首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of our study was to compare diffusion-weighted imaging (DWI) alone and DWI combined with T2-weighted MRI for the differentiation of uterine sarcomas from benign leiomyomas. T2-weighted imaging and DWI were performed in 103 patients with 103 myometrial tumours, including 8 uterine sarcomas and 95 benign leiomyomas on 3-T MR imaging. The signal intensity (SI) of the tumour on T2-weighted images was quantified as the tumour–myometrium contrast ratio (TCR) by using the following formula: (SItumour − SImyometrium)/SImyometrium. The TCR or apparent diffusion coefficient (ADC) value alone and then the ADC value combined with T2-weighted imaging were evaluated for differentiation between sarcomas and leiomyomas. The mean ADC value of sarcomas was 0.86 ± 0.11 × 10−3 m2/s, which was significantly lower than that of leiomyomas 1.18 ± 0.24 × 10−3 m2/s; however, there was a substantial overlap. The mean TCR of sarcomas was 0.66 ± 0.71, which was significantly higher than that of the leiomyomas, –0.37 ± 0.34; however, again, there was a considerable overlap. When ADC was less than 1.05 × 10−3 mm2/s and TCR was greater than 0 this condition was considered to confirm a sarcoma; a combination of ADC and TCR achieved a significant improvement without any overlap between sarcomas and leiomyomas (sensitivity 100%, specificity 100%). Our preliminary results indicate that combined DWI and T2-weighted MR imaging is better than DWI alone in the differentiation of uterine sarcomas from benign leiomyomas.  相似文献   

2.
Role of diffusion-weighted MR imaging in cervical lymphadenopathy   总被引:21,自引:0,他引:21  
The role of diffusion-weighted magnetic resonance imaging (MRI) for differentiation between various causes of cervical lymphadenopathy was evaluated. In a prospective study, 31 untreated patients (22 males and nine females, aged 5–70 years) with 87 cervical lymph nodes underwent diffusion-weighted MRI before performance of neck dissection (n=14), surgical biopsy (n=9) or core biopsy (n=8). Diffusion-weighted MR images were acquired with a b factor of 0 and 1,000 s/mm2 using single-shot echo-planar sequence. Apparent diffusion coefficient (ADC) maps were reconstructed for all patients. The signal intensity of the lymph nodes was assessed on images obtained at b=0 or 1,000 s/mm2 and from the ADC maps. The ADC value of lymph nodes was also calculated. On the ADC map, malignant nodes showed either low (n=52) or mixed (n=20) signal intensity and benign nodes revealed high (n=13) or low (n=2) signal intensity. The mean ADC value of metastatic (1.09±0.11×10−3 mm2/s) and lymphomatous (0.97±0.27×10−3 mm2/s) lymph nodes was significantly lower than that of benign (1.64±0.16×10−3 mm2/s) cervical lymph nodes (P<0.04). When an ADC value of 1.38×10−3 mm2/s was used as a threshold value for differentiating malignant from benign lymph nodes, the best results were obtained with an accuracy of 96%, sensitivity of 98%, specificity of 88%, positive predictive value of 98.5% and negative predictive value of 83.7%. The smallest detected lymph node was 0.9 cm. In conclusion, diffusion-weighted MRI with ADC mapping is a new promising technique that can differentiate malignant from benign lymph nodes and delineate the solid viable part of the lymph node for biopsy. This technique provides additional useful physiological and functional information regarding characterization of cervical lymph nodes.  相似文献   

3.
Introduction  The aim was to determine the diagnostic accuracy and additional value of diffusion-weighted imaging for detection of malignant lymph nodes in head and neck squamous cell carcinoma. Methods  Two hundred nineteen lymph nodes, predominantly smaller than 10 mm (95.4%), in 16 consecutive patients were evaluated at 1.5 T. Lymph nodes were evaluated for maximum short axial diameter, morphological criteria, and apparent diffusion coefficient (ADC) values (b = 0 and b = 1,000 s/mm2). Sensitivity, specificity, positive and negative predictive values as well as diagnostic odds ratios (DORs) and areas under the curves (AUCs) of ROC curves were calculated for the various magnetic resonance imaging (MRI) criteria individually and in combination. Histological examination of lymph nodes in the neck dissection specimen was the gold standard to determine malignant involvement. Results  The optimal ADC threshold was 1.0 × 10−3 mm2/s. Using this cutoff point, sensitivity and specificity were 92.3% and 83.9%, respectively. When used in combination with size and morphological criteria, ADC value <1.0 × 10−3 mm2/s was the strongest predictor of presence of metastasis (DOR = 97.6). A model which added ADC values to the other MRI criteria performed significantly better than a model without ADC values: AUC = 0.98 versus AUC = 0.91 (p = 0.036). Conclusion  In this study, with predominantly small lymph nodes, the ADC criterion is the strongest independent predictor of presence of metastasis. The use of ADC values in combination with the other MRI criteria significantly improves the discrimination between malignant and benign lymph nodes.  相似文献   

4.
The aim of this preliminary study was to retrospectively evaluate the usefulness of high b-value diffusion-weighted MR imaging (DWI) in the detection of gallbladder carcinoma. Fifteen patients with gallbladder carcinoma and 14 other patients were included in this study. All patients and subjects underwent DWI, and images were evaluated by two radiologists. The area under the receiver operating characteristic curve (AUC), apparent diffusion coefficient (ADC) measurement, sensitivity and specificity were calculated. An AUC yielded 0.980 (95% CI, 0.850–0.999) and 0.941 (95% CI, 0.791–0.990) for the two radiologists. The mean sensitivity and specificity were 83.3% and 100%, respectively. The mean ADC value of gallbladder carcinoma was (1.28 ± 0.41)×10−3 mm2/s and that of control gallbladder lesions was (1.92 ± 0.21)×10−3 mm2/s (P < 0.01). According to the results of our preliminary study, high b-value DWI might be a useful tool for detecting gallbladder carcinoma by measuring the ADC value and direct visual assessment.  相似文献   

5.
We evaluated the diagnostic ability of diffusion-weighted imaging for the differentiation between lymphomas and carcinomas in the pharynx and between carcinomas with different histological types in the pharynx. T1-weighted, fat-suppressed T2-weighted, and diffusion-weighted MR imaging was performed on 14 patients with pharyngeal lymphomas, 26 patients with carcinomas of the pharynx, 5 patients with adenoidal hypertrophy, and 22 patients with normal tonsils. Apparent diffusion coefficients (ADCs) were determined by using two b factors (500 and 1,000 s/mm2). The ADCs of lymphomas were significantly smaller (0.454 ± 0.075 × 10−3 mm2/s) than those of carcinomas (0.863 ± 0.238 × 10−3 mm2/s). The ADCs of poorly differentiated and undifferentiated carcinomas (0.691 ± 0.149 × 10−3 mm2/s) were significantly smaller than those of moderately differentiated and well-differentiated carcinomas (0.971 ± 0.221 × 10−3 mm2/s), but were significantly larger than those of lymphomas. When an ADC smaller than 0.560 × 10−3 mm2/s was used for predicting lymphomas, we obtained the highest accuracy of 96%, with 100% sensitivity and 94% specificity, 86% positive predictive value, and 100% negative predictive value. Therefore, ADC measurements effectively differentiate lymphomas from carcinomas in the pharynx and could be a useful adjunct to biopsy-based development of treatment planning.  相似文献   

6.
Our purpose is to evaluate the diagnostic accuracy of apparent diffusion coefficient (ADC) measurement in differentiating malignant from benign uterine endometrial cavity lesions. We retrospectively evaluated 25 uterine endometrial cavity lesions in 25 female patients: endometrial carcinoma (n = 11), carcinosarcoma (n = 2), submucosal leiomyoma (n = 8), and endometrial polyp (n = 4). Diffusion-weighted images were performed at 1.5 T with b factors of 0–1,000/mm2. The region of interest was defined within the tumor on T2-weighted EPI image and then manually copied to an ADC map. Thereby, the ADC value was obtained. We compared ADC values between malignant and benign lesions using Student’s t-test. The mean and standard deviation of ADC values (×10−3 mm2/s) were as follows: endometrial carcinoma, 0.98±0.21; carcinosarcoma, 0.97±0.02; submucosal leiomyoma, 1.37±0.28; and endometrial polyp, 1.58±0.45. The ADC values differed significantly between malignant (0.98±0.19) and benign lesions (1.44±0.34) (P < 0.01). We defined malignant tumors as cases with an ADC value less than 1.15 × 10−3 mm2/s for obtaining the highest accuracy. Sensitivity, specificity, and accuracy were 84.6%, 100%, and 92%, respectively. ADC measurement can provide useful information in differentiating malignant from benign uterine endometrial cavity lesions.  相似文献   

7.
The aim of this study was to determine apparent diffusion coefficients (ADCs) of focal liver lesions on the basis of a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging sequence (DW-SS-EPI) and to evaluate whether ADC measurements can be used to characterize lesions. One hundred and two patients with focal liver lesions [11 hepatocellular carcinomas (HCC), 82 metastases, 4 focal nodular hyperplasias (FNH), 56 hemangiomas and 51 cysts; mean size, 16.6 mm; range 5–92 mm] were examined on a 1.5-T system using respiratory triggered DW-SS-EPI (b-values: 50, 300, 600 s/mm2). Results were correlated with histopathologic data and follow-up imaging. The ADCs of different lesion types were compared, and lesion discrimination using optimal thresholds for ADCs was evaluated. Mean ADCs (×10−3mm2/s) were 1.24 and 1.04 for normal and cirrhotic liver parenchyma and 1.05, 1.22, 1.40, 1.92 and 3.02 for HCCs, metastases, FNHs, hemangiomas and cysts, respectively. Mean ADCs differed significantly for all lesion types except for comparison of metastases with HCCs and FNHs. Overall, 88% of lesions were correctly classified as benign or malignant using a threshold value of 1.63 × 10−3mm2/s. Measurements of the ADCs of focal liver lesions on the basis of a respiratory triggered DW-SS-EPI sequence may constitute a useful supplementary method for lesion characterization.  相似文献   

8.
The purpose of this study was to measure apparent diffusion coefficient values of normal liver parenchyma and focal liver lesions utilizing a respiratory gated diffusion sequence with multiple b-values and to investigate whether apparent diffusion coefficient (ADC) measurements may be utilized to characterize and differentiate between malignant and benign focal hepatic lesions. Thirty-eight consecutive patients underwent MRI of the liver including diffusion-weighted imaging (DWI). A single-shot echo planar imaging sequence was applied in coronal orientation with multiple b-values (0, 50, 500, 1,000 s/mm2) and respiratory gating. ADC values were recorded on corresponding maps utilizing region of interest measurements in patients with benign (group A), malignant (group B) focal lesions and liver parenchyma (group C). Statistical analysis was applied to check whether differences in mean ADC values were significant (p<0.05). No focal lesions were detected in 11 patients, with a mean ADC value (CI 95%) of liver parenchyma 1.25×10−3 mm2/s (1.21×10−3 mm2/s−1.29×10−3 mm2/s). Differences in mean ADC of liver parenchyma between group A and B were not significant (p=0.054, 1.30×10−3 mm2/s and 1.31×10−3 mm2/s, respectively). Mean ADC value (95% CI) of 22 benign lesions found in 18 patients was 2.55×10−3 mm2/s (2.35×10−3 mm2/s−2.74×10−3 mm2/s), while the mean ADC value (95% CI) of 16 malignant lesions recorded in 9 patients was 1.04×10−3 mm2/s (0.9×10−3 mm2/s−1.17×10−3 mm2/s). The difference between mean ADC values of benign and malignant focal lesions was statistically significant (p<0.0001). Respiratory gated diffusion-weighted imaging in the liver is technically feasible. Apparent diffusion coefficient measurements can be useful in differentiating malignant from benign focal liver lesions.  相似文献   

9.
The usefulness of diffusion-weighted (DW) magnetic resonance (MR) imaging for the diagnosis of uterine sarcomas was investigated, as well as whether DW images and quantitative measurement of apparent diffusion coefficient (ADC) values can facilitate differentiating uterine sarcomas from benign leiomyomas. MR images including DW images were obtained in 43 surgically treated patients with 58 myometrial tumors, including seven uterine sarcomas (five leiomyosarcomas and two endometrial stromal sarcomas) and 51 benign leiomyomas (43 ordinary leiomyomas, two cellular leiomyomas and six degenerated leiomyomas). Qualitative analysis of non-enhanced and postcontrast MR images and DW images and quantitative measurement of ADC values were performed for each myometrial tumor. Both uterine sarcomas and cellular leiomyomas exhibited high signal intensity on DW images, whereas ordinary leiomyomas and most degenerated leiomyomas showed low signal intensity. The mean ADC value (10−3 mm2/s) of sarcomas was 1.17 ± 0.15, which was lower than those of the normal myometrium (1.62 ± 0.11) and degenerated leiomyomas (1.70 ± 0.11) without any overlap; however, they were overlapped with those of ordinary leiomyomas and cellular leiomyomas. In addition to morphological features on nonenhanced and postcontrast MR sequences, DW imaging and ADC measurement may have a potential ability to differentiate uterine sarcomas from benign leiomyomas.  相似文献   

10.
The purpose of this study was to assess the value of diffusion-weighted magnetic resonance imaging (DWI) in detecting esophageal cancer and assessing lymph-node status, compared with histopathological results. DWI was prospectively performed in 24 consecutive patients with esophageal cancer, using the diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) sequence. DWIBS images were fused with T2-weighted images, and independently and blindly evaluated by three board-certified radiologists, regarding primary tumor detectability and lymph-node status. Apparent diffusion coefficients (ADCs) of the primary tumor and lymph nodes were also measured. Average primary tumor detection rate was 49.4%, average patient-based sensitivity and specificity for the detection of lymph-node metastasis were 77.8 and 55.6%, and average lymph-node group-based sensitivity and specificity were 39.4 and 92.6%. There were no interobserver differences among the three readers (P < 0.0001). Mean ADC of detected primary tumors was 1.26 ± 0.29×10−3 mm2/s. Mean ADC of metastatic lymph nodes (1.46 ± 0.35×10−3 mm2/s) was significantly higher (P < 0.0001) than that of nonmetastatic lymph nodes (1.15 ± 0.24 mm2/s), but ADCs of both groups overlapped. In conclusion, this study suggests that DWI only has a limited role in detecting esophageal cancer and nodal staging.  相似文献   

11.
The role of diffusion-weighted magnetic resonance imaging (DWI) to differentiate breast lesions in vivo was evaluated. Sixty women (mean age, 53 years) with 81 breast lesions were enrolled. A coronal echo planar imaging (EPI) sequence sensitised to diffusion (b value=1,000 s/mm2) was added to standard MR. The mean diffusivity (MD) was calculated. Differences in MD among cysts, benign lesions and malignant lesions were evaluated, and the sensitivity and specificity of DWI to diagnose malignant and benign lesions were calculated. The diagnosis was 18 cysts, 21 benign and 42 malignant nodules. MD values (mean±SD ×10−3 mm2/s) were (1.48±0.37) for benign lesions, (0.95±0.18) for malignant lesions and (2.25±0.26) for cysts. Different MD values characterized different malignant breast lesion types. A MD threshold value of 1.1×10−3 mm2/s discriminated malignant breast lesions from benign lesions with a specificity of 81% and sensitivity of 80%. Choosing a cut-off of 1.31×10−3 mm2/s (MD of malignant lesions -2 SD), the specificity would be 67% with a sensitivity of 100%. Thus, MD values, related to tumor cellularity, provide reliable information to differentiate malignant breast lesions from benign ones. Quantitative DWI is not time-consuming and can be easily inserted into standard clinical breast MR imaging protocols.  相似文献   

12.
The aim of this study was to retrospectively measure and compare pancreatic apparent diffusion coefficient (ADC) in patients with acute pancreatitis (AP) with aged matched controls who underwent diffusion weighted imaging (DWI). The institutional review board approved this retrospective Health Insurance Portability and Accountability Act compliant study with a waiver for informed consent. Pancreatic ADC values from 27 patients with a clinical diagnosis of AP and 38 normal age-matched controls evaluated with DWI (b = 0 and 800 mm2/s) were retrospectively and independently measured by two radiologists. The ADCs were compared between the groups and between each of the pancreatic segments in the normal group. Inter-observer reliability was calculated and receiver operating characteristic analysis was used to determine the sensitivity and specificity of DW imaging in the diagnosis of acute pancreatitis. P < 0.05 was considered statistically significant. The ICC for inter-observer reliability was 0.98 in the control and 0.97 in the AP group. The mean pancreatic ADC in the AP group (1.32 × 10−3 mm2/s ± 0.13) was significantly lower than in the normal group (1.77 × 10−3 mm2/s ± 0.32). There was no significant difference in mean ADCs between each of the pancreatic segments in the controls. A threshold ADC value of 1.62 × 10–3 mm2/s yielded a sensitivity of 93% and specificity of 87% for detecting acute pancreatitis for b values of 0 and 800 s/mm2. Pancreatic ADCs are significantly lower in patients with AP than normal controls.  相似文献   

13.
Introduction Epidural spinal cord compression is one of the most critical emergency conditions requiring medical attention and requires prompt and adequate treatment. The aim of our study was to assess the role of diffusion-weighted magnetic resonance (MR) imaging (DWI) in the diagnosis and differentiation of epidural spinal lesions. Methods Three patients with epidural lymphoma, two with sarcoma and three with epidural metastatic disease were imaged on a 1.5T MRI unit. DWI was performed using navigated, interleaved, multi-shot echo planar imaging (IEPI). Three region of interest (ROI)-measurements were obtained on corresponding apparent diffusion coefficient (ADC) maps, and the mean ADC value was used for further analysis. The cellularity of tumors was determined as the N/C ratio (nucleus/cytoplasma ratio) from histological samples. The ADC values and N/C ratios of lesions were compared using a Kruskal-Wallis test. Results The mean ADC of the lymphomas was 0.66 × 10−3 mm2/s, that of the sarcomas was 0.85 × 10−3 mm2/s and the ADC of the metastatic lesions was 1.05 × 10−3 mm2/s; however, the differences were not statistically significant. Mean N/C ratios in the lymphoma, sarcomas and metastases were 4:1, 2:1, and 2.6:1, respectively, with a statistically significant difference between the groups (p < 0.025). Conclusion Although not statistically significant due to the small patient sample, our results clearly show a tendency toward decreased diffusivity in neoplastic lesions with higher cellularity. The data from our study suggest that DWI is a feasible and potentially useful technique for the evaluation of epidural lesions that cause spinal cord compression on a per-patient basis.  相似文献   

14.
This study was conducted to determine the incremental value of diffusion-weighted MR imaging (DW-MRI) over T2-weighted imaging diagnosing abdominopelvic abscesses and compare apparent diffusion coefficient (ADC) values of abscesses and non-infected ascites. In this IRB-approved, HIPAA-compliant study, two radiologists retrospectively compared T2-weighted, T2-weighted + DW-MRI and T2-weighted + contrast enhanced MR images of 58 patients (29 with abscess, 29 with ascites) who underwent abdominal MRI for abscess detection. Confidence and sensitivity was compared using McNemar’s test. ADC of abscesses and ascites was compared by t test, and a receiver operating characteristic (ROC) curve was constructed. Detection of abscesses and confidence improved significantly when T2-weighted images were combined with DW-MRI (sensitivity: observer 1—100%, observer 2—96.6%) or contrast enhanced images (sensitivity: both observers—100%) compared to T2-weighted images alone (sensitivity: observer 1—65.5%, observer 2—72.4%). All abscesses showed restricted diffusion. Mean ADC of abscesses (observer 1—1.17 ± 0.42 × 103 mm2/s, observer 2—1.43 ± 0.48 × 10−3 mm2/s) was lower than ascites (observer 1—3.57 ± 0.68 × 10−3 mm2/s, observer 2—3.42 ± 0.67 × 10−3 mm2/s) (p < 0.01). ROC analysis showed perfect discrimination of abscess from ascites with threshold ADC of 2.0 × 10−3 mm2/s (Az value 1.0). DW-MRI is a valuable adjunct to T2-weighted images diagnosing abdominopelvic abscesses. ADC measurements may have the potential to differentiate abdominal abscesses from ascites.  相似文献   

15.
The aim of this study was to assess the feasibility of diffusion tensor imaging (DTI) of the prostate and to determine normative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of healthy prostate with a 3-Tesla magnetic resonance imaging (MRI) system. Thirty volunteers with a mean age of 28 (25–35) years were scanned with a 3-Tesla MRI (Intera Achieva; Philips, The Netherlands) system using a six-channel phased array coil. Initially, T2-weighted turbo spin-echo (TSE) axial images of the prostate were obtained. In two subjects, a millimetric hypointense signal change was detected in the peripheral zones on T2-weighted TSE images. These two subjects were excluded from the study. DTI with single-shot echo-planar imaging (ssEPI) was performed in the remaining 28 subjects. ADC and FA values were measured using the manufacturer supplied software by positioning 9-pixel ROIs on each zone. Differences between parameters of the central and peripheral zones were assessed. Mean ADC value of the central (1.220 ± 0.271 × 10−3 mm2/s) was found to be significantly lower when compared with the peripheral gland (1.610 ± 0.347 × 10−3 mm2/s) (P < 0.01). Mean FA of the central gland was significantly higher (0.26), compared with the peripheral gland (0.16) (P < 0.01). This study shows the feasibility of prostate DTI with a 3-Tesla MR system and the normative FA and ADC values of peripheral and central zones of the normal prostate. The results are compatible with the microstructural organization of the gland. An erratum to this article can be found at  相似文献   

16.

Purpose

The aim of this study was to determine the role of diffusion-weighted MR imaging (DWI) and the apparent diffusion coefficient (ADC) in characterization of head and neck lesions.

Patients and methods

MR imaging including diffusion-weighted sequences was performed on 43 patients presented with head and neck lesions. Images were obtained with a diffusion-weighted factor (b factor) of 100, 500, and 1000 s/mm2. ADC maps were reconstructed, and the ADC value of the lesions was calculated.

Results

The mean ADC value of malignant tumors was (1.02 ± 0.22) × 10−3 mm2/s (n = 31). The mean ADC value of benign tumors was (1.62 ± 0.27) × 10−3 mm2/s (n = 12). The mean ADC of lymphomas was significantly lower than that of carcinomas. The difference in the ADC value between the malignant tumors and benign lesions was statistically significant (p < 0.001). Selection of (1.2) × 10−3 mm2/s as a threshold value of ADC for differentiating benign from malignant tumors yielded the best result, with an accuracy of 94%, sensitivity of 95%, specificity of 92%, positive predictive value of 92% and negative predictive value of 94%.

Conclusion

DWI and the ADC measurement are promising, non-invasive imaging approach that can be used for characterization of head and neck lesions. It can help differentiate malignant tumors from benign lesions.  相似文献   

17.
Hagen T  Ahlhelm F  Reiche W 《Neuroradiology》2007,49(11):921-926
Introduction Distinguishing between vasogenic edema and reactive astrogliosis may be difficult in some instances. This study was performed to test the hypothesis that diffusion-weighted (DW) imaging with apparent diffusion coefficient (ADC) maps can be used to differentiate these two types of changes. Methods The study population included 11 patients with perilesional vasogenic edema and 11 patients with gliosis examined with conventional MR imaging and DW imaging. The signal intensities of conventional pulse sequences and ADC values were calculated in regions of interest placed in the hyperintense edematous or gliotic regions and compared with those of normal-appearing white matter. Signal intensity ratios and ADC values in gliosis were compared with those in vasogenic edema using the Mann-Whitney U-test. Results While considerable overlap was present for signal intensity ratios on conventional MR images, areas of gliosis demonstrated significantly higher ADC values (1.76 ± 0.09 × 10−3 mm2/s) than areas of vasogenic edema (1.35 ± 0.06 × 10−3 mm2/s; P < 0.0001) without overlap. Conclusion ADC values are helpful in differentiating reactive gliosis from vasogenic edema.  相似文献   

18.
Sener RN 《European radiology》2000,10(9):1452-1455
A patient is reported with diffuse leukoencephalopathy associated with cystic degeneration of the white matter of the brain (van der Knaap syndrome). The changes were studied by fluid attenuated inversion recovery (FLAIR), and diffusion-weighted MR imaging. The FLAIR sequence revealed suppressed signal of the cysts, and widespread high-signal white matter changes associated with thinned cortices. On diffusion-weighted MR imaging, apparent diffusion coefficient (ADC) values ranged from 3.0 × 10–3 to 2.7 × 10–3 mm2/s in the temporal cysts, similar to that of CSF. The ADC values within the parenchyma ranged between 2 × 10–3 and 2.1 × 10–3 mm2/s, a value falling between normal parenchyma and cerebrospinal fluid, compared with a control group of three healthy subjects. The changes were also evaluated by proton MR spectroscopy, and were compared with a control group of 12 cases. Magnetic resonance spectroscopy revealed apparently increased NAA/Cr ratios in most parts of the brain. The NAA/Cho ratios were either high or low, and the Cho/Cr ratios were increased or normal in different regions. Received: 27 October 1999; Revised: 9 December 1999; Accepted: 20 December 1999  相似文献   

19.
Objective  The objective of this study was to systematically assess the optimal b value for diffusion tensor imaging and fiber tractography of the median nerve at 1.5 T. Materials and methods  This is a prospective study which was carried out with institutional review board approval and written informed consent from the study subjects. Fifteen healthy volunteers (seven men, eight women; mean age, 31.2 years) underwent diffusion tensor imaging of the wrist. A single-shot spin-echo-based echo-planar imaging sequence (TR/TE, 7000/103 ms) was performed in each subject at eight different b values ranging from 325 to 1,550 s/mm2. Number and length of reconstructed fiber tracts, fiber density index (FDi), fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were calculated for the median nerve. Signal-to-noise ratio (SNR) was also calculated for each acquisition. The overall image quality was assessed by two readers in consensus by ranking representative fiber tract images for each subject using a scale range from 1 to 8 (1 = best to 8 = worst image quality). Results  Longest fibers were observed for b values between 675 and 1,025 s/mm2. Maximum FDi was found at b values of 1,025 s/mm2. FA was between 0.5 and 0.6 for all b values. ADC gradually decreased from 1.44 × 10−3 to 0.92 × 10−3 mm2/s with increasing b values. Maximum SNR ± standard deviation (175.4 ± 72.6) was observed at the lowest b value and decreased with increasing b values. SNR at b values of 1,025 s/mm2 was 48.5% of the maximum SNR. Optimal fiber tract image quality was found for b values of 1,025 s/mm2. Conclusions  The optimal b value for diffusion tensor imaging and fiber tractography of the median nerve at 1.5 T was 1,025 s/mm2.  相似文献   

20.
The purpose of the study was to perform a node-by-node comparison of an ADC-based diagnosis and various size-based criteria on T2-weighted imaging (T2WI) with regard to their correlation with PET/CT findings in patients with uterine cervical cancer. In 163 patients with 339 pelvic lymph nodes (LNs) with short-axis diameter >5 mm, the minimum apparent diffusion coefficient (ADC), mean ADC, short- and long-axis diameters, and ratio of long- to short-axis diameters (L/S ratio) were compared in PET/CT-positive and -negative LNs. On PET/CT, 118 (35%) LNs in 58 patients were positive. The mean value of minimum and mean ADCs, short- and long-axis diameters, and L/S ratio were different in PET/CT-positive (0.6436 × 10−3 mm2/s, 0.756 × 10−3 mm2/s, 10.3 mm, 13.2 mm, 1.32, respectively) and PET/CT-negative LNs (0.8893 × 10−3 mm2/s, 1.019 × 10−3 mm2/s, 7.4 mm, 11.0 mm, 1.49, respectively) (P < 0.05). The Az value of the minimum ADC (0.864) was greater than those of mean ADC (0.836), short-axis diameter (0.764), long-axis diameter (0.640) and L/S ratio (0.652) (P < 0.05). The sensitivity and accuracy of the minimum ADC (86%, 82%) were greater than those of the short-axis diameter (55%, 74%), long-axis diameter (73%, 58%) and L/S ratio (52%, 66%) (P < 0.05). ADC showed superior correlation with PET/CT compared with conventional size-based criteria on T2WI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号