首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Mice experimentally infected with Theiler's murine encephalomyelitis virus (TMEV) develop a persistent infection of the central nervous system (CNS). The most striking feature of this infection is the occurrence of inflammatory primary demyelination in the spinal cord white matter. The pathogenesis of myelin degeneration in this model has not been clarified, but morphologic and immunologic data suggest that the host immune response plays a major role in the production of myelin injury. Because of low virus titers in infected adult mice and of the small size of TMEV, virus particles have never been observed in this demyelinating model. Yet elucidation of the types of cells in the CNS supporting virus replication would be important for a better understanding of both virus persistence and virus-induced demyelinating pathology. The present paper is a sequential study of the localization of TMEV in the spinal cord in infected mice by ultrastructural immunohistochemical techniques. Results indicate that virus replication is mainly in neurons during the acute phase of the disease, while in the chronic phase viral inclusions are mainly found in macrophages in and around demyelinating lesions. Other cells are also infected, but to a lesser degree. In the neuronal system both axoplasmic and dendritic flow appear to facilitate the spread of virus in the CNS. In macrophages, the presence of virus particles and the association of virus with altered components of the cytoskeleton support active virus production rather than simple internalization. The macrophage appears to play an important role in both the establishment of virus persistence and in the process of demyelination in this animal model.  相似文献   

2.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) serves as virus-induced model of chronic progressive multiple sclerosis. Infection of susceptible SJL/J mice leads to life-long CNS virus persistence and a progressive autoimmune demyelinating disease mediated by myelin-specific T cells activated via epitope spreading. In contrast, virus is rapidly cleared by a robust CTL response in TMEV-IDD-resistant C57BL/6 mice. We investigated whether differential induction of regulatory T cells (Tregs) controls susceptibility to TMEV-IDD. Infection of disease-susceptible SJL/J, but not B6 mice, leads to rapid activation and expansion of Tregs resulting in an unfavorable CNS ratio of Treg:Teffector cells. In addition, anti-CD25-induced inactivation of Tregs in susceptible SJL/J, but not resistant B6, mice results in significantly decreased clinical disease concomitant with enhanced anti-viral CD4(+), CD8(+) and antibody responses resulting in decreased CNS viral titers. This is the first demonstration that virus-induced Treg activation regulates susceptibility to autoimmune disease differentially in susceptible and resistant strains of mice and provides a new mechanistic explanation for the etiology of infection-induced autoimmunity.  相似文献   

3.
Although demyelination is a cardinal feature in multiple sclerosis, axonal injury also occurs. We tested whether a delay in axonal degeneration could affect the disease severity in two models for multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus (TMEV) infection. We compared wild-type C57BL/6 (B6) mice with C57BL/Wld(s) (Wld) mice, which carry a mutation that delays axonal degeneration. In EAE, both mouse strains were sensitized with myelin oligodendrocyte glycoprotein (MOG)(35-55) peptide and showed a similar disease onset, MOG-specific lymphoproliferative responses, and inflammation during the acute stage of EAE. However, during the chronic stage, B6 mice continued to show paralysis with a greater extent of axonal damage, demyelination, and MOG-specific lymphoproliferative responses compared with Wld mice, which showed complete recovery. In TMEV infection, only Wld mice were paralyzed and had increased inflammation, virus antigen-positive cells, and TMEV-specific lymphoproliferative responses versus infected B6 mice. Because TMEV can use axons to disseminate in the brain, axonal degeneration in B6 mice might be a beneficial mechanism that limits the virus spread, whereas slow axonal degeneration in Wld mice could favor virus spread. Therefore, axonal degeneration plays contrasting roles (beneficial versus detrimental) depending on the initiator driving the disease.  相似文献   

4.
5.
6.
Employing a murine model of multiple sclerosis which utilizes intracranial injection of Theiler's virus murine encephalomyelitis (TMEV) into SJL/J mice, we tested the potential role of tumor necrosis factor alpha (TNF-alpha) in ameliorating CNS demyelination. Infection with TMEV caused early grey matter inflammation (7 days post-infection) in the brain and spinal cord followed by chronic demyelination (35 days post-infection) in the spinal cord. Administration of recombinant human or mouse TNF-alpha starting 12 h prior to infection and then three times weekly had minimal effect on development of grey matter inflammation in the spinal cord. In contrast, TNF-alpha dramatically reduced demyelination present in spinal cord on days 14 and 35 after TMEV infection (P less than 0.01) when compared to controls. CNS virus titers of TMEV were not modified by TNF-alpha administration as measured on days 7, 14, and 35 following infection. In vivo administration of TNF-alpha inhibits TMEV-induced demyelination in susceptible SJL/J mice without affecting virus replication in the CNS.  相似文献   

7.
Theiler's murine encephalomyelitis virus (TMEV) induces acute neuronal disease followed by chronic demyelination in susceptible strains of mice. In this study we examined the role of a limited immune defect (deletion or blocking of CD40 ligand [CD40L]) on the extent of brain disease, susceptibility to demyelination, and the ability of demyelinated mice to spontaneously remyelinate following TMEV infection. We demonstrated that CD40L-dependent immune responses participate in pathogenesis in the cerebellum and the spinal cord white matter but protect the striatum of susceptible SJL/J mice. In mice on a background resistant to TMEV-induced demyelination (C57BL/6), the lack of CD40L resulted in increased striatal disease and meningeal inflammation. In addition, CD40L was required to maintain resistance to demyelination and clinical deficits in H-2 b mice. CD40L-mediated interactions were also necessary for development of protective H-2b-restricted cytotoxic T cell responses directed against the VP2 region of TMEV as well as for spontaneous remyelination of the spinal cord white matter. The data presented here demonstrated the critical role of this molecule in both antibody- and cell-mediated protective immune responses in distinct phases of TMEV-mediated pathology.  相似文献   

8.
We used transgenic expression of capsid antigens to Theiler's murine encephalomyelitis virus (TMEV) to study the influence of VP1, VP2 or VP2(121-130) to either protection or pathogenesis to chronic spinal cord demyelination, axonal loss and functional deficits during the acute and chronic phases of infection. We used both mice that are normally susceptible (FVB) and mice normally resistant (FVB.D(b) ) to demyelination. Transgenic expression of VP2(121-130) epitope in resistant FVB.D(b) mice caused spinal cord pathology and virus persistence because the VP2(121-130) epitope is the dominant peptide recognized by D(b) , which is critical for virus clearance. In contrast, all three FVB TMEV transgenic mice showed more demyelination, inflammation and axonal loss as compared with wild-type FVB mice, even though virus load was not increased. Motor function measured by rotarod showed weak correlation with total number of midthoracic axons, but a strong correlation with large-caliber axons (>10μm(2) ). This study supports the hypothesis that expression of viral capsid proteins as self influences the extent of axonal pathology following Theiler's virus-induced demyelination. The findings provide insight into the role of axonal injury in the development of functional deficits that may have relevance to human demyelinating disease.  相似文献   

9.
Infection of SJL mice with wild-type BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) leads to CD4(+)T cell-mediated CNS demyelination characterized by the development of anti-myelin epitope autoimmune responses via epitope spreading during the chronic stage of disease. To exmine the feasibility of virus-encoded mimic epitopes to initiate CNS autoimmunity, we recently developed a molecular mimicry model of virus-induced demyelinating disease wherein a non-pathogenic variant strain of TMEV was engineered to encode a 30-mer peptide encompassing the immunodominant myelin proteolipid protein, PLP139-151, epitope. SJL mice infected intracerebrally with TMEV encoding either the native PLP139-151 determinant or various peptide mimics of the epitope develop an early onset demyelinating disease mediated by activated PLP139-151-specific Th1 cells. The autoimmune nature of this early-onset demyelinating disease is shown by the fact that induction of tolerance to the PLP139-151 peptide prevents clinical disease and associated PLP139-151-specific T cell responses without affecting T cell reactivity to virus epitopes. Most significantly, TMEV encoding a molecular mimic peptide derived from the Haemophilus influenzae bacteria, homologous at only six out of thirteen of the core amino acids, led to CNS disease. These studies provide conclusive evidence that virus-induced myelin-specific autoreactive T cells can be induced by molecular mimicry and provide a useful model to study the disease inducing ability of viruses encoding human-disease-related mimicry peptides.  相似文献   

10.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a murine model for multiple sclerosis, involves recruitment of T cells and macrophages to the CNS after infection. We hypothesized that CCR2, the only known receptor for CCL2, would be required for TMEV-induced demyelinating disease development because of its role in macrophage recruitment. TMEV-infected SJL CCR2 knockout (KO) mice showed decreased long-term clinical disease severity and less demyelination compared with controls. Flow cytometric data indicated that macrophages (CD45(high) CD11b(+) ) in the CNS of TMEV-infected CCR2 KO mice were decreased compared with control mice throughout disease. CD4(+) and CD8(+) T cell percentages in the CNS of TMEV-infected control and CCR2 KO mice were similar over the course of disease. There were no apparent differences between CCR2 KO and control peripheral immune responses. The frequency of interferon-gamma-producing T cells in response to proteolipid protein 139-151 in the CNS was also similar during the autoimmunity stage of TMEV-induced demyelinating disease. These data suggest that CCR2 is important for development of clinical disease by regulating macrophage accumulation after TMEV infection.  相似文献   

11.
Theiler's murine encephalomyelitis virus (TMEV) is an enteric pathogen of mice which causes acute and chronic neurological disorders in the natural host. When brain-derived stocks of TMEV isolates are adapted to cell culture they predominantly form either large or small plaques. In this study the type of central nervous system (CNS) infection (acute versus chronic) and the associated disease occurring in mice inoculated intracerebrally with large and small plaque strains of TMEV was investigated. Large and small plaque strains of TMEV were found to vary in virulence, type of neurological disease produced and ability to establish persistent CNS infection in mice. Two large plaque strains, GDVII and FA viruses, were highly virulent, produced acute encephalitis, but were cleared from the nervous systems of surviving animals. Therefore, it appears that these large plaque variants do not cause persistent CNS infection in mice. In contrast, five small plaque strains, DA, WW, TO4, Yale and BeAn8386 viruses, were relatively avirulent, usually produced no illness during the first month after inoculation, but readily established persistent CNS infection in mice. Persistently infected mice later developed demyelinating disease. Having identified strains of TMEV that differ regarding their ability to persist, we now hope to be able to exploit this difference in elucidating the basic mechanism(s) of TMEV persistence.  相似文献   

12.
We compared CNS disease following intracerebral injection of SJL mice with Daniel's (DA) and BeAn 8386 (BeAn) strains of Theiler's murine encephalomyelitis virus (TMEV). In tissue culture, DA was more virulent then BeAn. There was a higher incidence of demyelination in the spinal cords of SJL/J mice infected with DA as compared to BeAn. However, the extent of demyelination was similar between virus strains when comparing those mice that developed demyelination. Even though BeAn infection resulted in lower incidence of demyelination in the spinal cord, these mice showed significant brain disease similar to that observed with DA. There was approximately 100 times more virus specific RNA in the CNS of DA infected mice as compared to BeAn infected mice. This was reflected by more virus antigen positive cells (macrophages/microglia and oligodendrocytes) in the spinal cord white matter of DA infected mice as compared to BeAn. There was no difference in the brain infiltrating immune cells of DA or BeAn infected mice. However, BeAn infected mice showed higher titers of TMEV specific antibody. Functional deficits as measured by Rotarod were more severe in DA infected versus BeAn infected mice. These findings indicate that the diseases induced by DA or BeAn are distinct.  相似文献   

13.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelination in susceptible mouse strains. The histology of TMEV-induced demyelination is similar to that seen in patients suffering from multiple sclerosis. It was previously shown that the susceptibility of mice to TMEV-induced demyelination in certain strain combinations is closely associated with the major histocompatibility complex (MHC) class I locus. Here we examine disease susceptibility of β2-microglobulin (β2M)-deficient transgenic mice lacking class I expression and functional CD8+ T cells. In contrast to TMEV-infected parental C57BL/6 mice, the transgenics develop high levels of virus-specific DTH and T cell proliferation accompanied by an increased frequency of central nervous system (CNS) demyelinating lesions. However, clinical signs of demyelination were not noted. Neither antibody titer nor viral persistance were significantly affected in the β2M-deficient mice. These results suggest that in the absence of functional class I/CD8+ cells, the class II-restricted T cell response to TMEV is enhanced and CNS pathogenesis is heightened, although the level is not severe enough to result in clinical disease. When the TMEV-infected mice were subcutaneously immunized with virus, however, the β2M-deficient mice displayed clinical symptoms. Therefore, our results strongly suggest that CD8+ T cells do not directly contribute to CNS demyelination. In contrast, such T cells appear to be primarily involved in down-regulation of a potentially damaging CD4+ T cell response in resistant animals, although some of the T cells may play a role in clearing viral persistence in the CNS, resulting in the protection of the host from viral demyelination.  相似文献   

14.
Theiler's murine encephalomyelitis virus (TMEV), a Picornavirus used as a viral model for multiple sclerosis (MS), causes an acute encephalomyelitis and chronic demyelination. The failure to clear the virus, which can result from stress, is a prerequisite for development of the later disease. Similarly, stressful life events have been associated with the development of MS. In the present study, a restraint stress (RS) model was used to investigate the effect of stress on the systemic dissemination of TMEV during the early stage of disease. Experimental data demonstrated that repeated RS remarkably facilitated the spread of virus from the CNS to such systemic organs as the spleen, lymph nodes, thymus, lungs and heart and compromised the ability of viral clearance within those tissues. RS also altered the pathogenecity of TMEV, enabling it to become cardiotropic, resulting in higher myocardial infectivity. These results demonstrate the profound impact that RS has upon both the tissue and organ dissemination of the virus, and the organ tropism of TMEV. An additional finding associated with stress was hepatic necrosis in the restrained animals, regardless of whether or not they were infected.  相似文献   

15.
Kang BS  Yahikozawa H  Koh CS  Kim BS 《Virology》2007,366(1):185-196
Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in an immune-mediated demyelinating disease similar to human multiple sclerosis. TMEV infection is widely spread via fecal-oral routes among wild mouse populations, yet these infected mice rarely develop clinical disease. Oral vaccination has often been used to protect the host against many different infectious agents, although the underlying protective mechanism of prior oral exposure is still unknown. To understand the mechanisms involved in protection from demyelinating disease following previous oral infection, immune parameters and disease progression of mice perorally infected with TMEV were compared with those of mice immunized intraperitoneally following intracerebral infection. Mice infected perorally, but not intraperitoneally, prior to CNS viral infection showed lower chronic viral persistence in the CNS and reduced TMEV-induced demyelinating disease. However, a prolonged period of post-oral infection was necessary for effective protection. Mice orally pre-exposed to the virus displayed markedly elevated levels of antibody response to TMEV in the serum, although T cell responses to TMEV in the periphery were not significantly different between perorally and intraperitoneally immunized mice. In addition, orally vaccinated mice showed higher levels of early CNS-infiltration of B cells producing anti-TMEV antibody as well as virus-specific CD4(+) and CD8(+) T cells in the CNS compared to intraperitoneally immunized mice. Therefore, the generation of a sufficient level of protective immune responses appears to require a prolonged time period to confer protection from TMEV-induced demyelinating disease.  相似文献   

16.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups on the basis of their different biological activities. GDVII subgroup strains produce fatal poliomyelitis in mice without virus persistence or demyelination. In contrast, TO subgroup strains induce demyelinating disease with virus persistence in the spinal cords of weanling mice. Two proteins, whose open reading frames are located in the N-terminus of the polyprotein, recently have been reported to be important for TMEV biological activities. One is leader (L) protein and is processed from the most N-terminus of the polyprotein; its function is still unknown. Although the homology of capsid proteins between DA (a representative strain of TO subgroup) and GDVII strains is over 94% at the amino acid level, that of L shows only 85%. Therefore, L is thought to be a key protein for the subgroup-specific biological activities of TMEV. Various studies have demonstrated that L plays important roles in the escape of virus from host immune defenses in the early stage of infection. The second protein is a 17–18 kDa protein, L*, which is synthesized out-of-frame with the polyprotein. Only TO subgroup strains produce L* since GDVII subgroup strains have an ACG rather than AUG at the initiation site and therefore do not synthesize L*. 'Loss and gain of function' experiments demonstrate that L* is essential for virus growth in macrophages, a target cell for TMEV persistence. L* also has been demonstrated to be necessary for TMEV persistence and demyelination. Further analysis of L and L* will help elucidate the pathomechanism(s) of TMEV-induced demyelinating disease.  相似文献   

17.
18.
Theiler murine encephalomyelitis virus (TMEV), DA strain, induces in susceptible strain of mice a biphasic disease consisting of early acute disease followed by late chronic demyelinating disease. Both phases of the disease are associated with inflammatory infiltrates of the central nervous system (CNS). Late chronic demyelinating disease induced by TMEV serves as an excellent model to study human demyelinating disease, multiple sclerosis. During early acute disease, the virus is partially cleared from the CNS by CD3(+) T cells. These T cells express Fas, FasL, negligible levels of Bcl-2 proteins and undergo activation-induced cell death as determined by TUNEL assay leading to resolution of the inflammatory response. In contrast, during late chronic demyelinating disease, and despite dense perivascular and leptomeningeal infiltrates, only very few cells undergo apoptosis. Mononuclear cells infiltrating the CNS express Bcl-2. It appears that the lack of apoptosis of T cells during late chronic demyelinating disease leads to the accumulation of these cells in the CNS. These cells may play a role in the pathogenesis of the demyelinating disease.  相似文献   

19.
20.
P Borrow  C J Welsh    A A Nash 《Immunology》1993,80(3):502-506
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which causes a biphasic central nervous system (CNS) disease in certain strains of mice. Lytic virus replication within the CNS causes acute damage at early times post-infection, with the surviving animals developing a chronic CNS demyelinating disease. This damage is thought to result both from direct viral damage and from an immunopathological CD4+ T-cell mediated delayed-type hypersensitivity response to virus. By contrast, CD4+ T cells have a vital protective role at early times post-infection, as mice specifically depleted of CD4+ T cells of this subset prior to infection with TMEV die within 3-5 weeks. In an investigation of how CD4+ T cells act to mediate protection in TMEV-infected mice, we show that CD4+ cell-depleted animals, which fail to make a significant antiviral antibody response, could be protected by passive transfer of neutralizing antibodies. However, surviving animals had high levels of persisting virus in the CNS and they developed very severe symptoms of chronic demyelinating disease. The appearance of infectious virus was not due to selection of neutralizing antibody-resistant viral variants. These results demonstrate that the key protective role of CD4+ T cells in TMEV-infected mice is to provide help for antibody production by B cells at early times post-infection, but that other CD4+ cell-dependent mechanisms must contribute to control of virus replication, and are of importance in determining the levels of virus subsequently persisting in the CNS, and hence the severity of the chronic demyelinating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号