首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptotic cells must be rapidly cleared, as defects in this process can lead to autoimmunity. Milk fat globule EGF factor 8 (MFG-E8) binds to apoptotic cells and facilitates their removal through interaction with phagocytes. Mice deficient in MFG-E8 develop lupus-like autoimmunity associated with accumulation of apoptotic cells in vivo. Here, we have shown that MFG-E8 controls phagocytic ingestion of cell fragments as well as their intracellular processing into MHC-antigen complexes. Older Mfge8-/- mice spontaneously developed dermatitis associated with CD8+ T cell infiltration and striking activation of effector memory CD8+ T cells. CD8+ T cell responses to both exogenous and endogenous apoptotic cell-associated antigens were enhanced in Mfge8-/- mice. MFG-E8 deficiency accelerated the onset of disease in a mouse model of autoimmune diabetes. Enhanced CD8+ T cell responses were attributed to increased cross-presentation by DCs along with increased detection of antigen-MHCI complexes. Intracellular trafficking analysis revealed that intact apoptotic cells ingested by wild-type DCs rapidly fused with lysosomes, whereas smaller fragments persisted in Mfge8-/- DC endosomal compartments for 24 hours. These observations suggest that MFG-E8 deficiency promotes immune responses to self antigens not only by delaying the clearance of dying cells but also by altering intracellular processing, leading to enhanced self-antigen presentation.  相似文献   

2.
Recombinant porcine parvovirus virus-like particles (PPV-VLPs) are particulate exogenous antigens that induce a strong, specific cytotoxic T lymphocyte (CTL) response in the absence of adjuvant. In the present report, we demonstrate in vivo that dendritic cells (DCs) present PPV-VLPs to CD8+ T cells after intracellular processing. PPV-VLPs are captured by DCs with a high efficacy, which results in the delivery of these exogenous antigens to 50% of the whole spleen DC population. In vivo, a few hours after injection, PPV-VLPs are presented exclusively to CD8+ T cells by CD8alpha- DCs, whereas 15 hours later they are presented mainly by CD8alpha+ DCs. After PPV-VLPs processing, a fraction of CD11b+ DCs undergo phenotypic changes, i.e., the up-regulation of CD8alpha and CD205 and the loss of CD4 molecules on their surface. The failure to detect mRNA coding for CD8alpha in CD11b+ DCs suggests that CD8alpha expression by these cells is not due to de novo synthesis. In recombination-activating gene knockout mice (Rag-/-), CD11b+ DCs did not express CD8alpha and PPV-VLPs presentation by CD8alpha+ DCs was severely diminished. These results indicate that both CD8alpha- and CD8alpha+ DCs play an important role in the induction of CTL responses by exogenous antigens, such as VLP.  相似文献   

3.
CTLA4 is a negative regulator of the costimulatory signals induced by the interaction of CD28 on T cells and B7 on dendritic cells (DCs). Antibodies (Abs) against CTLA4 can block its function and increase the activation of T cells primed to recognize antigens. The effect of CTLA4 blockade on the cross-presentation of tumor antigens by DCs to T cells was examined. Immune T cells and DC precursors were collected from patients receiving idiotype protein-pulsed DC vaccines, exposed to antigen, and examined for antitumor activity by measuring intracellular cytokine production by FACS. Idiotype-specific activation occurred in CD8+ and CD4+ T-cell populations and was up to 58 fold higher with CTLA4 blockade. These T cells could be expanded quickly and maintained tumor cytolytic activity. T-cell responses to whole tumor cell-pulsed DCs were then examined. DCs contain Fc receptors and efficiently phagocytose lymphoma cells when coated with opsonizing anti-CD20 Abs. Within a few hours, DCs ingested tumor cells and labeled proteins were observed in the cytoplasm. When anti-CD20 Ab-coated tumor-pulsed DCs were used in combination with CTLA4 blockade, up to 15 fold higher activation of Id-specific CD8+ and 3 fold higher CD4+ T cells resulted. Thus, CTLA4 blockade can enhance the measurement of Ag-specific T-cell responses and the expansion of T cells for clinical studies. In addition, the combination of CTLA4 blockade and Ab targeting of tumor to DCs is an effective method for the cross-presentation of tumor cell antigens.  相似文献   

4.
Bone marrow-derived antigen-presenting cells (APCs) take up cell-associated antigens and present them in the context of major histocompatibility complex (MHC) class I molecules to CD8(+) T cells in a process referred to as cross-priming. Cross-priming is essential for the induction of CD8(+) T cell responses directed towards antigens not expressed in professional APCs. Although in vitro experiments have shown that dendritic cells (DCs) and macrophages are capable of presenting exogenous antigens in association with MHC class I, the cross-presenting cell in vivo has not been identified. We have isolated splenic DCs after in vivo priming with ovalbumin-loaded beta2-microglobulin-deficient splenocytes and show that they indeed present cell-associated antigens in the context of MHC class I molecules. This process is transporter associated with antigen presentation (TAP) dependent, suggesting an endosome to cytosol transport. To determine whether a specific subset of splenic DCs is involved in this cross-presentation, we negatively and positively selected for CD8(-) and CD8(+) DCs. Only the CD8(+), and not the CD8(-), DC subset demonstrates cross-priming ability. FACS((R)) studies after injection of splenocytes loaded with fluorescent beads showed that 1 and 0.6% of the CD8(+) and the CD8(-) DC subsets, respectively, had one or more associated beads. These results indicate that CD8(+) DCs play an important role in the generation of cytotoxic T lymphocyte responses specific for cell-associated antigens.  相似文献   

5.
Injection of apoptotic cells can induce suppression of immune responses to cell-associated antigens. Here, we show that intravenous injection of apoptotic cells expressing a fragment of myelin oligodendrocyte glycoprotein (MOG) reduced MOG-specific T cell response and prevented the development of EAE. Since injected apoptotic cells accumulated initially in the splenic marginal zone (MZ), the role of macrophages in the MZ in immune suppression was examined using transgenic mice in which these cells could be transiently deleted by diphtheria toxin (DT) injection. DT-treated mice became susceptible to EAE even though MOG-expressing apoptotic cells were preinjected. Deletion of the macrophages caused delayed clearance of injected dying cells in the MZ. In wild-type mice, injected apoptotic cells were selectively engulfed by CD8 alpha(+) DCs, which are responsible for suppression of immune responses to cell-associated antigens. In contrast, deletion of macrophages in the MZ caused aberrant phagocytosis of injected dying cells by CD8 alpha(-)CD11b(+) DCs. These results indicate that macrophages in the MZ regulate not only efficient clearance of apoptotic cells but also selective engulfment of dying cells by CD8 alpha(+) DCs and that functional failure of these unique macrophages impairs suppression of immune responses to cell-associated antigens.  相似文献   

6.
Murine splenic dendritic cells (DCs) can be divided into two subsets based on CD8alpha expression, but the specific role of each subset in stimulation of T cells is largely unknown. An important function of DCs is the ability to take up exogenous antigens and cross-present them in the context of major histocompatibility complex (MHC) class I molecules to CD8(+) T cells. We previously demonstrated that, when cell-associated ovalbumin (OVA) is injected into mice, only the CD8(+) DC subset cross-presents OVA in the context of MHC class I. In contrast to this selectivity with cell-associated antigen, we show here that both DC subsets isolated from mice injected with OVA/anti-OVA immune complexes (OVA-IC) cross-present OVA to CD8(+) T cells. The use of immunoglobulin G Fc receptor (Fc(gamma)R) common gamma-chain-deficient mice revealed that the cross-presentation by CD8(-) DCs depended on the expression of gamma-chain-containing activating FcgammaRs, whereas cross-presentation by CD8(+) DCs was not reduced in gamma-chain-deficient mice. These results suggest that although CD8(+) DCs constitutively cross-present exogenous antigens in the context of MHC class I molecules, CD8(-) DCs only do so after activation, such as via ligation of Fc(gamma)Rs. Cross-presentation of immune complexes may play an important role in autoimmune diseases and the therapeutic effect of antitumor antibodies.  相似文献   

7.
Antigen-specific B cells express major histocompatibility complex class II and can present antigen directly to T cells. Adoptive transfer experiments using transgenic B and T cells demonstrated that antigen-specific B cells can also efficiently transfer antigen to another cell for presentation to T cells in vivo. To identify the antigen-presenting cell that receives antigens from B cells, a strategy was developed to follow the traffic of B cell-derived proteins in vivo. B cells were labeled with the fluorescent dye CFSE and loaded with antigen, before adoptive transfer into recipient mice. Populations of splenocytes from the recipient mice were later assayed for the presence of fluorescent proteins and for the ability to activate T cells. A small number of CD8alpha+CD4-CD11b(lo) dendritic cells (DCs) contain proteins transferred from B cells and these DCs effectively present antigens derived from the B cells to T cells. The results suggest that CD8alpha+ DCs sample the cells and membranes in their environment for presentation to T cells circulating through the T cell zone. This function of CD8alpha+ DCs may be relevant to the priming of an immune response or the induction of T cell tolerance.  相似文献   

8.
9.
To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal alphaDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c- cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When alphaDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4-48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of alphaDEC-205:OVA to DCs in the steady state initially induced 4-7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with alphaDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic alphaCD40 antibody produced large amounts of interleukin 2 and interferon gamma, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.  相似文献   

10.
Cells undergoing programmed cell death (apoptosis) are removed in situ by macrophages and dendritic cells (DCs) through a specialized form of phagocytosis (efferocytosis). In the lung, there are two primary DC subsets with the potential to migrate to the local lymph nodes (LNs) and initiate adaptive immune responses. In this study, we show that only CD103(+) DCs were able to acquire and transport apoptotic cells to the draining LNs and cross present apoptotic cell-associated antigen to CD8 T cells. In contrast, both the CD11b(hi) and the CD103(+) DCs were able to ingest and traffic latex beads or soluble antigen. CD103(+) DCs selectively exhibited high expression of TLR3, and ligation of this receptor led to enhanced in vivo cytotoxic T cell responses to apoptotic cell-associated antigen. The selective role for CD103(+) DCs was confirmed in Batf3(-/-) mice, which lack this DC subtype. Our findings suggest that CD103(+) DCs are the DC subset in the lung that captures and presents apoptotic cell-associated antigen under homeostatic and inflammatory conditions and raise the possibility for more focused immunological targeting to CD8 T cell responses.  相似文献   

11.
If irradiated tumor cells could be rendered immunogenic, they would provide a safe, broad, and patient-specific array of antigens for immunotherapies. Prior approaches have emphasized genetic transduction of live tumor cells to express cytokines, costimulators, and surrogate foreign antigens. We asked if immunity could be achieved by delivering irradiated, major histocompatibility complex-negative plasmacytoma cells to maturing mouse dendritic cells (DCs) within lymphoid organs. Tumor cells injected intravenously (i.v.) were captured by splenic DCs, whereas subcutaneous (s.c.) injection led only to weak uptake in lymph node or spleen. The natural killer T (NKT) cells mobilizing glycolipid alpha-galactosyl ceramide, used to mature splenic DCs, served as an effective adjuvant to induce protective immunity. This adjuvant function was mimicked by a combination of poly IC and agonistic alphaCD40 antibody. The adjuvant glycolipid had to be coadministered with tumor cells i.v. rather than s.c. Specific resistance was generated both to a plasmacytoma and lymphoma. The resistance afforded by a single vaccination lasted >2 mo and required both CD4+ and CD8+ T cells. Mature tumor capturing DCs stimulated the differentiation of P1A tumor antigen-specific, CD8+ T cells and uniquely transferred tumor resistance to naive mice. Therefore, the access of dying tumor cells to DCs that are maturing to activated NKT cells efficiently induces long-lived adaptive resistance.  相似文献   

12.
To understand the relationship between host antigen-presenting cells (APCs) and donor T cells in initiating graft-versus-host disease (GVHD), we followed the fate of host dendritic cells (DCs) in irradiated C57BL/6 (B6) recipient mice and the interaction of these cells with minor histocompatibility antigen- (miHA-) mismatched CD8+ T cells from C3H.SW donors. Host CD11c+ DCs were rapidly activated and aggregated in the T cell areas of the spleen within 6 hours of lethal irradiation. By 5 days after irradiation, <1% of host DCs were detectable, but the activated donor CD8+ T cells had already undergone as many as seven divisions. Thus, proliferation of donor CD8+ T cells preceded the disappearance of host DCs. When C3H.SW donor CD8+ T cells were primed in vivo in irradiated B6 mice or ex vivo by host CD11c+ DCs for 24-36 hours, they were able to proliferate and differentiate into IFN-gamma-producing cells in beta(2)-microglobulin-deficient (beta(2)m(-/-)) B6 recipients and to mediate acute GVHD in beta(2)m(-/-) --> B6 chimeric mice. These results indicate that, although host DCs disappear rapidly after allogeneic bone marrow transplantation, they prime donor T cells before their disappearance and play a critical role in triggering donor CD8+ T cell-mediated GVHD.  相似文献   

13.
Apoptotic bodies deliver antigens (Ags) to the cross-presentation pathways of dendritic cells (DCs), where their presentation has been associated with both the maintenance of tolerance as well as the induction of protective immunity. The manner in which apoptotic bodies are generated, their abundance in relation to local DCs, and the milieu in which they are generated appear to be the major factors determining whether apoptotic bodies will induce CD8+ T cell activation or anergy. These observations have been extended to the field of vaccination, where the engineered apoptosis of Ag-bearing/loaded cells in vivo has been used to prime strong CD8+ T cell immunity. This review will examine Ag capture and cross-presentation by DCs, with particular emphasis on the manipulation of apoptotic bodies in vivo for the purpose of vaccination.  相似文献   

14.
Dendritic cells (DCs) have been used as professional antigen-presenting cells in vitro to prime T-cell responses. In this study, we generated both CD8+ and CD4+ renal cell carcinoma (RCC)-reactive T cells using a completely autologous system of DCs presenting engulfed whole-tumor cells. We compared DCs presenting RCC tumor cells in different preparations and found ultraviolet-irradiated apoptotic tumor cells to be more immunogenic than necrotic tumor cells or live untreated tumor cells in generating tumor-reactive T cells. In analyzing the T cells generated in this fashion, a CD8+ RCC-reactive T-cell clone generated from a patient recognized an epitope derived from fibroblast growth factor 5 in the context of human leukocyte antigen (HLA) B44*02. CD4+ T cells generated from another patient recognized multiple allogeneic RCC lines expressing HLA-DRbeta1*04, indicating a common shared tumor antigen presented by HLA-DRbeta1*04. The technique of using DCs to present whole-tumor cells can consistently generate both CD4+ and CD8+ RCC-reactive T cells for use in both antigen identification and therapeutic protocols.  相似文献   

15.
We evaluated the proposal that during microbial infection, dendritic cells (DCs) undergo maturation and present a mixture of peptides derived from the microbe as well as harmless environmental antigens. Mice were exposed to an aerosol of endotoxin free ovalbumin (OVA) in the absence or presence of influenza virus. In its absence, OVA failed to induce B and T cell responses and even tolerized, but with influenza, OVA-specific antibodies and CD8+ cytolytic T lymphocytes developed. With or without infection, OVA was presented selectively in the draining mediastinal lymph nodes, as assessed by the comparable proliferation of infused, CD8+ and CD4+, TCR transgenic T cells. In the absence of influenza, these OVA-specific T cells produced little IL-2, IL-4, IL-10, and IFN-gamma, but with infection, both CD4+ and CD8+ T cells made high levels of IL-2 and IFN-gamma. The OVA plus influenza-treated mice also showed accelerated recovery to a challenge with recombinant vaccinia OVA virus. CD11c+ DCs from the mediastinal lymph nodes of infected mice selectively stimulated both OVA- and influenza-specific T cells and underwent maturation, with higher levels of MHC class II, CD80, and CD86 molecules. The relatively slow (2-3 d) kinetics of maturation correlated closely to the time at which OVA inhalation elicited specific antibodies. Therefore respiratory infection can induce DC maturation and simultaneously B and T cell immunity to an innocuous antigen inhaled concurrently.  相似文献   

16.
Dendritic cells (DCs) are powerful antigen-presenting cells. Because DCs are rare cells, methods to produce them in vitro are valuable ways to study their biologic properties and to generate cells for immunotherapy. This study defines the antigen-presenting properties of DCs generated in vitro from CD34+ cells of patients with breast cancer. The combination of cytokines flt3 ligand + c-kit ligand + granulocyte-macrophage colony-stimulating factor (GM-CSF) + interleukin-4 (IL-4) + tumor necrosis factor-alpha (TNF-alpha) was used to maximize the output of mature DCs in the culture of CD34+ cells while minimizing the production of monocytes. Cells grew and differentiated into DCs as measured by a time-dependent upregulation of cell surface antigens major histocompatibility complex class II, CD1a, CD80, CD86, CD40, and CD4, so that 40% +/- 9% (n = 6) of cells in culture at day 15 were CD1a+CD14-. Markers were acquired in the same sequence as on monocytes induced to differentiate with GM-CSF + IL-4. Differentiation was marked by a time-dependent increase in allostimulatory function, which, at its peak, was more potent than in cultures of DCs generated from monocytes with GM-CSF + IL-4, but was comparable on a cell-to-cell basis to that of mature monocytes cultured in flt3-ligand + c-kit-ligand + GM-CSF + IL-4 + TNF-alpha. Both CD34+ cell-derived and monocyte-derived DCs were able to process and to present tetanus toxoid and keyhole limpet hemocyanin to autologous T cells and to present major histocompatibility class I-binding peptides to CD8+ cytotoxic T lymphocytes inducing interferon-gamma production. Altogether, these results suggest that DCs generated from CD34+ cells of patients with breast cancer with flt3 ligand, c-kit ligand, GM-CSF, IL-4, and TNF-alpha are competent antigen-presenting cells, particularly for CD8+ cytotoxic T lymphocytes, and resemble mature monocyte-derived DCs in the assays described here.  相似文献   

17.
Induction of cytotoxic T lymphocyte (CTL) responses against minor histocompatibility antigens is dependent upon the presence of T cell help and requires the interaction of CD40 on dendritic cells (DCs) with CD40 ligand on activated T helper cells (Th). This study demonstrates that CD40 is neither involved in Th-dependent nor Th-independent antiviral CTL responses. Moreover, the data show that DC maturation occurs in vivo after viral infection in the absence of CD40 and Th. This maturation did not require viral infection of DCs but was mediated by peptide-specific CD8(+) T cells. Surprisingly, naive CD8(+) T cells were able to trigger DC maturation within 24 h after activation in vivo and in vitro. Moreover, peptide-activated CD8(+) T cells were able to induce maturation in trans, as DCs that failed to present the relevant antigen in vivo also underwent maturation. Upon isolation, the in vivo-stimulated DCs were able to convert a classically Th-dependent CTL response (anti-HY) into a Th-independent response in vitro. Thus, antiviral CD8(+) T cells are sufficient for the maturation of DCs in the absence of CD40.  相似文献   

18.
Immunostimulatory properties of dendritic cells (DCs) are linked to their maturation state. Injection of mature DCs rapidly enhances antigen-specific CD4+ and CD8+ T cell immunity in humans. Here we describe the immune response to a single injection of immature DCs pulsed with influenza matrix peptide (MP) and keyhole limpet hemocyanin (KLH) in two healthy subjects. In contrast to prior findings using mature DCs, injection of immature DCs in both subjects led to the specific inhibition of MP-specific CD8+ T cell effector function in freshly isolated T cells and the appearance of MP-specific interleukin 10-producing cells. When pre- and postimmunization T cells were boosted in culture, there were greater numbers of MP-specific major histocompatibility complex tetramer-binding cells after immunization, but these had reduced interferon production and lacked killer activity. These data demonstrate the feasibility of antigen-specific inhibition of effector T cell function in vivo in humans and urge caution with the use of immature DCs when trying to enhance tumor or microbial immunity.  相似文献   

19.
Dendritic cells (DCs) constitute very attractive vectors for cancer immunotherapy due to their ability to efficiently capture and present tumor antigens, which initiates tumor-directed T-cell responses. Because the initiation of cytotoxic anti-tumor immune responses requires the cross-presentation mechanism, antigen targeting to DCs represents a very important step in the chain of events that constitutes the cross-priming immune process. In the current study, we explored the ability of DCs loaded with antibody-coated melanoma and ovarian carcinoma tumor cells to cross-present tumor antigens to CD8+ T cells and elicit in vitro anti-tumor immune responses. Coating melanoma and ovarian cancer cells with monoclonal antibodies against different surface antigens (CD44, ME491, LFA-3, and CD24) expressed by the tumor cells promoted the cross-presentation of the tumor-associated antigens as MART-1, gp100, tyrosinase, and NY-ESO-1 by DCs to CD8+ T. These tumor antigen-specific CD8+ T-cell populations resulting from the DC-mediated cross-priming process were identified using specific immune tetramers and were a few fold larger than the ones generated using peptide-pulsed or apoptotic tumor cell-loaded DCs. The CD8+ T cells generated by DCs loaded with monoclonal antibody-coated tumor cells were cytotoxic against the primary melanoma and ovarian carcinoma cells. Thus, targeting monoclonal antibody-coated tumor cells to DCs is a novel method that opens new perspectives for immunotherapy strategies.  相似文献   

20.
Induction of tumor-specific immunity requires that dendritic cells (DCs) efficiently capture and present tumor antigens to result in the expansion and activation of tumor-specific cytotoxic T cells. The transition from antigen capture to T cell stimulation requires a maturation signal; in its absence tolerance, rather than immunity may develop. While immune complexes (ICs) are able to enhance antigen capture, they can be poor at inducing DC maturation, naive T cell activation and protective immunity. We now demonstrate that interfering with the inhibitory signal delivered by FcgammaRIIB on DCs converts ICs to potent maturation agents and results in T cell activation. Applying this approach to immunization with DCs pulsed ex-vivo with ICs, we have generated antigen-specific CD8+ T cells in vivo and achieved efficient protective immunity in a murine melanoma model. These data imply that ICs may normally function to maintain tolerance through the binding to inhibitory FcgammaRs on DCs, but they can be converted to potent immunogenic stimuli by selective engagement of activating FcgammaRs. This mechanism suggests a novel approach to the development of tumor vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号