting. In order to understand the relationships between gene induction, cell death, and the sprouting response, we assessed the regulation of two molecules associated with the sprouting response, c-fos and GAP-43, in mice resistant (C57BL/6) and susceptible (FVB/N) to KA-induced cell death. Following administration of KA, increases in c-fos immunoreactivity were observed in both strains, although prolonged induction of c-fos was present only in the hippocampal neurons of FVB/N mice. Mossy fiber sprouting following KA administration was also only observed in FVB/N mice, while induction of GAP-43, a marker associated with mossy fiber sprouting, was not observed in either strain. These results indicate that: (i) KA-induced seizure activity alone is insufficient to induce mossy fiber sprouting; (ii) mossy fiber sprouting may be due to the loss of hilar neurons following kainate administration; and (iii) induction of GAP-43 is not a necessary component of the sprouting response that occurs following KA in mice.  相似文献   

5.
Dentate granule cells and the hippocampal CA2 region are resistant to cell loss associated with mesial temporal lobe epilepsy (MTLE). It is known that granule cells undergo mossy fiber sprouting in the dentate gyrus which contributes to a recurrent, proepileptogenic circuitry in the hippocampus. Here it is shown that mossy fiber sprouting also targets CA2 pyramidal cell somata and that the CA2 region undergoes prominent structural reorganization under epileptic conditions. Using the intrahippocampal kainate mouse model for MTLE and the CA2‐specific markers Purkinje cell protein 4 (PCP4) and regulator of G‐Protein signaling 14 (RGS14), it was found that during epileptogenesis CA2 neurons survive and disperse in direction of CA3 and CA1 resulting in a significantly elongated CA2 region. Using transgenic mice that express enhanced green fluorescent protein (eGFP) in granule cells and mossy fibers, we show that the recently described mossy fiber projection to CA2 undergoes sprouting resulting in aberrant large, synaptoporin‐expressing mossy fiber boutons which surround the CA2 pyramidal cell somata. This opens up the potential for altered synaptic transmission that might contribute to epileptic activity in CA2. Indeed, intrahippocampal recordings in freely moving mice revealed that epileptic activity occurs concomitantly in the dentate gyrus and in CA2. Altogether, the results call attention to CA2 as a region affected by MTLE‐associated pathological restructuring. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The objective of this work is to check whether the input from the mossy cells to the inner molecular layer is necessary for the integration and maturation of the newly generated granule cells of the dentate gyrus (DG) in mice, and if after status epilepticus the sprouting of the mossy fibers can substitute for this projection. Newly generated cells were labeled by administration of 5-bromo-deoxyuridine either before or after pilocarpine administration. The neuronal loss in the hippocampus after administration of pilocarpine combined with scopolamine and diazepam seemed restricted to the hilar mossy cells. The maturation of the granule cells was studied using immunohistochemistry for calretinin and NeuN in combination with detection of 5-bromo-deoxyuridine. The sprouting of the mossy fibers was detected using Timm staining for zinc-rich boutons. In normal conditions, granule cells took about 2 weeks to lose the immature marker calretinin. After the loss of the mossy cells, newly generated granule cells remained expressing calretinin for more than a month, until the sprouting of the mossy fibers substituted for the projection of the mossy cells in the inner molecular layer of the DG. Therefore, a proper pattern of connectivity is necessary for the normal development and integration of newly generated granule cells in the adult brain. In a changed environment they cannot adapt transforming in other cell types; simply they are unable to mature. The sprouting of the mossy fibers, although aberrant and a probable source of epileptic activity, may be important for the correct physiology of the granule cells, restoring a likeness of normality in their connective environment. The survival of granule cells incorporated as mature neurons was increased after pilocarpine when compared with normal conditions. Thus, it is likely that the reorganization of the circuitry after the loss of the mossy cells facilitates the survival and incorporation of the newly generated granule cells.  相似文献   

7.
Morphological data from humans with temporal lobe epilepsy and from animal models of epilepsy suggest that seizure-induced damage to dentate hilar neurons causes granule cells to sprout new axon collaterals that innervate other granule cells. This aberrant projection has been suggested to be an anatomical substrate for epileptogenesis. This hypothesis was tested in the present study with intra- and extracellular recordings from granule cells in hippocampal slices removed from rats 1-4 months after kainate treatment. In this animal model, hippocampal cell loss leads to sprouting of mossy fiber axons from the granule cells into the inner molecular layer of the dentate gyrus. Unexpectedly, when slices with mossy fiber sprouting were examined in normal medium, extracellular stimulation of the hilus or perforant path evoked relatively normal responses. However, in the presence of the GABAA-receptor antagonist, bicuculline, low-intensity hilar stimulation evoked delayed bursts of action potentials in about one-quarter of the slices. In one-third of the bicuculline-treated slices with mossy fiber sprouting, spontaneous bursts of synchronous spikes were superimposed on slow negative field potentials. Slices from normal rats or kainate-treated rats without mossy fiber sprouting never showed delayed bursts to weak hilar stimulation or spontaneous bursts in bicuculline. These data suggest that new local excitatory circuits may be suppressed normally, and then emerge functionally when synaptic inhibition is blocked. Therefore, after repeated seizures and excitotoxic damage in the hippocampus, synaptic reorganization of the mossy fibers is consistently associated with normal responses; however, in some preparations, the mossy fibers may form functional recurrent excitatory connections, but synaptic inhibition appears to mask these potentially epileptogenic alterations.  相似文献   

8.
Mossy cells are the major class of excitatory neurons in the dentate hilus. Although mossy cells are involved in a range of physiological and pathological conditions, very little is known about their ontogeny. To gain insight into this issue, we first determined the developmental stage at which mossy cells can be reliably identified with the molecular markers calretinin and GluR2/3 and found that hilar mossy cells were first identifiable around the end of the 1st postnatal week. Birthdating studies combined with staining for these markers revealed that the appearance of mossy cells coincided with the first wave of dentate granule cell production during mid-gestation. Since mossy cells are born as the first granule cells are produced and it is believed that mossy cells originate from the neuroepithelium adjacent to the dentate progenitor zone, we examined to what extent the development of mossy cells is controlled by the same molecular pathways as that of granule cells. To do this, we analyzed the production of mossy cells in Lef1 and NeuroD mutant animals, in which granule cell production is disrupted during precursor proliferation or neuronal differentiation, respectively. The production of mossy cells was almost entirely lost in both mutants. Collectively, these data suggests that hilar mossy cells, unlike CA subfield pyramidal cells, are influenced by many of the same developmental cues as dentate granule cells.  相似文献   

9.
Compared to other brain regions, the hippocampus shows considerable susceptibility to the aging process. Aging may impair the compensatory plastic response of hippocampal neurons following lesions, target loss, and/or deafferentation. We hypothesize that sprouting of dentate granule cell axons (mossy fibers) in response to target loss and partial deafferentation diminishes with age. We quantified mossy fiber sprouting into the dentate supragranular layer (DSGL) following intracerebroventricular kainic acid administration in young adult, middle-aged, and aged rats, using Timm's histochemical method. Mossy fiber ingrowth into the DSGL was assessed in the septal hippocampus at 2- and 4 months postlesion by measuring both the average width and the relative density of sprouted terminals. Kainic acid lesions produced degeneration of CA3 pyramids with sparing of CA1 and dentate granule cells in all age groups. Although young adults demonstrated robust DSGL mossy fiber sprouting, sprouting was significantly reduced in both middle-aged and aged rats. Compared to the case in young adults, the overall sprouting in middle-aged animals was reduced by 52% at 2 months and 50% at 4 months postlesion, whereas in aged rats the sprouting was reduced by 53% at 2 months and 64% at 4 months postlesion. Aged animals also showed an overall reduction of 28% compared to middle-aged animals at 4 months postlesion. Dramatically reduced sprouting in aged animals may represent a deficit in recognition of target loss and partial deafferentation by aged granule cells and/or an impaired up-regulation of factors that stimulate neurite outgrowth in the aged brain.  相似文献   

10.
Kainic acid induction of mossy fiber sprouting: dependence on mouse strain   总被引:1,自引:0,他引:1  
After seizures caused by kindling or kainic acid (KA), hippocampal granule-cell axons, the mossy fibers, sprout into the supragranular layer of the rat. The mechanisms underlying this phenomenon remain elusive, but excitotoxic loss of hilar cells, which project to this supragranular layer, is suspected to be a critical determinant. Consistent with this hypothesis, we previously reported that while rats show mossy fiber sprouting after kainate, ICR mice do not. This may be associated with the observation that ICR mice, unlike rats, do not appear to show hilar cell death after KA (McNamara et al., Mol Brain Res 1996;40:177-187). Other strains of mice, however, such as 129/SvEMS, do show hilar cell death after KA (Schauwecker and Steward, Proc Natl Acad Sci USA 1997;94:4103-4108). We examined the possibility that the 129/SvEMS mouse strain would show granule-cell sprouting, in contrast to ICR mice. After administration of KA, mossy fiber sprouting was indeed observed in strain 129/SvEMS, but only in animals displaying evident hilar cell death. In contrast, neither hilar cell death nor mossy fiber sprouting was observed in ICR mice, confirming previous results. Both mouse strains demonstrated comparable behavioral seizures. These results strengthen the view that hilar cell death, together with epileptogenesis, triggers reactive synaptogenesis and mossy fiber sprouting.  相似文献   

11.
Mossy fiber sprouting into the inner molecular layer of the dentate gyrus is an important neuroplastic change found in animal models of temporal lobe epilepsy and in humans with this type of epilepsy. Recently, we reported in the perforant path stimulation model another neuroplastic change for dentate granule cells following seizures: hilar basal dendrites (HBDs). The present study determined whether status epilepticus-induced HBDs on dentate granule cells occur in the pilocarpine model of temporal lobe epilepsy and whether these dendrites are targeted by mossy fibers. Retrograde transport of biocytin following its ejection into stratum lucidum of CA3 was used to label granule cells for both light and electron microscopy. Granule cells with a heterogeneous morphology, including recurrent basal dendrites, and locations outside the granule cell layer were observed in control preparations. Preparations from both pilocarpine and kainate models of temporal lobe epilepsy also showed granule cells with HBDs. These dendrites branched and extended into the hilus of the dentate gyrus and were shown to be present on 5% of the granule cells in pilocarpine-treated rats with status epilepticus, whereas control rats had virtually none. Electron microscopy was used to determine whether HBDs were postsynaptic to axon terminals in the hilus, a site where mossy fiber collaterals are prevalent. Labeled granule cell axon terminals were found to form asymmetric synapses with labeled HBDs. Also, unlabeled, large mossy fiber boutons were presynaptic to HBDs of granule cells. These results indicate that HBDs are present in the pilocarpine model of temporal lobe epilepsy, confirm the presence of HBDs in the kainate model, and show that HBDs are postsynaptic to mossy fibers. These new mossy fiber synapses with HBDs may contribute to additional recurrent excitatory circuitry for granule cells.  相似文献   

12.
In human hippocampal epilepsy, there is a consistent pathology of cell loss and reactive synaptic reorganization of ‘excitatory' mossy fibers (MF) into the inner molecular layer (IML) of the fascia dentata (FD). In this study, neo-Timm's histochemistry of MFs and immunocytochemistry of GluR1 were used to determine, in patients with or without hippocampal sclerosis (HS), if there was a correlation between aberrant supragranular (IML) mossy fiber sprouting and increased densities of AMPA GluR1 subunit proteins in the IML of the FD. Computerized quantified densitometric grey values of Timm and GluR1 densities were corrected for the densities of granule cell losses using cell counts. In the IML of the HS group, despite the losses of granule cells, mossy fiber sprouting was significantly greater (P<0.000001) and GluR1 protein densities were significantly higher (P<0.0005) than those of the non-HS group. Unlike supragranular mossy fiber sprouting, which was limited to the IML, the increased GluR1 stainings were distributed throughout the whole molecular layer. For all cases, MF synaptic reorganization in the supragranular ML was correlated with GluR1 subunit protein densities in the IML (R=0.784, P<0.0093). These data demonstrate that in the human epileptic fascia dentata, there are significantly increased AMPA GluR1 subunit proteins associated with aberrant MF synaptic reorganizations. This suggests that the hyperexcitability of sclerotic hippocampus occurs, at least in part, from the associated changes of both presynaptic mossy fiber glutamatergic neoinnervation and increased GluR1 subunit proteins in the dendritic domains of the FD.  相似文献   

13.
Single injection of kainate into the dorsal hippocampus of adult mice induced long-lasting hypertrophy and dispersion of dentate granule cells with dendritic hypertrophy and mossy fiber sprouting that resembled human hippocampal sclerosis. Our previous study indicated that brain derived neurotrophic factor was related to the initiation of these morphological changes. In this study, gene expression of the enlarged hippocampus was examined by differential display to find the gene relating to the progression of the pathological changes. Several genes were identified that were overexpressed in the enlarged dentate gyrus. One of them was highly homologous with mouse Flamingo1/Celsr2, suggesting that mouse Flamingo1/Celsr2 is related to the development of hippocampal sclerosis.  相似文献   

14.
Our preliminary results showed that mossy fibres do not undergo sprouting after global ischaemia in gerbils, although the pattern of hippocampal cell damage resembled that seen in ischaemic and epileptic rats, where mossy fibre sprouting is known to occur. In order to investigate whether the observed differences in the appearance of mossy fibre sprouting are related to the animal model or species used, this study was undertaken to compare the neuropathological changes induced in gerbils by systemic injection of kainate or by occlusion of carotid arteries with the changes induced in rats by injection of kainate. The pattern of pyramidal cell damage was very similar in each group. Mossy fibre sprouting was present in epileptic rats but not in ischaemic or epileptic gerbils. The number of somatostatin-immunoreactive neurons was decreased in the hilus of epileptic rats and ischaemic gerbils, but not in epileptic gerbils. The analysis of calretinin immunoreactivity in the dentate gyrus revealed differences between the rat and gerbil. The most striking difference between these species was that the mossy cells contained calretinin in gerbils but not in rats. Cell counting showed that the calretinin-containing mossy cells had survived both in epileptic and ischaemic gerbils. Therefore, since the mossy cells are known to be highly susceptible to excitotoxic insult in rats and degeneration of these cells is thought to be a key element in the induction of mossy fibre sprouting, we propose that the absence of mossy fibre sprouting in gerbils is related to the survival of the mossy cells.  相似文献   

15.
Buckmaster PS 《Epilepsia》2004,45(5):452-458
PURPOSE: Mossy fiber sprouting is a common abnormality found in patients and models of temporal lobe epilepsy. The role of mossy fiber sprouting in epileptogenesis is unclear, and its blockade would be useful experimentally and perhaps therapeutically. Results from previous attempts to block mossy fiber sprouting have been disappointing or controversial. In some brain regions, prolonged application of the sodium channel blocker tetrodotoxin prevents axon sprouting and posttrauma epileptogenesis. The present study tested the hypothesis that prolonged, focal infusion of tetrodotoxin would block mossy fiber sprouting after an epileptogenic treatment. METHODS: Adult rats were treated with pilocarpine to induce status epilepticus. Several hours to 3 days after pilocarpine treatment, a pump with a cannula directed toward the dentate gyrus was implanted to deliver 10 microM tetrodotoxin or vehicle alone at 0.25 microl/h. This method blocks local EEG activity in the hippocampus (Galvan et al. J Neurosci 2000; 20:2904-16). After 28 days of continuous infusion, rats were perfused with fixative, and their hippocampi analyzed anatomically with stereologic techniques. RESULTS: Tetrodotoxin infusion was verified immunocytochemically in tetrodotoxin-treated but not vehicle-treated hippocampi. Tetrodotoxin-infused and vehicle-infused hippocampi displayed similar levels of hilar neuron loss. The Timm stain revealed mossy fiber sprouting regardless of whether hippocampi were treated with tetrodotoxin infusion, vehicle infusion, or neither. CONCLUSIONS: Prolonged infusion of tetrodotoxin did not block mossy fiber sprouting. This finding suggests that sodium channel-mediated neuronal activity is not necessary for mossy fiber sprouting after an epileptogenic treatment.  相似文献   

16.
Purpose: We have recently reported that viral vector–mediated supplementation of fibroblast growth factor‐2 (FGF‐2) and brain‐derived neurotrophic factor (BDNF) in a lesioned, epileptogenic rat hippocampus limits neuronal damage, favors neurogenesis, and reduces spontaneous recurrent seizures. To test if this treatment can also prevent hippocampal circuit reorganization, we examined here its effect on mossy fiber sprouting, the best studied form of axonal plasticity in epilepsy. Methods: A herpes‐based vector expressing FGF‐2 and BDNF was injected into the rat hippocampus 3 days after an epileptogenic insult (pilocarpine‐induced status epilepticus). Continuous video–electroencephalography (EEG) monitoring was initiated 7 days after status epilepticus, and animals were sacrificed at 28 days for analysis of cell loss (measured using NeuN immunofluorescence) and mossy fiber sprouting (measured using dynorphin A immunohistochemistry). Key Findings: The vector expressing FGF‐2 and BDNF decreased both mossy fiber sprouting and the frequency and severity of spontaneous seizures. The effect on sprouting correlated strictly with the cell loss in the terminal fields of physiologic mossy fiber innervation (mossy cells in the dentate gyrus hilus and CA3 pyramidal neurons). Significance: These data suggest that the supplementation of FGF‐2 and BDNF in an epileptogenic hippocampus may prevent epileptogenesis by decreasing neuronal loss and mossy fiber sprouting, that is, reducing some forms of circuit reorganization.  相似文献   

17.
We have studied the organization and cellular differentiation of dentate granule cells and their axons, the mossy fibers, in reeler mutant mice lacking reelin and in mutants lacking the reelin receptors very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). We show that granule cells in reeler mice do not form a densely packed granular layer, but are loosely distributed throughout the hilar region. Immunolabeling for calbindin and calretinin revealed that the sharp border between dentate granule cells and hilar mossy cells is completely lost in reeler mice. ApoER2/VLDLR double-knockout mice copy the reeler phenotype. Mice deficient only in VLDLR showed minor alterations of dentate organization; migration defects were more prominent in ApoER2 knockout mice. Tracing of the mossy fibers with Phaseolus vulgaris leukoagglutinin and calbindin immunolabeling revealed an irregular broad projection in reeler mice and ApoER2/VLDLR double knockouts, likely caused by the irregular wide distribution of granule cell somata. Mutants lacking only one of the lipoprotein receptors showed only minor changes in the mossy fiber projection. In all mutants, mossy fibers respected the CA3-CA1 border. Retrograde labeling with DiI showed that malpositioned granule cells also projected as normal to the CA3 region. These results indicate that ( 1 ) reelin signaling via ApoER2 and VLDLR is required for the normal positioning of dentate granule cells and (2) the reelin signaling pathway is not involved in pathfinding and target recognition of granule cell axons.  相似文献   

18.
Hippocampal granule cells do not normally express the axonal growth and plasticity-associated protein F1/GAP-43 in the adult rat. Using three different methods that lead to hypersynchronous activity in limbic circuits, expression of F1/GAP-43 mRNA can be induced in granule cells which is followed by sprouting in mossy fibers, the axons of granule cells. F1/GAP-43 mRNA expression in granule cells was induced in the temporal, but not septal, hippocampus beginning at 12 hours after kainic acid (KA) subcutaneous injection (10 mg/kg). Beginning 2 days after KA treatment, mossy fiber sprouts restricted to the temporal hippocampus were observed in the supragranular layer. In the same animal we also observed that levels of protein F1/GAP-43 immunoreactivity in this layer apparently increased at this same 2 day time point and same ventral hippocampal location. F1/GAP-43 protein levels and mossy fiber sprouting showed an increase up to 10 days after KA treatment. Sprouting was at a maximum at 40 days, the longest time point studied. These events parallel axonal regeneration with one critical difference: granule cell axons are not damaged by kainate. The rapid onset of axonal growth in the adult is striking and occurs earlier than reported previously (2 days vs. 12 days). Such growth closely associated with elevated levels of protein F1/GAP-43 may occur as a result of a) reactive synaptogenesis caused by the availability of post-synaptic surface on granule cell dendrites at the supragranular layer, b) Hebbian co-activation of the post-synaptic granule cells and their presynaptic afferents, and c) loss of target-derived inhibitory growth factor. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Seizures induced by fever (febrile seizures) are the most frequent seizures affecting infants and children; however, their impact on the developing hippocampal formation is not completely understood. Such understanding is highly important because of the potential relationship of prolonged febrile seizures to temporal lobe epilepsy. Using an immature rat model, we have previously demonstrated that prolonged experimental febrile seizures render the hippocampus hyperexcitable throughout life. Here we examined whether (1) neuronal loss, (2) altered neurogenesis, or (3) mossy fiber sprouting, all implicated in epileptogenesis in both animal models and humans, were involved in the generation of a pro-epileptic, hyperexcitable hippocampus by these seizures. The results demonstrated that prolonged experimental febrile seizures did not result in appreciable loss of any vulnerable hippocampal cell population, though causing strikingly enhanced sensitivity to hippocampal excitants later in life. In addition, experimental febrile seizures on postnatal day 10 did not enhance proliferation of granule cells, whereas seizures generated by kainic acid during the same developmental age increased neurogenesis in the immature hippocampus. However, prolonged febrile seizures resulted in long-term axonal reorganization in the immature hippocampal formation: Mossy fiber densities in granule cell- and molecular layers were significantly increased by 3 months (but not 10 days) after the seizures. Thus, the data indicate that prolonged febrile seizures influence connectivity of the immature hippocampus long-term, and this process requires neither significant neuronal loss nor altered neurogenesis. In addition, the temporal course of the augmented mossy fiber invasion of the granule cell and molecular layers suggests that it is a consequence, rather than the cause, of the hyperexcitable hippocampal network resulting from these seizures.  相似文献   

20.
Repeated electrical stimulation of limbic structures has been reported to produce the kindling effect together with morphological changes in the hippocampus such as mossy fiber sprouting and/or neuronal loss. However, to argue against a causal role of these neuropathological changes in the development of kindling-associated seizures, we examined mossy fiber sprouting in amygdala (AM)-kindled rats using Timm histochemical staining, and evaluated the hippocampal neuronal degeneration in AM-kindled rats by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labelling (TUNEL). Amygdala kindling was established by 10.3 +/- 0.7 electrical stimulations, and no increase in Timm granules (neuronal sprouting) was observed up to the time of acquisition of a fully kindled state. However, the density and distribution of Timm granules increased significantly in the dentate gyrus compared with unkindled rats after 29 after-discharges or more than 10 kindled convulsions. In addition, no significant increase in TUNEL-positive cells was found in the hilar polymorphic neurons or in CA3 pyramidal neurons of the kindled rats that had fewer than 29 after-discharges. However, a significant increase of TUNEL-positive cells was found in the granule cell layer in the dentate gyrus of the stimulated side after 18 after-discharges or 10 kindled convulsions. Our result show that AM kindling develops without evidence of mossy fiber sprouting, and that mossy fiber sprouting may appear after repeated kindled convulsions, following death of the granule cells in the dentate gyrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号